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Mechanisms: e

Random Walks

A powerful story in the rise of complexity:

Examples

» structure arises out of randomness. Variable

transformation

» Exhibit A: Random walks. (E) S

References

The essential random walk:
One spatial dimension.
Time and space are discrete

v

v

v

Random walker (e.g., a drunk) starts at origin x = 0.
Step at time t is ¢;:

v
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O

_ [ +1 with probability 1/2
=\ =1 with probability 1/2
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A few random random walks:

1
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Power-Law
Mechanisms |

Variable
transformation

References

DA 4of44


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Random walks:

Displacement after t steps:
t

Expected displacement:
t
(xt) = <Z 6/> = Z (i) =0

» At any time step, we ‘expect’ our drunkard to be back
at the pub.

» Obviously fails for odd number of steps...

» But as time goes on, the chance of our drunkard
lurching back to the pub must diminish, right?
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Variances sum: (H)*

t Random Walks
The First Return Problem
Var(x;) = Var <§ e,-)

i=1 Variable
transformation
Basics
t t Holtsmark's Distribution
=Y Var(e) =Y 1=t
5 g References
i=1 i=1

* Sum rule = a good reason for using the variance to measure
spread; only works for independent distributions.

So typical displacement from the origin scales as:

» A non-trivial scaling law arises out of
additive aggregation or accumulation. P @
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Great moments in Televised Random Walks:
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Random walk basics:

Counting random walks:

>

Each specific random walk of length t appears with a
chance 1/2%.

We'll be more interested in how many random walks
end up at the same place.

Define N(i,j, t) as # distinct walks that start at x =i
and end at x = j after t time steps.

Random walk must displace by +(j — i) after ¢ steps.
Insert question from assignment 2 (H)
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How does P(x;) behave for large t?

>

>

>

Take time t = 2nto help ourselves.

Xon € {0,+2,+4, ..., +2n}

Xon IS even so set xo, = 2K.

Using our expression N(i,j, t) with i = 0, j = 2k, and
t =2n, we have

2n

For large n, the binomial deliciously approaches the
Normal Distribution of Snoredom:

1 X2

e 2,
2rt

Pr(Xt = X) Ry

Insert question from assignment 2 (H)

The whole is different from the parts. #nutritious
See also: Stable Distributions (FH)
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Universality (H) is also not left-handed:

Ne

o
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spreading (more later).

» View as Random Additive Growth Mechanism.
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Random walks are even weirder than you might e GO
think... famges
» &t = the probability that by time step t, a random ko B
walk has crossed the origin r times. T S

» Think of a coin flip game with ten thousand tosses.

References

» If you are behind early on, what are the chances you
will make a comeback?

» The most likely number of lead changes is... 0.
> Infact: (ot > &1t > &op > - -

» Even crazier:
The expected time between tied scores = co!

WLTQ

See Feller, Intro to Probability Theory, Volume |
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Random walks  #crazytownbananapants

The problem of first return:

» What is the probability that a random walker in one
dimension returns to the origin for the first time after ¢
steps?

» Will our drunkard always return to the origin?

» What about higher dimensions?

Reasons for caring:

1. We will find a power-law size distribution with an
interesting exponent.

2. Some physical structures may result from random
walks.

3. We'll start to see how different scalings relate to
each other.
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Power-Law

For random walks in 1-d: Mechanisms |
4 : : : Random Walks
' : : The First Returm Problom
: : g Variable
1% : : transformation
: : : References
) 5 10 15 20
t

v

A return to origin can only happen when t = 2n.

In example above, returns occur at t = 8, 10, and 14.

Call P(2n) the probability of first return at t = 2n. Q
<

v

v

v

Probability calculation = Counting problem
(combinatorics/statistical mechanics).

Idea: Transform first return problem into an easier g
UNIVERSITY |G|
return problem. 2 BT

v
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0 2 4 6 8 10 12 14 16
t
» Can assume drunkard first lurches to x = 1.

Observe walk first returning at t = 16 stays at or
above x =1 for 1 < t < 15 (dashed red line).

Now want walks that can return many times to x = 1.
Pfr(2n) =

2-5Pr(xy>1,1<t<2n—1, and x; = xop_1 = 1)
The % accounts for x>, = 2 instead of 0.

The 2 accounts for drunkards that first lurch to
X =-1.
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Counting first returns:

Approach:

>

>

>

Move to counting numbers of walks.

Return to probability at end.

Again, N(i,j, t) is the # of possible walks between
x =i and x = j taking f steps.

Consider all paths starting at x = 1 and ending at
x =1 after t = 2n — 2 steps.

Idea: If we can compute the number of walks that hit
x = 0 at least once, then we can subtract this from
the total number to find the ones that maintain x > 1.

Call walks that drop below x = 1 excluded walks.

We'll use a method of images to identify these
excluded walks.
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Examples of excluded walks:

,,,,,,,,,,,,,,,,,,,,,,,,,,, /\

x
- \/\/V
2

2 4 6 8 10 12 14 16
t

Key observation for excluded walks:

» For any path starting at x=1 that hits 0, there is a
unigue matching path starting at x=—1.

» Matching path first mirrors and then tracks after first
reaching x=0.

» # of t-step paths starting and ending at x=1 and
hitting x=0 at least once
= # of t-step paths starting at x=—1 and ending at
x=1=N(-1,1,1)

» SO Nirst return(2n) = N(1,1,2n—2) — N(—1,1,2n—2)
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Probability of first return:

Insert question from assignment 2 (H) :

02n-3/2

Nfr(zn) i W .

» Normalized number of paths gives probability.

» Total number of possible paths = 22"

>
1
1 922n-3/2

= 22n V2mrn3/2

(2n)=3/2 o t78/2,

) -
)
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First Returns

P(t) « t73/2 v =3/2
» Same scaling holds for continuous space/time walks.
» P(t) is normalizable.
» Recurrence: Random walker always returns to origin

» But mean, variance, and all higher moments are
infinite. #totalmadness

» Even though walker must return, expect a long wait...

» One moral: Repeated gambling against an infinitely
wealthy opponent must lead to ruin.

Higher dimensions (&):

» Walker in d = 2 dimensions must also return
» Walker may not return in d > 3 dimensions
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Random walks

On finite spaces:

» In any finite homogeneous space, a random walker
will visit every site with equal probability

» Call this probability the Invariant Density of a
dynamical system

» Non-trivial Invariant Densities arise in chaotic
systems.

On networks:
» On networks, a random walker visits each node with
frequency o node degree #groovy
» Equal probability still present:
walkers traverse edges with equal frequency.
#totallygroovy
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Power-Law

Scheidegger Networks * 2 Meshetions)
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§>/ CCONSAN «% N,

» Random directed network on triangular lattice.
» Toy model of real networks.

e )
S

» ‘Flow’ is southeast or southwest with equal
probability.
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Scheidegger networks Vst siama)

Random Walks
The First Return Problel

Variable

» Creates basins with random walk boundaries.
» Observe that subtracting one random walk from L)

Holtsmark’s Distributior

another gives random walk with increments: s

References
+1 with probability 1/4
€ = 0 with probability 1/2
—1 with probability 1/4

» Random walk with probabilistic pauses.

» Basin termination = first return random walk problem. g
» Basin length ¢ distribution: P(¢) o £73/2 Q
» For real river networks, generalize to P(¢) o ¢77. <
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Connections between exponents: Vst siama)

Random Walks
The First Return Proble
Examples

. g Variabl
» For a basin of length ¢, width o ¢1/2 st A
» Basinarea goc ¢ - ¢1/2 = ¢3/2
> Invert: E 06 32/3 References

» df < d(&?/®) =2/3a '/3da
» Pr(basin area = a)da
= Pr(basin length = ¢)d¢

o ¢73/24¢
o (32/3)—3/23—1/3(13 .
= a%3da )
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Connections between exponents:

» Both basin area and length obey power law
distributions

» Observed for real river networks
» Reportedly: 1.3 <7 <15and1.5<y<?2

Generalize relationship between area and length:

» Hack’s law [“!:
¢ a.

v

For real, large networks h ~ 0.5

v

v

Models exist with interesting values of h.
Plan: Redo calc with ~, 7, and h.

v

Smaller basins possibly h > 1/2 (later: allometry).
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Connections between exponents: Vst siama)
> Given Random Walks

The First Return Proble
Examples

(xad" Pl@)xa ™, and P() x ¢~

Variable
transformation
Basics

> df X d(ah) = hah_1da H;;\‘\f,w,hfU:mk;m:m

PLIPLO

» Find 7 in terms of v and h. References

» Pr(basin area = a)da
= Pr(basin length = ¢)d¢
ox £~7de
x (&M ~a"da
— g (1+h(v-1)qgq

v
)
R\

‘7‘214—/‘)(7—1)‘

» Excellent example of the Scaling Relations found
between exponents describing power laws for many 4 (e
¥-8 vervont 18]
systems.
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Connections between exponents: Vst siama)

Random Walks

With more detailed description of network structure,

Examples

T 1 + h("}/ — 1) Slmp|IerS tO [1] Variable

transformation

Basics

PLIPLO

and References

Only one exponent is independent (take h).

v

v

Simplifies system description.

Expect Scaling Relations where power laws are
found.

Need only characterize Universality () class with
independent exponents.

v
)
S

v
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Other First Returns or First Passage Times:

Failure:
» A very simple model of failure/death: "%

v

Xt = entity’s ‘health’ at time ¢
Start with x > 0.
Entity fails when x hits 0.

v

v

Streams
» Dispersion of suspended sediments in streams.
» Long times for clearing.
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More than randomness e

Random Walks

» Can generalize to Fractional Random Walks [® 7] Do

. . 0 n Variable
» Levy flights, Fractional Brownian Motion transformation
» See Montroll and Shlesinger for example: [°! o P

“On 1/f noise and other distributions with long tails.” R
Proc. Natl. Acad. Sci., 1982.

In 1-d, standard deviation o scales as

v

o~ t°

a = 1/2 — diffusive
a > 1/2 — superdiffusive Q
a < 1/2 — subdiffusive =
Extensive memory of path now matters...

v
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Power-Law

Variable Transformation ke

Random Walks
The First Return Problel

Understand power laws as arising from
1. Elementary distributions (e.g., exponentials). wansiormiaton
2. Variables connected by power relationships.
References

» Random variable X with known distribution Py
» Second random variable Y with y = f(x).

> Py(y)dy = Px(x)dx

- y )
>_yiit=y Px(f (Y))m

» Often easier to do by
hand...
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General Example

» Assume relationship between x and y is 1-1.
» Power-law relationship between variables:

y=cx*%a>0
» Look at y large and x small

>

dy =d(ex™ )

= c(—a)x *Tdx

invert: dx = ix”‘“dy
ca
_1 y 7(a+1)/a
a =2 (3) dy
_cl/e
b © y-1-1/aqy
(6
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Now make transformation:

Py(y)dy = Px(x)dx

A AN

—1/a C1/a s
Ay = A (L)) Sy ey

» If Px(x) — non-zero constant as x — 0 then
P,(y)xy ""*as y — oco.
> If Py(x) — x? as x — 0 then

Py(y) ocy 1-1/eBleas y 5 .
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Example

Exponential distribution

Given Py(x) = 1e/* and y = cx~¢, then

P(y) o<y~ 0 (y172)

» Exponentials arise from randomness (easy)...
» More later when we cover robustness.
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Holtsmark’s Distribution

» Select a random point in the
universe X

References

» Measure the force of gravity
F(X)
» Observe that Pe(F) ~ F~5/2,

1 B3 O
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Matter is concentrated in stars: [°!

v

v

v

v

v

v

F is distributed unevenly

Probability of being a distance r from a single star at

X =0:

P,(r)dr o r?dr
Assume stars are distributed randomly in space
(oops?)
Assume only one star has significant effect at X.
Law of gravity:

Foxr2

invert:
roc F~1/2

Also invert:

dF o d(r=2) o r=3dr — dr o r3dF o F=3/2dF .
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Transformation:

Using | r o F~1/2|,|dr o F~3/2dF |, and
>
Pe(F)dF = P(r)dr
>
x P,(F~'2)F~3/2dF
g 2
o (F71/2)" F=3/2dF
| 2
= F'=3/24F
>
= F5/24F.

P/(r) o r?
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Gravity:

v

v

v

v

Pr(F) = F%2dF

v=5/2
Mean is finite.
Variance = oco.
A wild distribution.

Upshot: Random sampling of space usually safe
but can end badly...
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Extreme Caution!

v

v

v

v

v

PLIPLO = Power law in, power law out

Explain a power law as resulting from another
unexplained power law.

Yet another homunculus argument (8)...

Don’t do this!!! (slap, slap)
We need mechanisms!
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