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Robustness

» Many complex systems are prone to cascading
catastrophic failure: exciting!!!

v

vV vVvYyyw

» But complex systems also show persistent
robustness (not as exciting but important...)

» Robustness and Failure may be a power-law story...

Blackouts

Disease outbreaks

Wildfires
Earthquakes
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Our emblem of Robust-Yet-Fragile
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“That’s no moon ..”
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Robustness

v

System robustness may result from

1. Evolutionary processes

2. Engineering/Design
Idea: Explore systems optimized to perform under
uncertain conditions.

The handle:

‘Highly Optimized Tolerance’ (HOT) 4 5. 6. 10]

The catchphrase: Robust yet Fragile

The people: Jean Carlson and John Doyle (H)
Great abstracts of the world #73: “There aren’t

any.”l’!
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Robustness S e

Robustness
HOT theory

Features of HOT systems:[® ¢! G
» High performance and robustness

» Designed/evolved to handle known stochastic
environmental variability

» Fragile in the face of unpredicted environmental
signals

» Highly specialized, low entropy configurations
» Power-law distributions appear (of course...)
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Robustness

HOT combines things we’ve seen:

>

v

v

v

v

v

Variable transformation
Constrained optimization

Need power law transformation between variables:
(Y=X"9

Recall PLIPLO is bad...
MIWO is good: Mild In, Wild Out
X has a characteristic size but Y does not
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Robustness

Forest fire example: ©!
» Square N x N grid
» Sites contain a tree with probability p = density
» Sites are empty with probability 1 — p

» Fires start at location (i, j) according to some
distribution P

» Fires spread from tree to tree (nearest neighbor only)
» Connected clusters of trees burn completely
» Empty sites block fire

» Best case scenario:
Build firebreaks to maximize average # trees left
intact given one spark
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Robustness

Forest fire example: °

Build a forest by adding one tree at a time
Test D ways of adding one tree

D = design parameter

Average over P;; = spark probability

D = 1: random addition

D = NZ: test all possibilities

v

v

v

v

v

v

Measure average area of forest left untouched
» f(c) = distribution of fire sizes ¢ (= cost)
» Yield=Y = p— (c)
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Robustness

Specifics:
>
Pij = Pi.a, b, Pj.a b,
where
P;.p x g l(i+a)/b)?
» In the original work, by, > by
» Distribution has more width in y direction.
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HOT theory

Pj has a
© @ Gaussian decay

» Optimized forests do well on average (robustness) ';"\,\
» But rare extreme events occur (fragility)
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HOT Forests
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FIG. 2. Yield vs density Y(p): (a) for design parameters D =
1 (dotted curve), 2 (dot-dashed), N (long dashed), and N? (solid)
with N = 64, and (b) for D = 2 and N = 2,2%,...,27 run-
ning from the bottom to top curve. The results have been av-
eraged over 100 runs. The inset to (a) illustrates corresponding

loss functions L = log[{f)/(1 — (f))], on a scale which more
clearly differentiates between the curves.
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HOT Forests:

» Y = ‘the average density of trees left unburned in a
configuration after a single spark hits. [°!

10° 10°

(®)

Cumulative probability F(c)

1

o

= = o 10° 107 10°
Event size ¢ Event size ¢

=

10

FIG. 3. Cumulative distributions of events F(c): (a) at peak
yield for D = 1, 2, N, and N? with N = 64, and (b) for D =
N?,and N = 64 at equal density increments of 0.1, ranging at
p = 0.1 (bottom curve) to p = 0.9 (top curve).
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Random Forests S e

Robustness
HOT theory

D = 1: Random forests = Percolation""! References
Randomly add trees
Below critical density p¢, no fires take off

Above critical density pc, percolating cluster of trees
burns

Only at p¢, the critical density, is there a power-law
distribution of tree cluster sizes

v

v

v

v

Forest is random and featureless

v
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HOT forests nutshell:

» Highly structured

» Power law distribution of tree cluster sizes for p > pc
» No specialness of p,

» Forest states are tolerant

» Uncertainty is okay if well characterized

» If P; is characterized poorly, failure becomes highly
likely
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HOT forests—Real data:

“Complexity and Robustness,” Carlson & Dolye [°!

6

4

log (P)

log (1)

Fig. 1. Log-log (base 10) comparison of DC, WWW, CF, and FF da!a (symbok)
with PLR models (solid lines) (for = 0,0.9,0.9,1.85,ora = 1/8 = .05
respectively) and the SOC FF model ( = 0.15, dashed). Rsleren(ehnssohx 05,
1 (dashed) are included. The cumulative distributions of frequencies 2/ = ) vs.
the largest4, 19860 1995 onall of the
US. Fish and Wildlife Service Lands (FF) (17), the >10,000 largest California
brushfires from 1878 to 1999 (CF) (18), 130 000 web file transfers at Boston
u 1994 and from DC. The size

units [1,000 km? (FF and CF), megabytes (WWWJ and bytes (DO)] and the loga-
rithmic decimation of the data are chosen for visualization.

PLR =

probability-loss-resource.

Minimize cost subject to
resource (barrier)
constraints:

C=>pil

given

i=f(r)and > r <A.
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HOT theory: SH

Robustness
HOT theory

The abstract story, using figurative forest fires:

» Given some measure of failure size y; and correlated
resource size x;. with relationship y; = x; ¢,
i=1,..., Nes-

» Design system to minimize (y)
subject to a constraint on the x;.

» Minimize cost:

References

Nsiles
C=>_ Pr(y)yi
i=1

Subject to YN x; = constant.
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1. Cost: Expected size of fire:

2. Constraint: building and maintaining firewalls

3.

Nshes

Cire < Y _(Pia)a; =

i=1

» a; = area of ith site’s region
» p; = avg. prob. of fire at site in ith site’s region

Nslles

Niites

Zp,

1 /2 _1
Cﬁrewadls X Z a;

i=1

» We are assuming isometry.

» In d dimensions, 1/2 is replaced by (d —

1)/d

Insert question from assignment 5 () to find:
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SOC theory

SOC = Self-Organized Criticality

>

Idea: natural dissipative systems exist at ‘critical
states’;

Analogy: Ising model with temperature somehow
self-tuning;

Power-law distributions of sizes and frequencies
arise ‘for free’;

Introduced in 1987 by Bak, Tang, and
Weisenfeld [® 7 &l:

“Self-organized criticality - an explanation of 1/f
noise” (PRL, 1987);

Problem: Critical state is a very specific point;
Self-tuning not always possible;
Much criticism and arguing...
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Per Bak’s Magnum Opus:

PERBAK

héw
natare

WOI‘I(S

“How Nature Works: the Science of

by Per Bak (1997). !
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Robustness

HOT versus SOC

v

v

v

v

v

v

Both produce power laws
Optimization versus self-tuning

HOT systems viable over a wide range of high
densities

SOC systems have one special density
HOT systems produce specialized structures
SOC systems produce generic structures
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HOT theory—Summary of designed

tolerance ©

Table 1. Characteristics of SOC, HOT, and data

Property Nele HOT and Data
1 Internal Generic, Structured,
configuration homogeneous, heterogeneous,
self-similar self-dissimilar
2 Robustness Generic Robust, yet
fragile
3 Density and yield Low High
4 Max event size Infinitesimal Large
5 Large event shape Fractal Compact
6 Mechanism for Critical internal Robust
power laws fluctuations performance
7 Exponent « Small Large
8 a vs. dimension d a=~(d—-1)/10 a~1/d
9 DDOFs Small (1) Large ()
10 Increase model No change New structures,
resolution new sensitivities
1 Response to Homogeneous Variable
forcing
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System i
# Bobustness :
To read: ‘Complexity and Robustness’© B Folsness
Self-Organized Criticality

COLD theory
Network robustness

Colloquium

Fomplexity and robustness References
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COLD forests S e

Robustness

References

Avoidance of large-scale failures

» Constrained Optimization with Limited Deviations [°!

v

Weight cost of larges losses more strongly

v

Increases average cluster size of burned trees...
... but reduces chances of catastrophe
Power law distribution of fire sizes is truncated

v

v
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Cutoffs
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Observed:

. 0 0 . References
» Power law distributions often have an exponential
cutoff

P(x) ~ x Ve=*/%

where X. is the approximate cutoff scale.
» May be Weibull distributions:

P(x) ~ x e~ "
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Robustness

We’'ll return to this later on:

>

>

network robustness.

Albert et al., Nature, 2000:
“Error and attack tolerance of complex networks” !

General contagion processes acting on complex
networks. 1% 12

Similar robust-yet-fragile stories ...
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