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Models

Some important models:
1. Generalized random networks;
. Small-world networks;
. Generalized affiliation networks;
. Scale-free networks;
. Statistical generative models (p*).

a b~ WD

Models

Generalized random networks:
» Arbitrary degree distribution Py.

» Create (unconnected) nodes with degrees sampled
from Py.

» Wire nodes together randomly.

» Create ensemble to test deviations from
randomness.

Building random networks: Stubs

Phase 1:

» |dea: start with a soup of unconnected nodes with
stubs (half-edges):

» Randomly select stubs

1 i \"f\T/+ I III (not nodes!) and

% connect them.

e e
- Trt-4-H4

» Initially allow self- and
repeat connections.
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Building random networks: First rewiring cemimnewois  PEOPIE thinking about people: Gomplox Networks
Generalized How are social networks structured? Goneralzed
Smalworld » How do we define and measure connections? Small-world
Phase 2: networks . . networks
) s » Methods/issues of self-report and remote sensing. »
» Now find any (A) self-loops and (B) repeat edges and ‘ ;
randomly rewire them. Scae e What about the dynamics of social networks? Scao e

Main s

%@ » How do social networks/movements begin & evolve?

A @ = <

» Being careful: we can’t change the degree of any
node, so we can’t simply move links around.

» Simplest solution: randomly rewire two edges at a

» How does collective problem solving work?

» How does information move through social networks?

References

» Which rules give the best ‘game of society?’

time. Sociotechnical phenomena and algorithms: %é)
» What can people and computers do together? (google)
4 [EVed » Use Play + Crunch to solve problems. Which problems? P
va 70f107 wa 110f107
General random rewiring algorithm Gomomenemens  S0Cial Search ComploxNetworks
¢ b
gl Generalized Generalized
random networks random networks
» Randomly choose two edges.  smaiwons Small-world
networks networks

(Or choose problem edge and

a random edge)
» Check to make sure edges o A small slice of the pie: N

are disjoint. networks » Q. Can people pass messages between distant networks
individuals using only their existing social
connections?

» A. Apparently yes...

» Rewire one end of each edge.
» Node degrees do not change.

» Works if e, is a self-loop or
repeated edge.

» Same as finding on/off/on/off

References

4-cycles. and rotating them. [Pty |8 Hiwmn &
“©a ¢ 8of 107 va 120f 107
Sampling random networks comimnewois  Milgram’s social search experiment (1960S)  compexnewors
Generalized Generalized
random networks
Small-world > Tal’get person = Small-world
networks networks
. Boston stockbroker.
Phase 2: - ‘
. . = » 296 senders from Boston and
» Use rewiring algorithm to remove all self and repeat
I Scale-free Omaha' Scale-free
OOpS. networks
» 20% of senders reached
Phase 3 ThetLiteant LeGacy of stanley MWilgram target.
» Randomize network wiring by applying rewiring > chain length ~ 6.5.
algorithm liberally. References References

Popular terms:

» The Small World
THOMAS BLass, PH.D. Phenomenon;

http://www.stanleymilgram.com > “SiX Degrees Of Separation"’

72 O]
.l‘NlVrR\IT‘( ,I wwr.nsrn' Igl
¥ VERMONT 231 ¥ VERMONT [0l

wa 9of107 a 130f107

S¥secesenaies

» Rule of thumb: # Rewirings ~ 10 x # edges %,
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The problem

Lengths of successful chains:
18

15
From Travers and
Milgram (1969) in
Sociometry:['°]
“An Experimental
Study of the Small
World Problem.”

n(L)

0123456789101112

L

The problem

Two features characterize a social ‘Small World’:
1. Short paths exist, (= Geometric piece)
and

2. People are good at finding them. (= Algorithmic
piece)

Social Search

Milgram’s small world experlment with email:

1ogin [l
signup []

“An Experimental study of Search in Global Social Networks”
P. S. Dodds, R. Muhamad, and D. J. Watts,
Science, Vol. 301, pp. 827-829, 2003. 6]
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Social search—the Columbia experiment

» 60,000+ participants in 166 countries

» 18 targets in 13 countries including

a professor at an lvy League university,
an archival inspector in Estonia,

a technology consultant in India,

a policeman in Australia,

and

» a veterinarian in the Norwegian army.

» 24,000+ chains

>
>
>
>

We were lucky and contagious (more later):

“Using E-Mail to Count Connections” (H), Sarah Milstein,

New York Times, Circuits Section (December, 2001)

All targets:

Table S1

Targer | City Country Occupation Gender N Ne(%) i) <L>

T Novosibirsk. Russia PAD student F EE 200024) 6176) 705

2 New York UsA Writer F 6044 31051 6573) 361

3 Bandung Indonesia Unemployed M 8151 0 66(76) i

4 New York UsA Journalist F 5690 44(0.77) 60(72) 39

s Iihaca UsA Professor M s855 68287 541 384

6 Melboumne Australia Travel Consuliant~ F 5507 20036) 6071 52

7 Bardufoss Norway Ammy veterinaian M. 4343 16(0.37) 63(76) 425

8 Perth Australia Police Officer M 4485 4(009) 64(75) 4s

9 Omaha UsA Life Insurance F 4362 2004 66.(79) 45
Agent

10 Welwyn Garden City UK Retired M 6593 10.02) 68.(74) 4

n Paris France Librarian F 4198 3007 65(75) 5

12 Tallinn Estonia Archival Inspector M 4530 80.18) 63(19) 4

3 Munich Germany Journalist M 4350 2074 62074) 466

14 Split Croatia Student M 6629 0 6337 wa

is Gurgaon India Technology M 4510 12027 67(78) 367
Consultant

16 Managua Nicaragua Computeranalyst M 6547 2(003) 68.78) 55

1 Katkati NewZealnd  Potter M 4091 1203 62(74) 433

18 Elderton UsA Lutheran Pastor M 4438 9(021) 68.(76) 433

Totals 08847 304 6375) 205

Social search—the Columbia experiment

» Milgram’s participation rate was roughly 75%

v

v

3710~5x1075

v

= 384 completed chains (1.6% of all chains).

Email version: Approximately 37% participation rate.
Probability of a chain of length 10 getting through:
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Social search—the Columbia experiment

v

Motivation/Incentives/Perception matter.
If target seems reachable

= participation more likely.

Small changes in attrition rates

= large changes in completion rates
e.g., \y 15% in attrition rate

= " 800% in completion rate

v

v

v

Social search—the Columbia experiment

Comparing successful to unsuccessful chains:
» Successful chains used relatively weaker ties:

0.4

o
L

o
o

fraction of ties

e
=

[04-Apr—2003 peter dodds]

EC vC FC C NC
strength

Social search—the Columbia experiment

Successful chains disproportionately used:
» Weak ties, Granovetter ']
» Professional ties (34% vs. 13%)
» Ties originating at work/college
» Target’s work (65% vs. 40%)

.and disproportionately avoided
» hubs (8% vs. 1%) (+ no evidence of funnels)
» family/friendship ties (60% vs. 83%)

Geography — Work
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Social search—the Columbia experiment

Senders of successful messages showed
little absolute dependency on

» age, gender

» country of residence

» income

» religion

» relationship to recipient

Range of completion rates for subpopulations:
30% to 40%

Social search—the Columbia experiment

Nevertheless, some weak discrepencies do exist...

Contrived hypothetical above average connector:

Norwegian, secular male, aged 30-39, earning over
$100K, with graduate level education working in mass
media or science, who uses relatively weak ties to people
they met in college or at work.

Contrived hypothetical below average connector:

Italian, Islamic or Christian female earning less than $2K,
with elementary school education and retired, who uses
strong ties to family members.

Social search—the Columbia experiment

Mildly bad for continuing chain:

choosing recipients because “they have lots of friends” or
because they will “likely continue the chain.”

Why:
» Specificity important
» Successful links used relevant information.

(e.g. connecting to someone who shares same
profession as target.)
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Social search—the Columbia experiment

Basic results:
» (L) = 4.05 for all completed chains

» L, = Estimated ‘true’ median chain length (zero
attrition)

Intra-country chains: L, =5
» Inter-country chains: L, =7
All chains: L, =7

Milgram: L, ~ 9

\{

v

v

Usefulness:

Harnessing social search:

» Can distributed social search be used for something
big/good?

» What about something evil? (Good idea to check.)

» What about socio-inspired algorithms for information
search? (More later.)

» For real social search, we have an incentives
problem.

» Which kind of influence mechanisms/algorithms
would help propagate search?

» Fun, money, prestige, ... ?

» Must be ‘non-gameable’

Red balloons:

A Grand Challenge:
» 1969: The Internet is born ()

» Originally funded by DARPA who created a grand
Network Challenge (i) for the 40th anniversary.

» Saturday December 5, 2009: DARPA puts 10 red
weather balloons up during the day.

» Each 8 foot diameter balloon is anchored to the
ground somewhere in the United States.

» Challenge: Find the latitude and longitude of each
balloon.

» Prize: $40,000.
*DARPA = Defense Advanced Research Projects Agency (E).
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Where the balloons were:

° 9 - Waterfront Park

Portland, OR . /
| G :
vy » 4
7 “Glasgow Park
o 1 -Union Square Christiana, DE?"/
San Francisco, CA %)
3 -Tonsler Park
4 - Chase Palm Park Charlottesville, VA
@ santaBarbara, cA « ieaii 4
@ 2-Chaparral Park Memphis, TN © [
Scottsdale, AZ .
\—r- 10 -Centennial Park
Atlanta, GA
8 -Katy Park e
NN ek N ;
' 4 6 - Collins Avenud._@|
LY Miami, FL “.J

Finding red balloons:

The winning team and strategy:
» MIT’s Media Lab (#) won in less than 9 hours. !

» Pickard et al. “Time-Critical Social Mobilization,”['"]
Science Magazine, 2011.
» People were virally recruited online to help out.
» Idea: Want people to both (1) find the balloons, and
(2) involve more people.
» Recursive incentive structure with exponentially
decaying payout:
» $2000 for correctly reporting the coordinates of a
balloon.
» $1000 for recruiting a person who finds a balloon.
» $500 for recruiting a person who recruits the balloon
finder, ...
» (Not a Ponzi scheme.)

» True victory: Colbert interviews Riley Crane (H)

Finding balloons:

Clever scheme:
» Max payout = $4000 per balloon.
» Individuals have clear incentives to both

1. involve/source more people (spread), and
2. find balloons (goal action).

Gameable?

Limit to how much money a set of bad actors can
extract.

v

v

Extra notes:
» MIT’s brand helped greatly.
» MIT group first heard about the competition a few
days before. Ouch.
» A number of other teams did well (&).

» Worthwhile looking at these competing strategies. [/
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The social world appears to be small... why?

Generalized
random networks

Small-world
networks

Theory: how do we understand the small world
property?
» Connected random networks have short average
path lengths:

Scale-free
networks

(dag) ~
N = population size,

log(N)

dsp = distance between nodes A and B. Aeferences
» But: social networks aren’t random... Q
()

2
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Non-randomness gives clustering:

Generalized
B random networks
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Small-world
networks
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networks
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Randomness + regularity

A ®

Now have dag =3 (d) decreases overall

Small-world networks

Introduced by Watts and Strogatz (Nature, 1998) %!
“Collective dynamics of ‘small-world’ networks.”

Small-world networks were found everywhere:
» neural network of C. elegans,
» semantic networks of languages,

actor collaboration graph,

food webs,

social networks of comic book characters,...

v

v

v

Very weak requirements:
» local regularity + random short cuts

Toy model:
Regular Small-world Random
p=0 >» p=1

Increasing randomness
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The structural small-world property:

L] o o

osl ° (p)/ C(0) © ]

L]

B o

0.6 + .
[ L]

0.4 f . o ]
L L]

ool HP/LO . 1
L L]

. . . ':
0 L L L n
0.0001 0.001 0.01 0.1 1

» L(p) = average shortest path length as a function of p

» C(p) = average clustring as a function of p

Previous work—finding short paths

But are these short cuts findable?
Nope. 8!

Nodes cannot find each other quickly
with any local search method.

Need a more sophisticated model...

Previous work—finding short paths

» What can a local search method reasonably use?
» How to find things without a map?

» Need some measure of distance between friends
and the target.

Some possible knowledge:
» Target’s identity

Friends’ popularity

Friends’ identities

Where message has been

v

v

v
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Previous work—finding short paths

Jon Kleinberg (Nature, 2000) (€]
“Navigation in a small world.”

Allowed to vary:
1. local search algorithm
and
2. network structure.

Previous work—finding short paths

Kleinberg’s Network:
1. Start with regular d-dimensional cubic lattice.

2. Add local links so nodes know all nodes within a
distance q.

3. Add m short cuts per node.
4. Connect i to j with probability

pij X,'I'fa

» o = 0: random connections.
» « large: reinforce local connections.
» « = d: connections grow logarithmically in space.

Previous work—finding short paths

Theoretical optimal search:
> “Greedy” algorithm.
» Number of connections grow logarithmically (slowly)

in space: a =d.
» Social golf.

Search time grows slowly with system size (like log? N).

But: social networks aren't lattices plus links.
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Previous work—finding short paths

» |If networks have hubs can also search well: Adamic

et al. (2001)"!
P(ki) o< ki
where k = degree of node i (number of friends).

» Basic idea: get to hubs first
(airline networks).

» But: hubs in social networks are limited.

The problem

If there are no hubs and no underlying lattice, how can
search be efficient?

‘ Which friend of a is closest
b to the target b?

What does ‘closest’ mean?

" What is ‘social distance’?

Models

One approach: incorporate identity.

Identity is formed from attributes such as:
» Geographic location
» Type of employment
» Religious beliefs
» Recreational activities.

Groups are formed by people with at least one similar
attribute.

Attributes < Contexts < Interactions < Networks.
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Social distance—Bipartite affiliation networks

unipartite
network

» Bipartite affiliation networks: boards and directors,
movies and actors.

Social distance—Context distance

occupation

education health care

kindergarten
teacher

high school
teacher

Models

Distance between two individuals x; is the height of
lowest common ancestor.

X,'j:3,X,‘k:1,X,‘V:4.

[contexts]

[individuals |

doctor
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Models

» Individuals are more likely to know each other the

closer they are within a hierarchy.

» Construct z connections for each node using

» « = 0: random connections.
» « large: local connections.

Models

Generalized affiliation networks

geography

pj = cexp{—ax;}.

» Blau & Schwartz*], Simmel!'?], Breiger [°/, Watts et

al. [14]

The model

h=1
£5s
i joi
h=3
FoVeN
1]

=[G =

1_ 2 _
x,-/-f4, x,.j73,

@ ED @ @D ED

Social distance:

h
j = minx;
Yij A

i -
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The model

Triangle inequality doesn’t hold:

h=1 h=2
| Y p

Yk=4>Yi+tyk=1+1=2

The model

» Individuals know the identity vectors of
1. themselves,
2. their friends,
and
3. the target.

» Individuals can estimate the social distance between

their friends and the target.

» Use a greedy algorithm + allow searches to fail
randomly.

The model-results—searchable networks

a = 0versus a = 2 for N ~ 105:

-0.!

—1% qu

o g<r

519 \ r=0.05
-2

"1 3 5 7 9 11 13 15
H

q = probability an arbitrary message chain reaches a
target.

» A few dimensions help.

» Searchability decreases as population increases.

» Precise form of hierarchy largely doesn’t matter.
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The model-results

Milgram’s Nebraska-Boston data:

n(L)

12)
10| » N =108,
8 » z =300, g =100,
6 » b=10,
4 »a=1,H=2;
2)
2345678 9101112131415
L > <Lmodel> ~6.7
> Ldala:6-5

Social search—Data

Adamic and Adar (2003)

» For HP Labs, found probability of connection as
function of organization distance well fit by
exponential distribution.

» Probability of connection as function of real distance

o 1/r.

Social Search—Real world uses

» Tags create identities for objects

Website tagging: http://bitly.com
(e.g., Wikipedia)

Photo tagging: http://www.flickr.com

Dynamic creation of metadata plus links between
information objects.

Folksonomy: collaborative creation of metadata

v

v

v

v

v

Model parameters:
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Social Search—Real world uses

Recommender systems:

>

>

Amazon uses people’s actions to build effective
connections between books.

Conflict between ‘expert judgments’ and
tagging of the hoi polloi.

Nutshell for Small-World Networks:

>

>

Bare networks are typically unsearchable.

Paths are findable if nodes understand how network
is formed.

Importance of identity (interaction contexts).
Improved social network models.

Construction of peer-to-peer networks.
Construction of searchable information databases.

Scale-free networks

Networks with power-law degree distributions have
become known as scale-free networks.

Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

Py ~ k™7 for ‘large’ k

One of the seminal works in complex networks:
Laszlo Barabési and Reka Albert, Science, 1999:
“Emergence of scaling in random networks” !
Google Scholar: Cited ~ 16,050 times

(as of March 18, 2013)

Somewhat misleading nomenclature...
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Scale-free networks

» Scale-free networks are not fractal in any sense.

» Usually talking about networks whose links are
abstract, relational, informational, ... (non-physical)

» Primary example: hyperlink network of the Web

» Much arguing about whether or networks are
‘scale-free’ or not. ..

Some real data (we are feeling brave):

From Barabasi and Albert's original paper [°:

O

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have

slopes (A) Yacror = 2.3, (B) Vo = 2.1 a0d (C) Vpoer = 4

Random networks: largest components

y=25

y=25 =25
8 (k) =2.05333 (k) = 1.66667

(k (k) =1.92
= ~y=25 ~y=25 ~y=25
(ky=16 (k) =1.50667 (k) =1.62667 (ky =138
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Scale-free networks

The big deal:

» We move beyond describing networks to finding
mechanisms for why certain networks are the way
they are.

A big deal for scale-free networks:

» How does the exponent v depend on the
mechanism?

» Do the mechanism details matter?

BA model

Barabasi-Albert model = BA model.
Key ingredients:
Growth and Preferential Attachment (PA).
Step 1: start with mg disconnected nodes.
Step 2:
1. Growth—a new node appears at each time step
t=0,1,2,....
2. Each new node makes m links to nodes already
present.

3. Preferential attachment—Probability of connecting to
ith node is « k;.

In essence, we have a rich-gets-richer scheme.
Yes, we've seen this all before in Simon’s model.

v

v

v

v

\{

v

BA model

v

Definition: Ak is the attachment kernel for a node
with degree k.

For the original model:

\{

Ac=k

v

Definition: Paacn(k, t) is the attachment probability.
For the original model:

v

k() k(D)
SHV k() e kN (1)

where N(t) = mg + tis # nodes at time ¢
and N(t) is # degree k nodes at time t.

Pattach(nOde i7 t) =
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Approximate analysis

» When (N + 1)th node is added, the expected
increase in the degree of node i is
Kin
—NE
S k(1)

» Assumes probability of being connected to is small.

» Dispense with Expectation by assuming (hoping) that
over longer time frames, degree growth will be
smooth and stable.

» Approximate Kjn.1 — Ky With SFK; ;-

E(Kiny1 — kin) ~m

d ki(t)
Rt = —N(H . .
t S k(1)

where t = N(t) — my.

Approximate analysis

» Deal with denominator: each added node brings m
new edges.

0}
o) Ki(t) =2tm
j=1

» The node degree equation now simplifies:

d ki(t) ki(t) _ 1
7;(“ =m N =m = fk,'(t)
dt Z/‘ (10 Ki(t) 2mt 2t

» Rearrange and solve:

dki(t)  dt

=S Skt =gt
KO 2t L —at

» Nextfindg;...

Approximate analysis

v

Know ith node appears at time

A i—my fori>my
G ) fori < my

» So for i > my (exclude initial nodes), we must have

t 1/2
ki(t)y=m (t ) for t > t gart-

i,start

v

All node degrees grow as '/ but later nodes have
larger t; st Which flattens out growth curve.

» First-mover advantage: Early nodes do best.
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Approximate analysis

» m=3

> ti,stan =

1,2,5, and 10.

Degree distribution

» So what'’s the degree distribution at time t?

» Use fact that birth time for added nodes is distributed
uniformly between time 0 and t:

Pr(t; gtart) At start. = dt’%
» Also use
t \"? m2t
ki(ty=m ( f/,stan) =t start = k(2"
Transform variables—Jacobian:
dk; ki(t)3

Degree distribution

>
Pr(kj)dk; = Pr(ti,start)dti,stan
>
= Pr(ti,stan)dkf di’ii;:m

>

1 mPt

O
- m?

= Zdei
>

~ ki *dk;.
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Degree distribution

» We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
» Typical for real networks: 2 < ~ < 3.

» Range true more generally for events with size
distributions that have power-law tails.

» 2 < ~ < 3: finite mean and ‘infinite’ variance (wild)
» In practice, v < 3 means variance is governed by
upper cutoff.

~ > 3: finite mean and variance (mild)

v

Back to that real data:

From Barabasi and Albert’s original paper [!:

O

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have

slopes (A) Yacror = 2.3, (B) Vo = 2.1 a0d (C) Vpoer = 4
Examples
Web ~ ~ 2.1 for in-degree
Web ~ ~ 2.45 for out-degree
Movie actors v ~2.3
Words (synonyms) ~ ~2.8

The Internets is a different business...
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e » Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

» Deal with directed versus undirected networks.

» Important Q.: Are there distinct universality classes
for these networks?

» Q.: How does changing the model affect v?
» Q.: Do we need preferential attachment and growth?
» Q.: Do model details matter? Maybe ...
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Preferential attachment
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Small-world

e » Let’s look at preferential attachment (PA) a little more
closely.

Scale-free » PA implies arriving nodes have complete knowledge

networks

of the existing network’s degree distribution.

» For example: If Pycn(k) o< k, we need to determine
the constant of proportionality.

» We need to know what everyone’s degree is...
» PAis . an outrageous assumption of node capability.
» But a very simple mechanism saves the day.. .
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Preferential attachment through randomness

Generalized

random networks » Instead of attaching preferentially, allow new nodes
Smallworld to attach randomly.

networks
— » Now add an exira step: new nodes then connect to
some of their friends’ friends.

» Can also do this at random.

» Assuming the existing network is random, we know
probability of a random friend having degree k is

Scale-free
networks

Main story

Qi o kP

» So rich-gets-richer scheme can now be seen to work
in a natural way.

» Later: we’'ll see that the nature of Qx means your
friends have more friends that you. #disappointing

e O
ﬁ UNIVERSITY ol
s vERMONT |O

e 790f 107

Core Models of
Complex Networks

Generalized
random networks

Small-world
networks

Scale-free
stworks

72 O]
ﬁ UNIVERSITY Igl
A v virvONT O

“a > 800f107

Core Models of
Complex Networks

Generalized
random networks

Small-world
networks
Main story

networks
Nutshell

Scale-free
networks

L o]
UNIVERSITY I'JI
E‘ |/ VERMONT 1O}

Da > 820f107

Core Models of
Complex Networks

Generalized
random networks

Small-world
networks

Scale-free
networks

72 O]
é UNIVERSITY Igl
A s virvONT Ol

“a > 830f107


http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds

Robustness

» Albert et al., Nature, 2000:
“Error and attack tolerance of complex networks” [°]

» Standard random networks (Erdés-Rényi)
versus Scale-free networks:

Exponential Scale-free
from Albert et al., 2000
Robustness
12 T T
2 E SF Fail
I I ) T, » Plots of network
ot a8 ssosesame ] diameter as a function
Lot | of fraction of nodes
removed
4 L L ” s .
oo o0 oot » Erd6s-Rényi versus
CREP L scale-free networks
15+ ° 4 o
Internet wow“’ bo | Www ooo ] > bIUe Symbols -
L %0 random removal
sk R PSSO » red symbols =
| e | Fallre targeted removal
oo oo et oo ok o (most connected first)

from Albert et al., 2000

Robustness

» Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

» All very reasonable: Hubs are a big deal.

» But: next issue is whether hubs are vulnerable or not.

» Representing all webpages as the same size node is
obviously a stretch (e.g., google vs. a random
person’s webpage)

» Most connected nodes are either:

1. Physically larger nodes that may be harder to ‘target’
2. or subnetworks of smaller, normal-sized nodes.

» Need to explore cost of various targeting schemes.
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Generalized model

Fooling with the mechanism:

» 2001: Krapivsky & Redner (KR) [ explored the
general attachment kernel:

Pr(attach to node i) o< Ax = k7’

where A is the attachment kernel and v > 0.

» KR also looked at changing the details of the
attachment kernel.

» We'll follow KR’s approach using rate equations ().

Generalized model

» Here’s the set up:

dN, 1
ditk =2 [Ax—1Nk—1 — AxNk] + 0k1

where Ny is the number of nodes of degree k.

1. One node with one link is added per unit time.

2. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

3. The second term corresponds to degree k nodes
becoming degree k — 1 nodes.

4. Ais the correct normalization (coming up).

5. Seed with some initial network
(e.g., a connected pair)

6. Detail: Ao =0

Generalized model

v

In general, probability of attaching to a specific node
of degree k attime tis
Ak

Pr(attach to node i) = m

where A(t) = >"52 1 AxNi(t).
E.g., for BA model, Ay = k and A = Y32 ; kNk(1).
For Ax = k, we have

v

v

At) = i K Nii(t) = 2t

k=1

since one edge is being added per unit time.
Detail: we are ignoring initial seed network’s edges.

v
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Generalized model

» So now

dN, 1
Ttk = [Ak—1Nk_1 — AcNk] + k1

becomes

dN
a4 = [(k 1)Ni_1 — kNi] + 6k1

» As for BA method, look for steady-state growing
solution: Ny = nt.

» We replace dNj/dt with dngt/dt = n.

» We arrive at a difference equation:

Universality?

» Insert question from assignment 7 (&)

As expected, we have the same result as for the BA
model:

Ni(t) = nk(t)t < k=3 for large k.

» Now: what happens if we start playing around with

the attachment kernel Ac?
» Again, we're asking if the result v = 3 universal (H)?

» KR’s natural modification: Ax = k¥ with v # 1.

» But we'll first explore a more subtle modification of
Ax made by Krapivsky/Redner °!

» Keep Ak linear in k but tweak details.
» |dea: Relax from Ay = kto Ax ~ k as k — oc.

Universality?

» Recall we used the normalization:

A(t) =Y K'Ni(t)

k'=1

~ 2t for large t.

\4

We now have
A(t) = Z Ay Ny (1)
k'=1

where we only know the asymptotic behavior of Ag.
» We assume that A = it

» We'll find 1 later and make sure that our assumption
is consistent.
» As before, also assume Ni(f) = nt.
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Universality?
» For Ax = k we had
1
M= 5 [(k = 1)nk—1 — kng] + Oks
» This now becomes

1
M= [Ak—1nk—1 — AxNk] + Ok
= (Ax + )Nk = Ak1 k1 + Pk
» Again two cases:

Ax—1
Bt Ay

: k>1:ng = ng_q

Universality?

» Time for pure excitement: Find asymptotic behavior
of nk given Ax — k as k — oo.

» Insert question from assignment 7 (&)

For large k, we find:

k
H 1 1
_ ” o k7t
Akj:11+f4ij

» Since i depends on Ay, details matter...

Universality?

> Now we need to find p.

» Our assumption again: A = ut = > "7 Ni(t)Ax

» Since N = nt, we have the simplification
=3k MkAk

» Now subsitute in our expression for ny:

o }1{ k 1
1y = el
= ra g

» Closed form expression for .
» We can solve for i in some cases.

» Our assumption that A = ut looks to be not too
horrible.
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Universality?

» Consider tunable Ay = a and Ax = k for k > 2.

» Again, we can find v = p + 1 by finding p.
Insert question from assignment 7 (&)

Closed form expression for j:

v

H:ir(k+1)r(2+u)

a = FMk+p+1)
#mathisfun
>
1+v1+8a
u(#*1)=2a:>#:f-
» Since v =+ 1, we have

0<a<x=2<y<

Craziness...

v

Sublinear attachment kernels

v

Rich-get-somewhat-richer:

A ~ K with 0 < v < 1.

v

General finding by Krapivsky and Redner: [

N ~ k—ue—c1k“”+correction terms

v

aka Weibull distributions.

v

v

v

Sublinear attachment kernels

Details:
» For1/2<v < 1:

K—v_pl—v
s )

» For1/3<v<1/2:

12 k-2
Nk ~ K- 9”1 u+2 T—2v

» Andfor 1/(r+1) < v < 1/r, we have r pieces in

exponential.

Stretched exponentials (truncated power laws).

Universality: now details of kernel do not matter.
Distribution of degree is universal providing v < 1.

Core Models of
Complex Networks

Generalized
random networks

Small-world
networks

Scale-free
networks

ENIvERSITY ;I
4 VERMONT

¢ 98of 107

Core Models of
Complex Networks

Generalized
random networks

Small-world
ks

Scale-free
networks

me:m'n’ |9|
o VERMONT

Q¢ 99of 107

Core Models of
Complex Networks

Generalized
random networks

Small-world
networks

ENIvERSITY ,I
4 VERMONT

> 100 of 107

Superlinear attachment kernels

v

Rich-get-much-richer:
Ak ~ K" withv > 1.

Now a winner-take-all mechanism.

One single node ends up being connected to almost
all other nodes.

For v > 2, all but a finite # of nodes connect to one
node.

Nutshell:

Overview Key Points for Models of Networks:

>

Obvious connections with the vast extant field of
graph theory.
But focus on dynamics is more of a
physics/stat-mech/comp-sci flavor.
Two main areas of focus:
1. Description: Characterizing very large networks
2. Explanation: Micro story = Macro features
Some essential structural aspects are understood:
degree distribution, clustering, assortativity, group
structure, overall structure,...
Still much work to be done, especially with respect to
dynamics... #excitement
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