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Contagion

A confusion of contagions:
I Was Harry Potter some kind of virus?
I What about the Da Vinci Code?
I Did Sudoku spread like a disease?
I Language? The alphabet? [7]

I Religion?
I Democracy...?
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Contagion

Naturomorphisms
I “The feeling was contagious.”
I “The news spread like wildfire.”
I “Freedom is the most contagious virus known to

man.”
—Hubert H. Humphrey, Johnson’s vice president

I “Nothing is so contagious as enthusiasm.”
—Samuel Taylor Coleridge
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Social contagion

Optimism according to Ambrose Bierce: (�)
The doctrine that everything is beautiful, including what is
ugly, everything good, especially the bad, and everything
right that is wrong. ...

It is hereditary, but fortunately not
contagious.
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http://en.wikipedia.org/wiki/Ambrose_Bierce
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Social contagion

Eric Hoffer, 1902–1983
There is a grandeur in the uniformity of the mass.

When
a fashion, a dance, a song, a slogan or a joke sweeps
like wildfire from one end of the continent to the other,
and a hundred million people roar with laughter, sway
their bodies in unison, hum one song or break forth in
anger and denunciation, there is the overpowering
feeling that in this country we have come nearer the
brotherhood of man than ever before.

I Hoffer (�) was an interesting fellow...
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The spread of fanaticism

Hoffer’s acclaimed work: “The True Believer:
Thoughts On The Nature Of Mass Movements” (1951) [8]

Quotes-aplenty:
I “We can be absolutely certain only about things we

do not understand.”
I “Mass movements can rise and spread without belief

in a God, but never without belief in a devil.”
I “Where freedom is real, equality is the passion of the

masses. Where equality is real, freedom is the
passion of a small minority.”
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Imitation

despair.com

“When people are free
to do as they please,
they usually imitate
each other.”

—Eric Hoffer
“The Passionate State
of Mind” [9]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
despair.com
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The collective...

despair.com

“Never Underestimate
the Power of Stupid
People in Large
Groups.”

http://www.uvm.edu
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despair.com
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Contagion

Definitions
I (1) The spreading of a quality or quantity between

individuals in a population.
I (2) A disease itself:

the plague, a blight, the dreaded lurgi, ...
I from Latin: con = ‘together with’ + tangere ‘to touch.’
I Contagion has unpleasant overtones...
I Just Spreading might be a more neutral word
I But contagion is kind of exciting...
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Examples of non-disease spreading:

Interesting infections:
I Spreading of buildings in the US... (�)

I Viral get-out-the-vote video. (�)


Convertified by iSquint - http://www.isquint.org

walmartspread.mp4
Media File (video/mp4)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.youtube.com/watch?v=EGzHBtoVvpc
http://www.cnnbcvideo.com/?nid=VWB8OWHr.GqH2kYkPxOMwTQ1NDIxODA-
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Contagions

Two main classes of contagion
1. Infectious diseases

:
tuberculosis, HIV, ebola, SARS, influenza, ...

2. Social contagion

:
fashion, word usage, rumors, riots, religion, ...
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Mathematical Epidemiology

The standard SIR model [14]

I = basic model of disease contagion
I Three states:

1. S = Susceptible
2. I = Infective/Infectious
3. R = Recovered or Removed or Refractory

I S(t) + I(t) + R(t) = 1
I Presumes random interactions (mass-action

principle)
I Interactions are independent (no memory)
I Discrete and continuous time versions
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Mathematical Epidemiology

Discrete time automata example:

I

R

S
βI

1 − ρ

ρ

1 − βI

r
1 − r

Transition Probabilities:

β for being infected given
contact with infected
r for recovery
ρ for loss of immunity
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Mathematical Epidemiology

Original models attributed to
I 1920’s: Reed and Frost
I 1920’s/1930’s: Kermack and McKendrick [10, 12, 11]

I Coupled differential equations with a mass-action
principle
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Independent Interaction models

Differential equations for continuous model
d
dt

S = −βIS + ρR

d
dt

I = βIS − rI

d
dt

R = rI − ρR

β, r , and ρ are now rates.

Reproduction Number R0:
I R0 = expected number of infected individuals

resulting from a single initial infective
I Epidemic threshold: If R0 > 1, ‘epidemic’ occurs.
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Reproduction Number R0

Discrete version:
I Set up: One Infective in a randomly mixing

population of Susceptibles
I At time t = 0, single infective random bumps into a

Susceptible
I Probability of transmission = β
I At time t = 1, single Infective remains infected with

probability 1− r
I At time t = k , single Infective remains infected with

probability (1− r)k
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Reproduction Number R0

Discrete version:
I Expected number infected by original Infective:

R0 = β + (1− r)β + (1− r)2β + (1− r)3β + . . .

= β
(

1 + (1− r) + (1− r)2 + (1− r)3 + . . .
)

= β
1

1− (1− r)
= β/r

For S0 initial infectives (1− S0 = R0 immune):

R0 = S0β/r
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Independent Interaction models

For the continuous version
I Second equation:

d
dt

I = βSI − rI

d
dt

I = (βS − r)I

I Number of infectives grows initially if

βS(0)− r > 0

⇒ βS(0) > r ⇒ βS(0)/r > 1

I Same story as for discrete model.
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I = βSI − rI

d
dt

I = (βS − r)I

I Number of infectives grows initially if

βS(0)− r > 0⇒ βS(0) > r ⇒ βS(0)/r > 1

I Same story as for discrete model.
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Independent Interaction models

Example of epidemic threshold:

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

R
0

Fr
ac

tio
n 

in
fe

ct
ed

I Continuous phase transition.
I Fine idea from a simple model.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Biological
Contagion

Introduction

Simple disease
spreading models
Background

Prediction

More models

Toy metapopulation models

Model output

Conclusions

Predicting social
catastrophe

References

22 of 68

Independent Interaction models

Example of epidemic threshold:

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

R
0

Fr
ac

tio
n 

in
fe

ct
ed

I Continuous phase transition.

I Fine idea from a simple model.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Biological
Contagion

Introduction

Simple disease
spreading models
Background

Prediction

More models

Toy metapopulation models

Model output

Conclusions

Predicting social
catastrophe

References

22 of 68

Independent Interaction models

Example of epidemic threshold:

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

R
0

Fr
ac

tio
n 

in
fe

ct
ed

I Continuous phase transition.
I Fine idea from a simple model.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Biological
Contagion

Introduction

Simple disease
spreading models
Background

Prediction

More models

Toy metapopulation models

Model output

Conclusions

Predicting social
catastrophe

References

23 of 68

Independent Interaction models

Many variants of the SIR model:
I SIS: susceptible-infective-susceptible
I SIRS: susceptible-infective-recovered-susceptible
I compartment models (age or gender partitions)
I more categories such as ‘exposed’ (SEIRS)
I recruitment (migration, birth)
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Disease spreading models

For novel diseases:
1. Can we predict the size of an epidemic?
2. How important is the reproduction number R0?

R0 approximately same for all of the following:
I 1918-19 “Spanish Flu” ∼ 500,000 deaths in US
I 1957-58 “Asian Flu” ∼ 70,000 deaths in US
I 1968-69 “Hong Kong Flu” ∼ 34,000 deaths in US
I 2003 “SARS Epidemic” ∼ 800 deaths world-wide
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Size distributions

Size distributions are important elsewhere:
I earthquakes (Gutenberg-Richter law)
I city sizes, forest fires, war fatalities
I wealth distributions
I ‘popularity’ (books, music, websites, ideas)
I Epidemics?

Power laws distributions are common but not obligatory...

Really, what about epidemics?
I Simply hasn’t attracted much attention.
I Data not as clean as for other phenomena.
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Feeling Ill in Iceland

Caseload recorded monthly for range of diseases in
Iceland, 1888-1990
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Iceland: measles
normalized count

I Treat outbreaks separated in time as ‘novel’
diseases.
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Really not so good at all in Iceland

Epidemic size distributions N(S) for
Measles, Rubella, and Whooping Cough.
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Spike near S = 0, relatively flat otherwise.
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Measles & Pertussis
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Insert plots:
Complementary cumulative frequency distributions:

N(Ψ′ > Ψ) ∝ Ψ−γ+1

Limited scaling with a possible break.
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Power law distributions

Measured values of γ:
I measles: 1.40 (low Ψ) and 1.13 (high Ψ)
I pertussis: 1.39 (low Ψ) and 1.16 (high Ψ)

I Expect 2 ≤ γ < 3 (finite mean, infinite variance)
I When γ < 1, can’t normalize
I Distribution is quite flat.
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Resurgence—example of SARS

D

Date of onset

# 
N

ew
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es

Nov 16, ’02 Dec 16, ’02 Jan 15, ’03 Feb 14, ’03 Mar 16, ’03 Apr 15, ’03 May 15, ’03 Jun 14, ’03

160

120

80

40

0

I Epidemic slows...

then an infective moves to a new context.

I Epidemic discovers new ‘pools’ of susceptibles:
Resurgence.

I Importance of rare, stochastic events.
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The challenge

So... can a simple model produce
1. broad epidemic distributions

and
2. resurgence ?
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Size distributions
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Simple models
typically produce
bimodal or unimodal
size distributions.

I This includes network models:
random, small-world, scale-free, ...

I Exceptions:
1. Forest fire models
2. Sophisticated metapopulation models
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Burning through the population

Forest fire models: [15]

I Rhodes & Anderson, 1996
I The physicist’s approach:

“if it works for magnets, it’ll work for people...”

A bit of a stretch:
1. Epidemics ≡ forest fires

spreading on 3-d and 5-d lattices.
2. Claim Iceland and Faroe Islands exhibit power law

distributions for outbreaks.
3. Original forest fire model not completely understood.
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Size distributions

From Rhodes and Anderson, 1996.
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Sophisticated metapopulation models:

I Multiscale models suggested earlier by others but
not formalized (Bailey [1], Cliff and Haggett [4],
Ferguson et al.)

I Community based mixing (two scales)—Longini. [13]

I Eubank et al.’s EpiSims/TRANSIMS—city
simulations. [6]

I Spreading through countries—Airlines: Germann et
al., Colizza et al. [5]

I GLEAM (�):
Global
pandemic
simulations by
Vespignani et
al.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.gleamviz.org
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Size distributions

I Vital work but perhaps hard to generalize from...
I ⇒ Create a simple model involving multiscale travel
I Very big question: What is N?
I Should we model SARS in Hong Kong as spreading

in a neighborhood, in Hong Kong, Asia, or the world?
I For simple models, we need to know the final size

beforehand...
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Improving simple models

Contexts and Identities—Bipartite networks

c d ea b

2 3 41

a

b

c

d

e

contexts

individuals

unipartite
network

I boards of directors
I movies
I transportation modes (subway)
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Improving simple models

Idea for social networks: incorporate identity.

Identity is formed from attributes such as:
I Geographic location
I Type of employment
I Age
I Recreational activities

Groups are crucial...
I formed by people with at least one similar attribute
I Attributes⇔ Contexts⇔ Interactions⇔

Networks. [17]
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Infer interactions/network from identities

eca

high school
teacher

occupation

health careeducation

nurse doctorteacher
kindergarten

db

Distance makes sense in identity/context space.
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Generalized context space

100

eca b d

geography occupation age

0

(Blau & Schwartz [2], Simmel [16], Breiger [3])
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A toy agent-based model

Geography—allow people to move between
contexts:
I Locally: standard SIR model with random mixing
I discrete time simulation
I β = infection probability
I γ = recovery probability
I P = probability of travel
I Movement distance: Pr(d) ∝ exp(−d/ξ)

I ξ = typical travel distance
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I γ = recovery probability
I P = probability of travel
I Movement distance: Pr(d) ∝ exp(−d/ξ)

I ξ = typical travel distance
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A toy agent-based model

Schematic:
b=2

i j

x ij =2l=3

n=8
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Model output

I Define P0 = Expected number of infected individuals
leaving initially infected context.

I Need P0 > 1 for disease to spread (independent of
R0).

I Limit epidemic size by restricting frequency of travel
and/or range
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Model output

Varying ξ:

I Transition in expected final size based on typical
movement distance

(sensible)
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Model output

Varying P0:

I Transition in expected final size based on typical
number of infectives leaving first group

(also
sensible)

I Travel advisories: ξ has larger effect than P0.
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Example model output: size distributions
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I Flat distributions are possible for certain ξ and P.
I Different R0’s may produce similar distributions
I Same epidemic sizes may arise from different R0’s
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Model output—resurgence

Standard model:
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Model output—resurgence

Standard model with transport:
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The upshot

Simple multiscale population structure

+
stochasticity

leads to

resurgence
+
broad epidemic size distributions
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Conclusions

I For this model, epidemic size is highly unpredictable
I Model is more complicated than SIR but still simple
I We haven’t even included normal social responses

such as travel bans and self-quarantine.
I The reproduction number R0 is not terribly useful.
I R0, however measured, is not informative about

1. how likely the observed epidemic size was,
2. and how likely future epidemics will be.

I Problem: R0 summarises one epidemic after the fact
and enfolds movement, the price of bananas,
everything.
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Conclusions

I Disease spread highly sensitive to population
structure

I Rare events may matter enormously

(e.g., an infected individual taking an international
flight)

I More support for controlling population movement

(e.g., travel advisories, quarantine)
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Conclusions

What to do:
I Need to separate movement from disease
I R0 needs a friend or two.
I Need R0 > 1 and P0 > 1 and ξ sufficiently large

for disease to have a chance of spreading

More wondering:
I Exactly how important are rare events in disease

spreading?
I Again, what is N?
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Simple disease spreading models

Valiant attempts to use SIR and co. elsewhere:
I Adoption of ideas/beliefs (Goffman & Newell, 1964)
I Spread of rumors (Daley & Kendall, 1965)
I Diffusion of innovations (Bass, 1969)
I Spread of fanatical behavior (Castillo-Chávez &

Song, 2003)
I Spread of Feynmann diagrams (Bettencourt et al.,

2006)
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Predicting social catastrophe isn’t easy...

“Greenspan Concedes Error on Regulation”
I . . . humbled Mr. Greenspan admitted that he had put

too much faith in the self-correcting power of free
markets . . .

I “Those of us who have looked to the self-interest of
lending institutions to protect shareholders’ equity,
myself included, are in a state of shocked disbelief”

I Rep. Henry A. Waxman: “Do you feel that your
ideology pushed you to make decisions that you wish
you had not made?”

I Mr. Greenspan conceded: “Yes, I’ve found a flaw. I
don’t know how significant or permanent it is. But I’ve
been very distressed by that fact.”

New York Times, October 23, 2008 (�)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.nytimes.com/2008/10/24/business/economy/24panel.html
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Economics, Schmeconomics

Alan Greenspan (September 18, 2007):

“I’ve been dealing with these big
mathematical models of forecasting the
economy ...

If I could figure out a way to determine
whether or not people are more fearful
or changing to more euphoric,

I don’t need any of this other stuff.

I could forecast the economy better than
any way I know.”

http://wikipedia.org

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://wikipedia.org
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Economics, Schmeconomics
Greenspan continues:
“The trouble is that we can’t figure that out. I’ve been in
the forecasting business for 50 years. I’m no better than I
ever was, and nobody else is. Forecasting 50 years
ago was as good or as bad as it is today. And the reason
is that human nature hasn’t changed. We can’t improve
ourselves.”

Jon Stewart:

“You just bummed the @*!# out of me.”

wildbluffmedia.com

I From the Daily Show (�) (September 18, 2007)
I The full inteview is here (�).

http://www.uvm.edu
http://www.uvm.edu/~pdodds
wildbluffmedia.com
http://www.thedailyshow.com
http://www.thedailyshow.com/video/index.jhtml?videoId=102970&title=alan-greenspan
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Economics, Schmeconomics

James K. Galbraith:
NYT But there are at least 15,000 professional

economists in this country, and you’re saying only
two or three of them foresaw the mortgage crisis?

[JKG] Ten or 12 would be closer than two or three.

NYT What does that say about the field of economics,
which claims to be a science?

[JKG] It’s an
enormous blot on the reputation of the profession.
There are thousands of economists. Most of them
teach. And most of them teach a theoretical
framework that has been shown to be fundamentally
useless.

From the New York Times, 11/02/2008 (�)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.nytimes.com/2008/11/02/magazine/02wwln-Q4-t.html
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