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Mechanisms:

A powerful story in the rise of complexity:
» structure arises out of randomness.
» Exhibit A: Random walks. (H)

The essential random walk:
» One spatial dimension.
» Time and space are discrete
» Random walker (e.g., a drunk) starts at origin x = 0.
» Step at time tis ¢:

{+1
@=9 _q

with probability 1/2
with probability 1/2
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A few random random walks:
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Random walks:

Displacement after ¢ steps:
t
Xt = Z €f
i=1

Expected displacement:
t t
(xt) = <Z€i> => () =0
i=1 i=1

» At any time step, we ‘expect’ our drunkard to be back
at the pub.

» Obviously fails for odd number of steps...

» But as time goes on, the chance of our drunkard
lurching back to the pub must diminish, right?

Variances sum: (H)*

Var(x;) = Var (i e,-)

i=1
t t

=) Var(e) =) 1=t
i=1 i=1

* Sum rule = a good reason for using the variance to measure
spread; only works for independent distributions.

So typical displacement from the origin scales as:

» A non-trivial scaling law arises out of
additive aggregation or accumulation.
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Random walk basics:

Counting random walks:

>

Each specific random walk of length t appears with a
chance 1/2!.

We’ll be more interested in how many random walks
end up at the same place.

Define N(i,j, t) as # distinct walks that start at x = i
and end at x = j after t time steps.

Random walk must displace by +(j — i) after ¢ steps.
Insert question from assignment 2 (H)

N(ij t) = ((t+jt— ,')/2)

How does P(x;) behave for large t?

>

>

>

Take time t = 2n to help ourselves.

Xon € {0,£2,£4, ..., +£2n}

Xop IS even so set xo, = 2K.

Using our expression N(i,j, t) with i = 0, j = 2k, and
t = 2n, we have

2n
Pr(x2,7 = 2k) X (n+ k)

For large n, the binomial deliciously approaches the
Normal Distribution of Snoredom:
1 2

Pr(x = x) = — te-%.
m

Insert question from assignment 2 (/)

The whole is different from the parts.
See also: Stable Distributions (H)

#nutritious

Ne
Ay e e
A e = ‘\ cI

spreading (more later).
View as Random Additive Growth Mechanism.
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Random walks are even weirder than you might
think...

> &t = the probability that by time step ¢, a random

walk has crossed the origin r times.
Think of a coin flip game with ten thousand tosses.

If you are behind early on, what are the chances you
will make a comeback?

The most likely number of lead changes is... 0.
Infact: §o > &1t > &o0 > -

Even crazier:
The expected time between tied scores = co!

See Feller, Intro to Probability Theory, Volume |5

Random walks

#crazytownbananapants

The problem of first return:

>

>

>

What is the probability that a random walker in one
dimension returns to the origin for the first time after t
steps?

Will our drunkard always return to the origin?

What about higher dimensions?

Reasons for caring:

1.

2.

3.

We will find a power-law size distribution with an
interesting exponent.

Some physical structures may result from random
walks.

We’'ll start to see how different scalings relate to
each other.

For random walks in 1-d:

4
2. -
x 4 4
_2. -
‘ 5 10 15 20
t
» A return to origin can only happen when t = 2n.
» In example above, returns occur at t = 8, 10, and 14.
» Call Py(2n) the probability of first return at t = 2n.
» Probability calculation = Counting problem
(combinatorics/statistical mechanics).
» |dea: Transform first return problem into an easier

return problem.
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3.
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t

» Can assume drunkard first lurches to x = 1.

» Observe walk first returning at t = 16 stays at or
above x = 1 for 1 <t < 15 (dashed red line).

» Now want walks that can return many times to x = 1.
» Py(2n) =

2-5Pr(x;>1,1<t<2n—1,and x; = Xpp_1 = 1)
» The % accounts for xo, = 2 instead of 0.

» The 2 accounts for drunkards that first lurch to
X =-1.

Counting first returns:

Approach:
» Move to counting numbers of walks.
» Return to probability at end.
» Again, N(i,j, t) is the # of possible walks between
x =i and x = j taking t steps.
» Consider all paths starting at x = 1 and ending at
x =1 after t = 2n — 2 steps.

» |dea: If we can compute the number of walks that hit
x = 0 at least once, then we can subtract this from
the total number to find the ones that maintain x > 1.

» Call walks that drop below x = 1 excluded walks.

» We’ll use a method of images to identify these
excluded walks.

Examples of excluded walks:

Key observation for excluded walks:

» For any path starting at x=1 that hits 0, there is a
unique matching path starting at x=—1.

» Matching path first mirrors and then tracks after first
reaching x=0.

» # of t-step paths starting and ending at x=1 and
hitting x=0 at least once
= # of t-step paths starting at x=—1 and ending at
x=1=N(-1,1,1)

> SO Nirst rewrn(2n) = N(1,1,2n—-2) — N(—1,1,2n—2)
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Probability of first return:

Insert question from assignment 2 (8) :

02n-3/2
V2rn3/2
» Normalized number of paths gives probability.

» Total number of possible paths = 2.

>

Nix(2n) ~

1
Pfl—(zn) = ﬁNﬁ(Zn)
1 22n-3/2

= 22n V2mrn3/2

)3/2 o 1732,

1
= vz

First Returns

P(t) x t73/2, v =3/2
» Same scaling holds for continuous space/time walks.
» P(t) is normalizable.
» Recurrence: Random walker always returns to origin

» But mean, variance, and all higher moments are
infinite. #totalmadness

» Even though walker must return, expect a long wait...

» One moral: Repeated gambling against an infinitely
wealthy opponent must lead to ruin.

Higher dimensions (t5):

» Walker in d = 2 dimensions must also return
» Walker may not return in d > 3 dimensions

Random walks

On finite spaces:
» In any finite homogeneous space, a random walker
will visit every site with equal probability
» Call this probability the Invariant Density of a
dynamical system
» Non-trivial Invariant Densities arise in chaotic
systems.

On networks:
» On networks, a random walker visits each node with
frequency «x node degree #groovy
» Equal probability still present:
walkers traverse edges with equal frequency.
#totallygroovy
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Scheidegger Networks -2 Vichariams | Connections between exponents: Viechariems |
Random Walks Random Walks
N e » Both basin area and length obey power law e
> distributions Vencpamatin
) % » Observed for real river networks
. » Reportedly: 1.3 <7 <15and15<y<?2 N
(] o 8 Generalize relationship between area and length:
{ » Hack’s law [“];
h
I NN «gé 2 tocal.
» Random directed network on triangular lattice. " > Forreal, large networks h~ 0.5 e
» Toy model of real networks. @ » Smaller basins possibly h > 1/2 (later: allometry). @
> ‘Flow’ is southeast or southwest with equal < > Models exist with interesting values of h. e
probability. » Plan: Redo calc with ~, 7, and h.
4 Rl W B
o 220f44 Do 250f44
Scheidegger networks Vechariams | Connections between exponents: Viechariems |
Random Walks » Given
» Creates basins with random walk boundaries. - (xa" Pa)xa ™, and P(£) o £ e
» Observe that subtracting one random walk from ransiormaton P paht ransformation
another gives random walk with increments: > dl ocd(a") = ha""da
References » Find 7 in terms of v and h. References
+1 with probability 1/4 » Pr(basin area = a)da
ee=4 0 withprobability 1/2 = Pr(basin length = ¢)d¢
—1 with probability 1/4 o 0-Vdl

 (a")77a"'da
— 5-(+h(-1)gga

v

Random walk with probabilistic pauses.

Basin termination = first return random walk problem. g
Basin length ¢ distribution: P(¢) o £~3/2 @ ] =14 h( 1)
For real river networks, generalize to P(¢) o £77. @

v v

ﬁkt'@?

v

» Excellent example of the Scaling Relations found
qumm B between exponents describing power laws for many
O

| ()
Moy ; el
systems.

A 230f 44 D> 260f44

Connections between exponents: Viechanams | Connections between exponents: Mechaniams |

Random Walks i X X i Random Walks
e e s With more detailed description of network structure,

, , o =1+ h(y — 1) simplifies to:["] ariablo

» For a basin of length ‘e, width o 41/2 \\fnnsﬁ)‘mmhon T * ( ! ) p Xanszrmalmn

- Basinarea a (- (12 — (32 =
» Invert: ¢ o« 32/3 References and References

- dl o d(2/3) = 2/3a1/3da

» Pr(basin area = a)da
= Pr(basin length = ¢)d¢

» Only one exponent is independent (take h).
& E;:’//:dfs/z /s » Simplifies system description.
: (a*4/3)da a hda » Expect Scaling Relations where power laws are S
=a "da found. @
» Need only characterize Universality (H) class with =

independent exponents.
'l”‘r\mksm 3 ﬁwvmsm' |2|
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Other First Returns or First Passage Times:

Failure:
» A very simple model of failure/death: "]
X; = entity’s ‘health’ at time t
Start with xg > 0.
Entity fails when x hits 0.

v

v

v

Streams
» Dispersion of suspended sediments in streams.
» Long times for clearing.

More than randomness

Can generalize to Fractional Random Walks (6 7 9!
Levy flights, Fractional Brownian Motion

See Montroll and Shlesinger for example: [°!
“On 1/f noise and other distributions with long tails.”
Proc. Natl. Acad. Sci., 1982.

In 1-d, standard deviation o scales as

v

v

v

v

o~ t

a = 1/2 — diffusive
a > 1/2 — superdiffusive
a < 1/2 — subdiffusive

Extensive memory of path now matters...

v

Variable Transformation

Understand power laws as arising from
1. Elementary distributions (e.g., exponentials).
2. Variables connected by power relationships.

» Random variable X with known distribution Py
» Second random variable Y with y = f(x).

> Py(y)dy = Px(x)dx

- —1 dy
2 yif=y Px(f (Y))W

» Often easier to do by
hand...
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General Example
» Assume relationship between x and y is 1-1.
» Power-law relationship between variables:
y=cx*%a>0
» Look at y large and x small

>

dy =d(ex™®)
= c(—a)x *'dx

) —1
invert: dx = —x*'dy
ca

Now make transformation:

Py(y)dy = Px(x)dx

(x) dx

—1/a C1/a e
Py(y)dy = Px ((%) )Ty ledy

» If Px(x) — non-zero constant as x — 0 then

1-1/a

Py(y)ocy™ as y — oo.
> If Py(x) — x® as x — 0 then
Py(y)ocy 1ol as y — .

Example

Exponential distribution
Given Py(x) = te~*/* and y = cx~°, then

Ply) sy~ e 0 (y 172

» Exponentials arise from randomness (easy)...
» More later when we cover robustness.
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Gravity

» Select a random point in the
universe X

» Measure the force of gravity
F(X)

» Observe that Pe(F) ~ F5/2,

Matter is concentrated in stars: !

» F is distributed unevenly
» Probability of being a distance r from a single star at
X=0:
P,(r)dr o r?dr
» Assume stars are distributed randomly in space
(oops?)
» Assume only one star has significant effect at X.
» Law of gravity:
Focr?
» invert:
roc F1/2
» Also invert:
dF ocd(r 2) o r=3dr — dr o« r®dF o F~3/2dF .
Transformation:

Using | r o F~1/2] [dr « F-3/24F |, andw

>

Pe(F)dF = P,(r)dr

x P/(F~'/2)F=3/24F

~ (,_-71/2)2 F-3/24F
= F1=%/24F

= F5/24F.
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Gravity:

v

v

v

Pe(F) = F5/2dF

v=5/2
Mean is finite.
Variance = oc.
A wild distribution.

Upshot: Random sampling of space usually safe
but can end badly...

Extreme Caution!

» PLIPLO = Power law in, power law out
» Explain a power law as resulting from another
unexplained power law.
» Yet another homunculus argument (&)...
» Don’t do this!!! (slap, slap)
» We need mechanisms!
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