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Mechanisms:

A powerful story in the rise of complexity:
I structure arises out of randomness.
I Exhibit A: Random walks. (�)

The essential random walk:
I One spatial dimension.
I Time and space are discrete
I Random walker (e.g., a drunk) starts at origin x = 0.
I Step at time t is εt :

εt =

{
+1 with probability 1/2
−1 with probability 1/2

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Random_walk
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A few random random walks:
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Random walks:

Displacement after t steps:

xt =
t∑

i=1

εi

Expected displacement:

〈xt〉 =

〈
t∑

i=1

εi

〉
=

t∑
i=1

〈εi〉 = 0

I At any time step, we ‘expect’ our drunkard to be back
at the pub.

I Obviously fails for odd number of steps...
I But as time goes on, the chance of our drunkard

lurching back to the pub must diminish, right?

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Power-Law
Mechanisms I

Random Walks
The First Return Problem

Examples

Variable
transformation
Basics

Holtsmark’s Distribution

PLIPLO

References

6 of 44

Variances sum: (�)∗

Var(xt) = Var

(
t∑

i=1

εi

)

=
t∑

i=1

Var (εi) =
t∑

i=1

1 = t

∗ Sum rule = a good reason for using the variance to measure
spread; only works for independent distributions.

So typical displacement from the origin scales as:

σ = t1/2

I A non-trivial scaling law arises out of
additive aggregation or accumulation.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Variance#Variance_of_the_sum_of_uncorrelated_variables
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Great moments in Televised Random Walks:

Plinko! (�) from the Price is Right.


2007-10-11plinko.mov
Media File (video/quicktime)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Plinko
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Random walk basics:

Counting random walks:
I Each specific random walk of length t appears with a

chance 1/2t .
I We’ll be more interested in how many random walks

end up at the same place.
I Define N(i , j , t) as # distinct walks that start at x = i

and end at x = j after t time steps.
I Random walk must displace by +(j − i) after t steps.
I Insert question from assignment 2 (�)

N(i , j , t) =
(

t
(t + j − i)/2

)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2013-01UVM-300/docs/{2013-01UVM-300}assignment2.pdf
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How does P(xt) behave for large t?
I Take time t = 2n to help ourselves.
I x2n ∈ {0,±2,±4, . . . ,±2n}
I x2n is even so set x2n = 2k .
I Using our expression N(i , j , t) with i = 0, j = 2k , and

t = 2n, we have

Pr(x2n ≡ 2k) ∝
(

2n
n + k

)
I For large n, the binomial deliciously approaches the

Normal Distribution of Snoredom:

Pr(xt ≡ x) ' 1√
2πt

e−
x2
2t .

Insert question from assignment 2 (�)
I The whole is different from the parts. #nutritious
I See also: Stable Distributions (�)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2013-01UVM-300/docs/{2013-01UVM-300}assignment2.pdf
http://en.wikipedia.org/wiki/Stable_distribution
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Universality (�) is also not left-handed:

I This is Diffusion (�): the most essential kind of
spreading (more later).

I View as Random Additive Growth Mechanism.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Universality_(dynamical_systems)
http://en.wikipedia.org/wiki/Diffusion
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Random walks are even weirder than you might
think...
I ξr ,t = the probability that by time step t , a random

walk has crossed the origin r times.
I Think of a coin flip game with ten thousand tosses.
I If you are behind early on, what are the chances you

will make a comeback?
I The most likely number of lead changes is... 0.
I In fact: ξ0,t > ξ1,t > ξ2,t > · · ·
I Even crazier:

The expected time between tied scores =∞!

See Feller, Intro to Probability Theory, Volume I [3]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Random walks #crazytownbananapants

The problem of first return:
I What is the probability that a random walker in one

dimension returns to the origin for the first time after t
steps?

I Will our drunkard always return to the origin?
I What about higher dimensions?

Reasons for caring:
1. We will find a power-law size distribution with an

interesting exponent.
2. Some physical structures may result from random

walks.
3. We’ll start to see how different scalings relate to

each other.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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For random walks in 1-d :
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I A return to origin can only happen when t = 2n.
I In example above, returns occur at t = 8, 10, and 14.
I Call Pfr(2n) the probability of first return at t = 2n.
I Probability calculation ≡ Counting problem

(combinatorics/statistical mechanics).
I Idea: Transform first return problem into an easier

return problem.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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I Can assume drunkard first lurches to x = 1.
I Observe walk first returning at t = 16 stays at or

above x = 1 for 1 ≤ t ≤ 15 (dashed red line).
I Now want walks that can return many times to x = 1.
I Pfr(2n) =

2 · 1
2Pr(xt ≥ 1,1 ≤ t ≤ 2n − 1, and x1 = x2n−1 = 1)

I The 1
2 accounts for x2n = 2 instead of 0.

I The 2 accounts for drunkards that first lurch to
x = −1.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Counting first returns:

Approach:
I Move to counting numbers of walks.
I Return to probability at end.
I Again, N(i , j , t) is the # of possible walks between

x = i and x = j taking t steps.
I Consider all paths starting at x = 1 and ending at

x = 1 after t = 2n − 2 steps.
I Idea: If we can compute the number of walks that hit

x = 0 at least once, then we can subtract this from
the total number to find the ones that maintain x ≥ 1.

I Call walks that drop below x = 1 excluded walks.
I We’ll use a method of images to identify these

excluded walks.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Examples of excluded walks:
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Key observation for excluded walks:
I For any path starting at x=1 that hits 0, there is a

unique matching path starting at x=−1.
I Matching path first mirrors and then tracks after first

reaching x=0.
I # of t-step paths starting and ending at x=1 and

hitting x=0 at least once
= # of t-step paths starting at x=−1 and ending at
x=1 = N(−1,1, t)

I So Nfirst return(2n) = N(1,1,2n− 2)−N(−1,1,2n− 2)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Probability of first return:

Insert question from assignment 2 (�) :
I Find

Nfr(2n) ∼ 22n−3/2
√

2πn3/2
.

I Normalized number of paths gives probability.
I Total number of possible paths = 22n.
I

Pfr(2n) =
1

22n Nfr(2n)

' 1
22n

22n−3/2
√

2πn3/2

=
1√
2π

(2n)−3/2 ∝ t−3/2.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2013-01UVM-300/docs/{2013-01UVM-300}assignment2.pdf
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First Returns

I

P(t) ∝ t−3/2, γ = 3/2

I Same scaling holds for continuous space/time walks.
I P(t) is normalizable.
I Recurrence: Random walker always returns to origin
I But mean, variance, and all higher moments are

infinite. #totalmadness
I Even though walker must return, expect a long wait...
I One moral: Repeated gambling against an infinitely

wealthy opponent must lead to ruin.

Higher dimensions (�):
I Walker in d = 2 dimensions must also return
I Walker may not return in d ≥ 3 dimensions

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://mathworld.wolfram.com/PolyasRandomWalkConstants.html
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Random walks

On finite spaces:
I In any finite homogeneous space, a random walker

will visit every site with equal probability
I Call this probability the Invariant Density of a

dynamical system
I Non-trivial Invariant Densities arise in chaotic

systems.

On networks:
I On networks, a random walker visits each node with

frequency ∝ node degree #groovy
I Equal probability still present:

walkers traverse edges with equal frequency.
#totallygroovy

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Scheidegger Networks [8, 2]

I Random directed network on triangular lattice.
I Toy model of real networks.
I ‘Flow’ is southeast or southwest with equal

probability.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Scheidegger networks

I Creates basins with random walk boundaries.
I Observe that subtracting one random walk from

another gives random walk with increments:

εt =


+1 with probability 1/4
0 with probability 1/2
−1 with probability 1/4

I Random walk with probabilistic pauses.
I Basin termination = first return random walk problem.
I Basin length ` distribution: P(`) ∝ `−3/2

I For real river networks, generalize to P(`) ∝ `−γ .

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Connections between exponents:

I For a basin of length `, width ∝ `1/2

I Basin area a ∝ ` · `1/2 = `3/2

I Invert: ` ∝ a 2/3

I d` ∝ d(a2/3) = 2/3a−1/3da
I Pr(basin area = a)da

= Pr(basin length = `)d`
∝ `−3/2d`
∝ (a2/3)−3/2a−1/3da
= a−4/3da
= a−τda

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Connections between exponents:

I Both basin area and length obey power law
distributions

I Observed for real river networks
I Reportedly: 1.3 < τ < 1.5 and 1.5 < γ < 2

Generalize relationship between area and length:
I Hack’s law [4]:

` ∝ ah.

I For real, large networks h ' 0.5
I Smaller basins possibly h > 1/2 (later: allometry).
I Models exist with interesting values of h.
I Plan: Redo calc with γ, τ , and h.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Connections between exponents:
I Given

` ∝ ah, P(a) ∝ a−τ , and P(`) ∝ `−γ

I d` ∝ d(ah) = hah−1da
I Find τ in terms of γ and h.
I Pr(basin area = a)da

= Pr(basin length = `)d`
∝ `−γd`
∝ (ah)−γah−1da
= a−(1+h (γ−1))da

I

τ = 1 + h(γ − 1)

I Excellent example of the Scaling Relations found
between exponents describing power laws for many
systems.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Connections between exponents:

With more detailed description of network structure,
τ = 1 + h(γ − 1) simplifies to: [1]

τ = 2− h

and
γ = 1/h

I Only one exponent is independent (take h).
I Simplifies system description.
I Expect Scaling Relations where power laws are

found.
I Need only characterize Universality (�) class with

independent exponents.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Universality_(dynamical_systems)
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Other First Returns or First Passage Times:

Failure:
I A very simple model of failure/death: [10]

I xt = entity’s ‘health’ at time t
I Start with x0 > 0.
I Entity fails when x hits 0.

Streams
I Dispersion of suspended sediments in streams.
I Long times for clearing.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Power-Law
Mechanisms I

Random Walks
The First Return Problem

Examples

Variable
transformation
Basics

Holtsmark’s Distribution

PLIPLO

References

29 of 44

More than randomness

I Can generalize to Fractional Random Walks [6, 7, 5]

I Levy flights, Fractional Brownian Motion
I See Montroll and Shlesinger for example: [5]

“On 1/f noise and other distributions with long tails.”
Proc. Natl. Acad. Sci., 1982.

I In 1-d, standard deviation σ scales as

σ ∼ t α

α = 1/2 — diffusive
α > 1/2 — superdiffusive
α < 1/2 — subdiffusive

I Extensive memory of path now matters...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Variable Transformation

Understand power laws as arising from
1. Elementary distributions (e.g., exponentials).
2. Variables connected by power relationships.

I Random variable X with known distribution Px

I Second random variable Y with y = f (x).

I Py (y)dy = Px(x)dx
=∑

y |f (x)=y Px(f−1(y)) dy
|f ′(f−1(y))|

I Often easier to do by
hand...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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General Example
I Assume relationship between x and y is 1-1.
I Power-law relationship between variables:

y = cx−α, α > 0
I Look at y large and x small
I

dy = d
(
cx−α

)
= c(−α)x−α−1dx

invert: dx =
−1
cα

xα+1dy

dx =
−1
cα

(y
c

)−(α+1)/α
dy

dx =
−c1/α

α
y−1−1/αdy

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Now make transformation:

Py (y)dy = Px(x)dx

Py (y)dy = Px

(x)︷ ︸︸ ︷((y
c

)−1/α
) dx︷ ︸︸ ︷

c1/α

α
y−1−1/αdy

I If Px(x)→ non-zero constant as x → 0 then

Py (y) ∝ y−1−1/α as y →∞.

I If Px(x)→ xβ as x → 0 then

Py (y) ∝ y−1−1/α−β/α as y →∞.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Power-Law
Mechanisms I

Random Walks
The First Return Problem

Examples

Variable
transformation
Basics

Holtsmark’s Distribution

PLIPLO

References

34 of 44

Example

Exponential distribution

Given Px(x) = 1
λe−x/λ and y = cx−α, then

P(y) ∝ y−1−1/α + O
(

y−1−2/α
)

I Exponentials arise from randomness (easy)...
I More later when we cover robustness.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Gravity

I Select a random point in the
universe ~x

I Measure the force of gravity
F (~x)

I Observe that PF (F ) ∼ F−5/2.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Matter is concentrated in stars: [9]

I F is distributed unevenly
I Probability of being a distance r from a single star at
~x = ~0:

Pr (r)dr ∝ r2dr

I Assume stars are distributed randomly in space
(oops?)

I Assume only one star has significant effect at ~x .
I Law of gravity:

F ∝ r−2

I invert:
r ∝ F−1/2

I Also invert:
dF ∝ d(r−2) ∝ r−3dr → dr ∝ r3dF ∝ F−3/2dF .

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Transformation:

Using r ∝ F−1/2 , dr ∝ F−3/2dF , and Pr (r) ∝ r2

I

PF (F )dF = Pr (r)dr

I

∝ Pr (F−1/2)F−3/2dF

I

∝
(

F−1/2
)2

F−3/2dF

I

= F−1−3/2dF

I

= F−5/2dF .

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Gravity:

PF (F ) = F−5/2dF
I

γ = 5/2

I Mean is finite.
I Variance =∞.
I A wild distribution.
I Upshot: Random sampling of space usually safe

but can end badly...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Extreme Caution!

I PLIPLO = Power law in, power law out
I Explain a power law as resulting from another

unexplained power law.
I Yet another homunculus argument (�)...
I Don’t do this!!! (slap, slap)
I We need mechanisms!

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Homunculus_argument
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