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1. INTRODUCTION

THE TYPICAL U.S. CORPORATION is so large that a substantial part of its
workforce is devoted to information-processing, rather than to "making" or
"selling" things in the narrow ·sense. Although precise definitions and data are
not available,-a reasonable estimate is that more than one-half of U.S. workers
(including managers) do infonnation-processing as their primary activity2

A related dichotomy is the one between "managers" and "workers." To
paraphrase Frank K.~ight,)"workers do, and managers figure out what to do." If
we add to the managers those who support managerial functions, we probably
come out with roughly one-third or more of the workforce.'

We might think of the "information- rocessing" or "mana eria" part of the
finn as one huge decision-making machine, WhlC takes signals from the
environment and transfonns them into actions taken by the "real workers." Of
course, every worker on an assembly line or lathe, and every salesperson in the
field, makes many decisions every day that are not precisely dictated by
"management," and that has always been so, but the point J am making here is
that in the modem corporation a large part of the workfor£.~is specialized in
management activities, or activities in support of management activities. It is in
this sense that.the management-or infonnation-processing activities-are "dl::..
centralized" i.e., spread out among a large number of persons in the corpora
~

I The views expressed here are those of the author, and do nor necessarily represent those of
AT&T Bell Laboratories. I am grateful for helpful discussions with P. B. Linhart, A. Rustichini,
F. W. Sinden, P. W. Shor, B. D. Lubachevsky, C. B. McGuire, P. McGuire. C. Wilson, and T. Van
Zandt. S. E. Page made valuable comments on an earlier draft. These persons are not, however.
responsible for any errors of logic or judgement in Ihe paper.

2 See Radner (I 992).
'Knight 092t, p. 268).
"Again, see Radner (992).
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. . hou h corp ions are often thought to be highly
tion. Thts lySO, even t. g f' f nnw an supervision
"ce?1nilized" from the POInt 0 VIew 0 h t lerarchical" structures, whicl) are

l
' )'iniFe main theme _of thIs pa~e~f \:e centralization of authority, are ats~

usually thought of as the epltom.. th activities of information processIng.
remarkab{y effective in decentraltzmg e. 's dlclUU:L1 by thl,;; lnrao lOcal of

. . f' [ ation-proceSSmg I
--'fIle decentralIzation 0 In arm ., 'bl for any single person to manage

. h 'ch makes It Impossl e .
moderhn ent~~~~S~~'e\~i~ited capacity of individuals for information-processmg
everyt mg. ( Ie) and It would seem
implies that this activity uses scarce resources e.g., peap '. . .
that these uses constitute a substantial part of total economIc actlvtty.. Hence
information-processing and management would appear to be natural objects of
economic'st~dv~Onthe other hand, it is the com ut en1tlsts, more than any
ot rs,-w~e specialized in studying h w to orgamze effectIvely the re-

urees used in information processing. D
<>-pr-es paper IS thus close to the boundary between economics and

computer science. I believe, however, that its subject is !~Ievant to several
ancerns that are, or are becoming, central to economic theory. First, there is

the question of whether market forces are sufficient to push organizational
forms of large firms close to efficien<:y, Le., can we "explain" ~;rent ru:g~niza-

f nul forms 0 TO clcncy (much as we sometl CS ex I the
emer ence rkets as takin place because 0 their e cWo 0 do this it·
would be helpful to kiiow just what are teo ganizationaLfouus-thaL<tre
eIlicient un er vanous cIrcumstances.~, one would like to know how the
costliness . [mation processing contributes to organizational economies or
dIseconomies of scal~rd, t e present paper provides one possible model of
u oalln eo rationality," a topic that is beginning to receive much attention in
deci . eory and game theory. I hasten to add that in this paper I shall not
address these issues 'rectly, but in Sections 7 and 8 I do briefly sketch some
ideas on what directions such an effort might take, and also provide references
to related research.

Other modes of decentralization follow from the [iJniled_capacities-of_individ
uaJs for information-processing amLdecision-making. It is typically economical
to have most decislons;-irmlfaitbased on only partial information, and in many
cases to have different decisions based upon different information; this latter
situation is called ,decentralization of information,S The heterogeneity of infor
mation among different decision-makers' leads inevitably to the decelllralizaliall
a[ incentives, and thence to problems of moral hazard and misrepresentation.'
In other words, private information confers power.

0
in the present paper I.IDaJLcomider explicitly only the decentralization of

infonnation-processiog for decjsion-making, and I shaH consider three applica
tions: (j) linear decision rules, OJ) proiect selection, and (iii) pattern-matching.

sSee, e.g., Rudner 0961,1962) and Marschak and Radncr (972).
6 Sometimes called "asymmetric information."
1 See, e.g., Radner (1987).
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1. INTRODUCTION

THE TYPICAL U.S. CORPORATION is so large that a substantial part of its
workforce is devoted to information-processing, rather than to "making" or
Hselling" things in the narrow ·sense. Although precise definitions and data are
not available,-a reasonable estimate is that more than one-half of U.S. workers
(including managers) do information-processing as their primary activity.'

A related dichotomy is the one between "managers" and "workers." To
paraphrase Frank Knight,' "workers do, and managers figure out what to do." If
we add to the managers those who support managerial functions, we probably
come out with roughly one-third or more of the workforce'

We might think of the "information-processing" or "managerial" part of the
firm as one huge decision-making machine, which takes signals from the
environment and transforms them into actions taken by the "real workers." Of
course, every worker on an assembly line or lathe, and every salesperson in the
field, makes many decisions every day that are not precisely dictated by
"management," and that has always been so, but the point I am making here is
that in the modern corporation a large part of the workforce is specialized in
management activities, or activities in support of manageme;rt-~~tivities. It is in
this sense thaLthe management-or information-processing activities-are "elk
centralized II i.e., spread out among a large number of persons in the corpora
~

I The views expressed here are those of the author, and do not necessarily represent those of
AT&T Bell Laboratories. I am grateful for helpful discussions with P. B. Linhart, A. Rustichini,
F. W. Sinden, P. W. Shor, B. D. Lubachevsky, C. B. McGuire, P. McGuire, C. Wilson, and T. Van
Zandt. S. E. Page made valuable comments on an earlier draft. These persons are not, however,
responsible for any errors of logic or judgement in the paper.

2 See Radner (992).
, Knight (I921, p. 268).
4 Again, see Radner (992).
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--tion. This ~so:even though corp 'ons are often thought to be highly
Uce~ralizell" from the point of view of only an supervIsion

f
..... 'lNs the main theme of this paper that lerarchical" structures, which are

. ---7 , usually thought of as the epitome of the centralization of authority, are' also
illte5 remarkably effective in decentralizing the activities of information processing.
Wee-5 -'fhe decentralization of information-processing is dictated by the large scale of

modern enterprises, which makes it impossible for any single person to manage
evetything. Thus the limited capacity of individuals for information-processing
implies that this activity uses scarce resources (e.g., people), and it would seem
that these uses constitute a substantial part of total economic activity. Hence
information-proc ssing and management would appear to be natural objects of
economic stud . On the other hand, it is the camp-titer scjentists, more than any
ot rs,-w 0 have specialized in studying h~ organiz~ effectively the re-

urees used in information processing.
e-pres paper IS thus close to the boundaty between economics an~

computer science. I believe, however, that its subject is .relevant to several')
oncerns that are, or are becoming, central to economic theory. First, there is

the question of whether market forces are sufficient to push organizational
forms of large firms close to efficiency, i.e., can we "ex lain" c e gaRiza
(WOll} forms on the groyndS-Qf efficiency mue as we sometimes explain. the
e!l1er ence rkets as takin place because of their e . cW.. 0 do this it.
would be helpful to know just what are t e organizationaUonnUhaLare
e'flicient under varIOUS CIrcumstances.~, one would like to know how the
costliness . [mation rocessing contributes to organizational economies or
dIseconomies of scale. Third, t e present paper provides one possible model of
u oun e rationality," a topic that is beginning to receive much attention in
decision theoty and game theoty. I hasten to add that in this (l.ll er I shall not
address these issues directly, but in Sections 7 and 8 I do briefly sketch some
ideas on what directions such an effort might take, and also provide references
to related research.

Other modes of decentralization follow from the Urnited_capacities_of_individ
uaJs for information-processing ancLdecision-making. It is typically economical
to have most decislons;ihr6~sed on only partial information, and in many
cases to have different decisions based upon different information; this latter
situation is called decentralization of information.s The heterogeneity of infor
mation among different decision-makers· leads inevitably to the decentralizatio!1
o incentives, and thence to problems of moral hazard and misrepresentation.7

In ot er words, private information confers power.

0
1n the present paper I .wall cORsider explicitly only the decentralization of

information-processing for decision-making, and I shall consider three applica
tions: (i) linear decision rules, (ii) pro~ect selection, and (iii) pattern-matching.

S See, e.g., Radner 0961, 1962) and Marschak nnd Radner (972).
b Sometimes called "asymmetric information."
1 See, e.g., Radner (987).
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In the first, the decision is a linear function of the environmental signals. This
corresponds, in particular, to the typical processing of accounting information.
Numerical data are rescaled to common units, e.g., dollars, or minute-miles, and
then added up. Thus we- may think of the calculation of a linear function as
occurring in two stages:

l. Each variable is multiplied by its respective coefficient (conversion to a
common unit).

2. The resulting products are added up (aggregation).
The items to be aggregated might well be vectors, not just numbers, so that

the coefficients are matrices. The decentralization of information processing is ~ (...,fA--.~ J- "JJ. ,h..
dictated by the fact that the number of items to be added (numbers or vectors) )
is very large..

In the third application, the decision-maker (decision-making organization)
compares the "pattern" of data about the environment with the members of a ;: [iA
finite set of reference patterns, picking the one that is "closest" in some sense. ("- 1l.1lLA...l ....A.I~
To each reference pattern corresponds a decision, so that the problem of -.. p/DJe 'flU....
choosing a decision is reduced to one of finding which reference pattern is .'
closest to (has minimum distance from) the environmental pattern. For exam-
ple, the data and reference patterns might be represented as vectors in a space
of very large (but finite) dimension, and the measure of "closeness" might be
ordinary Euclidean distance.

These two -applications, as well as project selection, are discussed in Section
6. It is interesting that both "addition" and "finding a minimum" (or a
maximum) are associative operations, and (as we shall see) lend themselves
naturally to the decentralization of information processing, or what the com
puter scientist would call parallel computation." (In fact, from a formal point of
view these concepts are iiie same') ~present-PJmer is entirely concerned
with associative operations, except for a few remarks in Section 7.

Various aspects of the processing of information are costly, and therefore
should be "economized:"

l. The observation of the data about the environment.
2. The capabilities and numbers of the individual processors (persons?).
3. The communication network that transmits and switches the data (both

original and partly processed) among the processors.
4. The delay between the observation of the data and the implementation of

the decision(s).
The last aspect, delay, is costly to the extent that delayed decisions are

obsolete (not" timely").
l'Lfact, computer scientists have been el Qncerned with cl~a~,.Jhat is,

the tillleJ!_takeshto compute a particular function. In the present paper, I give

8 See Schwartz (1980).
9 Another computer-science term for decentralized processing is "distributed computation." In

the computer-science literature, the terms "parallel" and "distributed" connote different selS of
research problems (and researchers), but bOlh are concerned with what I have called decentralized
information-processing.
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equal attention to ec;.onomizing-o e number o(processors. 1 do not conside;
the cost of communication; this has, I think, some empirical justificati0I1.--Th·e
problem of "information overload" is apparently particularly acute in modernItimes, and is a reflection of the relative cheapness of communication Ys.

processing (digestion) of information.
'l'vY Also, in the present paper I take the amount of environmental data as given.

0,)1 Ibut in fa~t it should be an endogenous variable•. determin.ed by the balan~e
O\tz~ "between Its cost and Its value. The conSideration of thiS complication IS.
(/)' however. deferred to a(forthcomi7 page 10 ")

The basic construct that=-IShaI _use to represent decentralized information
processing is that of a (programmed) network of individual processors. Although
I shall consider very general networks. it may be helpful to introduce the idea
with the special case of a hierarchical network. Roughly speaking, a hierarchy of
processors will be defined as an inverted tree in which the processors are
partitioned into levels. There is a single processor at the top of the hierarchy,
and, except for the lOp one. every processor" reports to" exactly one processor
directly above it. The levels are '!'anked. and if one processor is above another. it
is also at a higher level; on the other hand. if twO processors are at the same
level. neither one is above the other in the tree. (For a more formal definition,
see Section 2.)

Data about the iron ent enter the ierarch UhlLb.ottom.-different
first-level processors receiving data about the different variables. The data items
are processed at successive levels, the final uanswer" (decisionl-coming-out-at
tQuo-p.. Each processor has limited capacity. in that there is a maximum
number of items it can process per unit of time. For example. suppose that the
hierarchy's task is to calculate the sum of the original data items. (More
generally. addition could be replaced by any associative operation.) Suppose
further, that each processor has an U in-box" and 'aregTS'ter; in each unit of time
it can take one item from its in-box and add it to its register. (For simplicity.
assume that all of the processors are identical.) When a first-level processor has
finished adding all the items in its in-box. it sends the sum in its register 10 the
processor immediately above it in the tree and resets its re ister to zero. This
proce ute IS repeated at successively higher levels with partial sums playing the
role of the original data items) until the lOp processor puts out the final result.

rThe number of units of elapsed time between the en c.oLth data at the first
Llevel and the output of the sum at the top is the telay

ote that each processor is adding items from its in-box in a serial fashion,
whereas processors at the same level are doing their work in parallel. Generally
speaking. for a given number of data items, increasing the amount of parallel

10 For analyses of the cost and value of information in an organizational setting, see Radner
0960 and Marschak and Radner (1972). Geanakoplos and Milgram (991) study team-theoretic
models of a hierarchical form in which the acqllisiliotl of information by managers is time-consum
ing. Their study is thus, in a sense, complementary to the present paper.

'i
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1113DECENTRALIZED INFORMATION PROCESSING

It follows that iljhe price of processors relative to that of delay is p (finite and

(1.1)

processing (and decreasing the amount of serial processing) leads to a decrease
in delay and an increase in the number of processors.

I shall in fact consider more general networks in which the processors are
connected by some arbitLary pattern-not necessarily hierarchical-of one-way

.- links. A program prescribes the original assignment of data items to the
in-boxes of the several processors, the times at which each individual processor
sends the contents of its register to the processor(s) to which it is directly linked,
and the time at which one designated processor sends out the final answer.

In a decision-making organization, new data about the environment arrive
from time to time, and decisions are correspondingly revised. For example,
suppose. :ha,t a "cohort" of ,y,,:"''<,V:, ~,a.t,~iitems arrives for processing e~"~ry ¥
untts3>J:time; [ shall call one umt of tIme a "cycle." The delay for a cohort IS

the number of elapsed cycles from the time that the cohort arrives until its
processing is completed. Suppose, for the purpose of this introduction, that
every cohort experiences the same delay, say C. (In general, this need not be
the case, even if Nand T are the same for all cohorts; see Section 5.) Finally,
let P denote the number of individual processors in the network, I shall'call a
network efficient, given Nand T, if it is not possible to decrease the delay, C,
without increasing the number of processors, P, and vice versa.

This paper focu~tw" sets "r issues-concerning efficienl-n~s. The
first is structural: )\yhat is the "architecture" of efficient networks? [f this 4.

f
architecture is complicated, are there simpler architectures tha are close to
efficient? In fact, we shaH see that efficient networks 3re characterized by a r W
collection of hierarchical structures, but that individual processors are rotated 87¥ 6-n \lA---fJ
among these structures in a somewhat complicated way as successive CQbO~.-1;-'1L A11/1
are processed On the other hand, we shall also see that some fairly simple - I Y "'-<'~OV·

hierarchical networks are relatively close to being efficient, when the number of
items in each cohort is large. The reader ,llould not infer from this a justification ~~. )
or explanation of the usual hierarchy of awhoriry in a firm; in fact, a rather '\J
contrary inference is suggested in Section 7.

The second set of issues conCerns the properties of the "production function"
that corresponds to efficient, or almost efficient, networks: What is the shape of
the (P, C) efficiellP frontier, given Nand T? How does this frontier depend on
Nand T? Itts clear that the answers to these questions will have implications
for the standard economic questions that one asks about a "production technol-
ogy," such as (1) how does the choice of a network depend on the relative
"prices" of processors and delay? (2) what are the returns to scale in informa
tion processing? We shall see that, when N, P, and NI(P - NIT) are large,
the points on th~ (P, C) efficiency frontier lie approximately on the rectangular
hyperbola,

c(p-~)~~.
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strictly positive), then for the optimal choice of C and P,

( 1.2)

( 1.3)

P = N + (!!.-) 1/'
T pT '

Thus, if the relative price p is held constant while one increases N, the
number of items per cohort, then there will be "increasing returns to scale"
(although the returns to scale will in the limit be constant a!(YJin<;reases without
bound). '-'<vN

To describe more completely how the entire efficiency frontier depends on N
and T requires a more precise description than the approximation (1.1), which
is valid only under the stated conditions. The reader will have to wait for
Section 5 to see such a description, but 1 do want to state here two lower
bounds on the number of processors and the delay:

( 1.4)

( 1.5)

N
p~ T'

C" I + log, N.

These bounds have interesting implications for returns to scale (in N). The first
one states that the number of processors must be at least proportional to the
number of items per cohort. The second states that the delay can grow even
more slowly than in (1.3), but nevertheless must go to infinity if N does. In fact,
one mig~t question the concept of returns to scale that is implicit in (1.2) and
(1.3). One could argue that, in this technology, the inputs are the processors, the
output is the service of processing the N items, and the delay is a quality of the
output. From this point of view. 0.5) states that jt is nor possible ro.-maintain a
constant qualify (C) while increasing (he !Cale (N). ;rhus, in contrast to (1.2)-(1.3),
we get a picture Qf strongly decreasing returns to scale. (For further remarks on
this point, see Section 7.)

The results summarized above are presented in Section 5, which contains the
core of the paper. Section 2 introduces the idea of a network. Sections 3 and 4
deal with the case in which there is only one cohort of items to be processed; I
call this the "one-shot mode," in contrast to the "systolic mode" of Section 5.
Although the one-shot mode may be of limited interest in itself, its analysis
proves to be central to the analysis of the systolic mode.

In Section 6, I sketch how these ideas can be applied to models of (i)
accounting and control C1inear operations), (ij) project selection, and (iii) pattern
recognition. Section 7 presents some brief concluding remarks about a variety of
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loose ends. Bibliographic notes are gathered in Section 8, rather than being
scattered through the paper. However, no attempt has been made to survey the /'
relevant literature thoroughly. .4

2. NETWORKS AND HIERARCHIES IN THE ONE·SHOT MODE

The considerations of Section 1 now lead me to consider the following
problem: Given N items to be added, and P processors, arrange and program
the processors to add the N items in minimum time. (Here, for "add" we can
read any associative operation, and the" items" are anything amenable to the
associative operation.) As I have stated it, this problem is not well-defined,
because I have not been precise about what a processor is. In what follows, a
processor is an object with an in-box, a register, and a clock. Time is measured
in cycles; in one cycle a processor can take one item from its in-box and add it
to its register. From each processor there may be one or more one-way
communication links to other processors. At prescribed times, a processor can
also send the contents of its register to the in-boxes of other processors to which
it is directly linked, and then re-initialize its own register to "zero;" this can be
done in any cycle without additional elapsed time. Finally, there is a particular
processor that, at a designated time, sends out the contents of its register as the
result of the computation, i.e., the grand total. The set of processors and links
will be called-a ne/lVork. The program prescribes the original assignment of the
items to the several processors' in-boxes, and the times of communication and
final output. The combination of a network and a program will be called a
prow;,mmed ne/lVork. The number of cycles used to perform the computation
will be called the delay. (For a more formal definition, and its relation to
computer science models of parallel processing, see Appendix AL)

I can now restate the problem: given P processors, consln,ct a programmed
network to add the given N items with a minimum delay.

A special subclass of networks, called hierarchies, will turn out 1O..be-impor
t~n fact, I shall start by defining a more general concept, that of a tree. (I
fear that the mathematical name may be misleading, since it corresponds more
or less to the botanical object with the same name, but upside-down!) formally,
a tree is a collection of objects, together with a relation among them, to be
called here "superior to." This relation has the following properties:

L Transitivity-if A is superior to B, and B is superior to C, then A is
superior to C.

2. Antisymmetry-if A is superior to B, then B is not superior to A; in this
case I shall say that B is subordinate to A.

3. There is exactly one object, called the root, that is superior to all the other
objects.

I shall say that A is the immediate superior of B if there is no object that is
"between" A and B in the relation. A fourth property required of a tree is:

4. Except for the root, every object has exactly one immediate superior.

I
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FIGURE I.-A tree.

•

Figure I shows a tree with 5 objects. The root is at the top! Notice that not all
the objects in the tree need be "comparable;" for example, B is not superior to
D, nor is D superior to B.

In everyday language, the word "hierarchy" not only connotes an upside
down-tree-like structure, but also an assignment of rank or level. By a ranking
of a tree I shall mean an assignment of a number (rank) to each object such
that:

l. if A is superior to B, then it has a higher rank (larger number);
2. if A and B have the same rank, then they are not comparable, i.e., A is

not superior to B, nor is B superior to Q.

I shall adopt the convention that the lowest rank is 1.
l can now define a hierarchy; it is a ranked tree. I note that there may be

more than one way to rank a tree (in a way that satisfies properties 1 and 2
above); Figure 2 illustrates this. The hierarchies in Figure 2 look like organiza
tion charts (for a small organization!). With this interpretation; the relation
"superior to" is that of formal authority. However, as we snail see later, efficient
nel\vorks for informa Ion processing need not 'coincide with hierarchies of
authority.

Figure 3 illustrates a hierarchical network, with 15 processors indicated by
circles, and 40 items. The links joining the processors are to be understood as
pointing upward. One processor is the immediate superior of another if there is
a direct link pointing upward from the second to the first. The successive levels
in the diagram indicate the ranks, of which there are 4. Here is the way the
program works. The 40 items are originally assigned equally to the processors of
the lowest level (rank ll. This is indicated in the figures by the 5 lines coming up
into each of the 8 lowest-level processors. The computation starts with each
first-level processor adding its 5 items into its register. At the end of the 5th
cycle each first-level processor sends its partial sum to its immediate superior at

FIGURE 2.-The same tree organized in levels in two different ways.
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FIGURE 3.-A hierarchical nctwork wilh 15 processors. 40 ilcms, and delay II.

the second level. Each second-level processor then takes 2 cycles to add its
items and send its partial sum to its third-level immediate superior, etc. At the ~ 1ft

end of 11 cycles the single fourth-level processor (the ro~YOthe trec-e)-..,.-p_u-:ts_o_u_t__ C>... I r~~Wlfi--1-
the grand total of the 40 items; thus the delay is II. _ -7 C/Vi.<:J

As we shall see below, the minimum delay is actuall .a::: ot rl.lndeed, we
shall also see that one can achieve the same delay, ,with fewer than 15
processors, namely 8.

In the subsequent sections, a significant role will be played by hierarchies that
display a certain symmetry (as in Figure 3). I shall call a hierarchy strictly '1 0
balanced if (0 all the immediate subordinates of any processor are at the next / -
lower level anct(ii) at each level above the first, all members of the same level/
have the same number of immediate subordinates. All of the processors at ·o~
level that are the immediate subordinates of the same processor at the gext / J.~

higher level will be called a cadre. The hierarchy in Figure 3 is~tfictly l...J'\..OI-f~
balanced, but each cadre ha~members. In general, however, In a strictly C;:,k,f-
balanced hierarchy cadres at different levels need not be of the same size.

I shall say that a programmed network is efficient for a given number of items
if the number of processors cannot be decreased without increasing the delay,
or vice-versa: By extension, a network is efficient if it can be programmed to be
efficient. Thus, as noted above, we shall see that the network in Figure 3 is not
efficient. Finally, I shall say that the pair (P,C) is efficient for N items if there is
a programmed network with P processors that is efficient for N items and adds
them with a delay equal to C.

Although the hierarchical network of Figure 3 is not efficient, one can show
that hierarchical networks are sufficient to attain efficiency, in the following
sense: For any number of items, N, and any pair (P, C) that is efficient for N,
there is a trelLwith P processors that can add the N items ill C cycles. This
proposition IS based on the following solution to the delay-minimization prob
lem.

For any real number x, let rx 1denote the smallest integer;;, x (ceiling), and
lxJ the largest integer <;x (floor).

3. EFFICIENCY OF HIERARCHIES IN THE ONE-SHOT MODE
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TABLE I
MINIMUM DELAY (C) FOR ADDING 40 ITEMS"

P I 2 3 4 5 6 7 8 9 10 II 12 13
Min C 40 21 15 12 11 10 9 8 8 8 8 7 7

~p - number or proccsson.• denoles <In c:lficicnl net....ork.

20
7

40
7

THEOREM 1: Given N ~ P ~ 1, the minimum number of cycles needed to add N
items with P processors, using any network, is

(3.1) c~l~j+f10g2(p+NmOdP}].

and is attainable by a tree.

Although this proposition seems to be more or less familiar to computer
scientists interested in parallel computation (see, e.g., Gibbons and Rytter
(1988)) a complete statement and proof appears not to be easily accessible. 1
have therefore provided a proof in Appendix A2.

Table 1 illustrates formula (3. I) for N = 4IJ"and P varying from 1 to 40. A
one-proce,.,or hierarchy is the slowest, with a delay of 40 cycles. The minimum
delay is 7 cycles, and can be attained with 12 processors; the use of more
processors will not further reduce the delay. Thus a network with more than 12
processors is not efficient for 40 items. Similarly, we see from the table that
networks with 9, 10, and 11 processors are not efficient, either, since a delay of 8
cycles can be attained with 8 processors. Thus, although the formula gives the
minimum number of cycles for any number of processors, not every pair (P, (:)
generated by the formula is efficient. Figure 4 shows a g~aph of Table 1, and
iifiJsfrales the same phenomenan.For very large numbers of items, however,
these inefficiencies will not be very significant unless the number of processors is
relatively large. For example, Figure 5 shows a plot of the minimum delay vs.

•• • • .................

40 •
35 I-

30

25

C 20

15

10

5r

0
,
5 10

p
15 20 25

FIGURE 4.-N =- 40. Min C vs. P.
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the number of processors for N = 10,000; inefficiency does not become a
significant problem until the number of processors exceeds 2000 (approximately).

Figures 4 and 5 illustrate the trade-off between delay and number of proceS-J
sors. This tradeoff is a reflection of the trade-off between serial and parallel
processing. With few processors, there is a lot of serial processing of the items
at the first lev,,-I, which causes a large delay. Many processors permit a lot of
parallel processing, which reduces the delay.

It is interesting to see how a strictly balanced hierarchy can be "reduced" so
as to decrease both the total number of processors (P) and the delay (e). I -1- P/ .lJ c
suppose we start with the N items allocated equally (or as equally as possible)
among the lowest-level processors. The reduction will be done in stages. At
stage 1, we eliminate 1 member of each cadre at levell, and assign its items
to its corresponding immediate superior. Figure 6a shows the hierarchy of
Figure 3, but with each group of 5 items at the bottom replaced by a triangle, or
"fan." Figure 6b shows the result of applying the first stage of reduction. Since
there were originally 4 cadres at levell, 4 processors have been eliminated at
levell, reducing the total number of processors from 15 to 11. Each second-level
processor now has 5 items plus 1 first-level processor assigned to it. ~

1 shall call the items and/or immediately subordinate processors assigned to fYekU!5S
a processor its predecessors. Let R denote the number of levels in the hierarchy.
The reduction Iftocedureis completed in stages as follows: at stage r < R, one
processor is eliminated from each level-r cadre, and its predecessors are
assigned to its immediate superior at level r + 1.

Figures 6c and 6d show the second and third stages of reduction for the
hierarchy of Figure 6a. The number of processors has been reduced from 15 to
8, and the number of cycles from 11 to 8. (One can show that it is no
coincidence that the new number of processors equals the old number of
first-level processors.)

I In general, the minimum delay in (3.1) is attained by a hierarchy of the t
L.:-hat one gets from reducing a balanced hierarchy, as described above Indeed, it
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'. •

FIGURE 6a.- Balanced hierarchy before reduction.

FIGURE 6b.-Balanced hierarchy afler 1 stage of reduction.

FIGURE 6c.-Balanced hierarchy after 2 stages of reduction.

FIGUKE 6d.-Balanccd hierarchy afler 3 slages of reduction (final).
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(3.2)

is attained by reducing a balanced hierarchy whose cadres originally all have
size two! (Note that the hierarchy of Figure 6a does have this property.)

There is, however, something odd about Figure 6d, at least as a picture of an
organizational hierarchy. We see that the top-ranking processor has immediate..--? fI,o+
sUb~dinates at all levels. In fact, a similar phenomenon IS repeated at eac~ -o~)"'f "e J
lower level. Reporting through skipped levels is not unheard of in corporate
hierarchies (in fact, at AT&T this is called "skip-level reporting"), but th
practice does not seem to be as widespread as the above reductio prace5's
would suggest . - --

I now explore how the set of efficient pairs (P,C) depends on the number of
items, N. First even if the processors are unlimited, the minimum delay
increases like log N. In fact, from (3.0, we have:

COROLLARY 1: For N;> 1,

~ --------m~~ C='1 + [log, N 1.
~I

and this minimum is attained for a , P> N /2.

PROOF: See Appendix A2.

/
If N is a multiple of P and lP is a po~ver of 3' then (3.0 becomes

(3.3) C= ~ + log, P f( P). U/:"'kfi'tJ.
In fact, if N, P, and N P are all large, then 0.3} will be a good approximation
to 0.1) in any case. f we think of P as a continuous variable (rather than
integer-valued), the f(P}, the right-hand side of (3.3), is strictly decreasing and
convex in P for 1 P < N In 2. In fact, by the Corollary, we want to restrict P
in (3.3) so that

(3.3a)

(Note that N /2 < N In 2 = .693N.)
Since f is strictly decreasing and convex on the interval 0.3a}, every point on

the graph of f minimizes some positive linear function of C and P, say

(3.4) L~yC+",P.

We can interpret'" as the unit cost of processors, and y as the unit "cost" of
cycles of delay. However, since the "cost" of delay derives from the decision
problem in which the information is used, the assumption of linearity mayor
may not be appropriate; see Section 7. Nevertheless, the rates at which the
minimum valu uLL...ancLthe-correspondingoptimal pai~s (P~increase with
N ten us something about-hoML.the efficiency frontier moves out with N.
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XI
We can rewrite (3.3) as

• N In P
C~-+--.

P In2

ROY RADNER

Substituting the right-hand side for C in the total cost, we see that the
first-order condition for minimum cost, given N, is

yN Y
--+--+q,=O

p 2 Pln2 '

or equivalently,

P
aP2+--N~O

102 '

q,
a=-.

y

Solving this quadratic equation for the positive root, we get

(3.5)

__1_ + (_1_ +4aN)'/2
In2 (In2)' -

P = ----'-'----''----'---
2a

One easily verifies that, as N increases without bound,

- 1/2

(N) '/2. 1/2(3.6) P- -;; ,C- (aN) , mm L - (yq,N) .

C
lim -=a.

N-oo P

Hence, if-we look at points on the efficiency frontier where the sl pe;.4.C/dP,
equals ~, then these points move out asymptotically at the rat IN ;';lpproxi
mately~g a ray of slope a. Also, from (3.3) and (3.6), the effie ncy frontier is
approximately ~_I 0 _If-

0'10('.1 'l.-
PC"'N 0fN N

for large N, P, and N/P.

4. BALANCED HIERARCHIES

C -= d, P.

Balanced hierarchies were defined in Section 2. For reasons that will be given
below (Sec. 5), in the discussion of the "systolic mode," balanced hierarchies
may be interesting to study, even though the efficient one-shot trees of the
previous section were not balanced.

Recall that a balanced hierarchy has levels (or ranks), with the bottom level
numbered 1 and the top level numbered R. Let p, denote the numb~r of IJ
processD'S al le.el r. I shall use here a slightiy more general definition of r r.
balancedness than 'that of Section 2. The N items are divided as equally as
possible among the p, processors at the first level. For r·;;. 2, let k, denote the
maximum number of immediate subordinates of any~sor at level ;:; the

•
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number of processors at level r is determined by

r
p,-, 1(4.1) P,= T' 2~r~R,

and the number of levels, R, by

(4.2) PR = 1.

1123

Thus each processor (except possibly one) at level r;. 2 has k, immediate
subordinates (also called the fan-in); if P,_I is not an integer multiple of k,
then the last processor at level r has P,_I mod k, immediate subordinates.
Each processor at level I has either k I or k I - 1 original data items assigned to
it, where

Thus the parameters of the balanced hierarchy are P" k" ... , k ll . (Note that if
PR-I < k ll , then the single processor at level R-the root-will have only PII_I
immediate subordinates.)

I shall not give a detailed analysis of balanced hierarchies here." I note only
that, if one waots to minimize a positive linear function of the delay and the
number of processors, as in (3.4), then (roughly speaking) the optimal fan-in, k"
will decrease rapidly with r, for sufficiently large N. This suggests studying a
sPecial case of a balanced hierarchy, which I shall call a preprocessing/tree
(PPT) network. In a PPT, k, = ... = k R '" K;. 2. Thus-given N a PI'I has
only 2 parameters: the number of preprocessors at the first level, and K, the
fan-in at every level above that. Corresponding to (4.1), the number of proces
sors at each level r above the first is

(4.4)

Roughly speaking, the number k" in (4.3), measures the ,amount of serial
"preprocessing" done by first-level processors, and K measures the amount of
serial processing done at higher levels. Figure 3 showed a PPT with N = 40,
P, ~ 8 and K ~ 2. The delay is C = 11, and the total number of processors is
P= 15.

I shall say that a PPT is (relatively) optimal if it minimizes the cost

(4.5) L '" yC + q,p

within the class of PPTs, where y and q, are strictly positive parameters. We
shall see that in a relatively optimal PPT, when N is large, k I is much larger
than K. I shall in fact give formulas for the optimal k, and K. In particular,
these formulas imply that k " C, and P are all O(!N) for optimal PPTs, and

II See Rndncr (I 990).
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N
P
C
C""T
K

C"PT
C
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TABLE II

REl--\TIVE INEFFICIENCY OF PREPROCESSING /TREE NETWORKS

10' 10' 10' 10 10

10 2 10' 10' 10'
107 1010 10014 100017
131 1095 10294 100922

10 27 79 242

1.224 1.084 1.028 1.009

that Klk I goes to zero. To be precise, we shall see that, for optimal PPTs,

(4.6) (
N) 1/2

p- - ,
a

(4aN)'/4
K - ..:.-:---;-;-

In N

where ex ~ (</3/y).
An interesting consequence of these formulas is that asymptotically, relatively

optimal PPTs are relatively as e dent as 0 timal (nonbalanced) trees, in the
sense that, as·- Increases without bound, the percentage loss due to using
optimal PPTs tends to zero. On the other hand, the difference in the costs tendS--::> ?7
tolrrnnlry. (Compare the preceding formulas with 0.6).) The relative ineffi- ,;" '" 1\ 11 4n
ciency of PPTs is illustrated in Table II. <.J\jV - V'-'

If P, is a divisor of N and a power of K [ shall say that the PPT is strictly k ~~
balanced (this corresponds to the definition in Section 2). In this case one can
give closed-form expressions for P and C. These expressions are also useful
approximations when N is large. For a strictly balanced PPT, (4.3) and (4.4) ~ L\, \,
imply

(4.7) plk,~N,

(4.8) 1 !(.r~R.

Hence the number processors in levels 1 to R is

On the other hand, from (4.7) and (4.8),

(4.9)
N
_ =K R - 1

k 'I
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(4.10)

so the total number of processors is

KN
--I
k ,

P= ---'--
K- 1

The total number of cycles is

C~kl+(R-l)K.

Hence, by (4.9)

(4.11) C=k l +KIOg K (N)=k l +(-.!5...-)(lnN-lnk l).
k , In K

For the remainder of this section I shall focus on strictly balanced optimal
PPTs using (4.10) and (4.1 I), which can also be interpreted as approximations to
the precise values if the assumption of strict balancedness is not satisfied. This
procedure gives the correct asymptotics when N is large. One can show (see
Appendix A3), that, for relatively optimal PPTs,

(
N) II'

PI"""" - ,
a

(4aN)1/4
K - ---'-----,--

In N

It then follows from (4.10) and (4.11) that C, P, and L are all D(IFi).

(4.12)

5. THE SYSTOLIC MODE

5.1. Periodic Arrival of Data

I must now turn our attention to a fact about real organizations that we have
thus far ignored, namely, that typically new data about the environment will be
coming in periodically, with the consequence that new decisions must be
calculated periodically. Adopting a term from computer science, I shall call this
the systolic mode, to distinguish it from the one-shot mode discussed in the
preceding sections. I shall assume that, in the systolic mode, every T cycles a
new cohort of data arrives to be processed; each cohort is made up of N data
items. The delay for a cohort is the number of cycles that elapse from the arrival
of the cohort to the completion of its processing; this cohort delay includes (I)
the waiting time, if any, between the arrival of the cohort and the beginning of
the processing, and (2) the actual processing time. The delay for a neMork is the
long-run average of the successive cohort delays"

For example, consider the one-shot-efficient networks described in Section 3
(e.g., as illustrated in Figure 6d). If the "one-shot" delay, say C, does not
exceed T, the time between cohorts, then the same tree can be used £01 every
succeSSive cohort, with a long-run average delay equal to C. However, if t> T,
and one tries to use the same tree, the waiting times of successive cohorts will

12 Note [hat I am implicitly considering only networks for which this long-run average exisls.
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(5.1 )

increase without bound. This is because, in the one-shat-efficient tree, the top
processor is busy all the time, and hence the processing of one cohort cannot
begin until the processing of the previous cohorl has been completed.

One remedy for the· situation just described, with C> T, is to assign a new
tree to each succeeding cohort until the first tree is free, after which the same
trees can be re-used cyclically; I shall call this replication of the one-shot-effi
cient tree (ROSE). [f rCIT] = r, then r replicates will be needed; if each tree
uses P processors, then the total number of processors in the ROSE network
will be rP, and the network delay will be C.

Another remedy is to use a balanced hierarchy (cf. Sec. 4) in which the
processing time at each level does not exceed T. For example, if the processing
time at each level is exactly T, then as soon as a level completes its work on one
cohorl it can go on to work on the next cohort, and there will be no idle
processors in any cycle. This contrasts with the ROSE network, in which there
are bound to be idle processors if P> 1.

The concept of efficiency can be extended to the systolic mode in the natural
way; in the remainder of this section, "efficient" will mean "systolic-mode-effi
cient" unless otherwise indicated. The problem of characterizing efficient net
works in the S • mode has been solved by T. Van Zandt 1 this
results cannot be described precisely In a rief and sim Ie way. Here, [ shall
gIve a simllie lower boun 0 se a feasible pairs, (P,C). Van Zandt's
result implies that this bound is fairly sharp under certain conditions. In
addition, [ shall describe some fairly simple, but not fully efficient, networks that
get close to the lower bound."

5.2. A Lower Bound for Steady Networks

Let P be a network with P processors, let Qm be the number of processors
actually used by cohorl Ill, and cm be the delay for cohorl III (m = 1,2, ... ). I
shall call P steady if the two long-TUn-averages,

1 M
C= lim L Cm,

M_oo 1\1 m-1

(5.2)
_ 1 M

Q= lim - L Qm,
M ..... m M tn-I

exist. For every positive integer N, define the function fN by -' \

THEOREM 2: Let P be a network with P processors, in which a cohort of N
items arrives every T cycles. If P is steady, with Cand Q defined as in (5.1) and

h- IJ These resulls are apparently not in the computer science literature.

x ~ 1.(5.3)

_ I ",0

v:- '
~1- 0 - N· .

•
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(5.2), resp., then

1127

(5.4)

(5.5)

C,. fN(Q) '" CL ,

N-I+Q··
P,. ",PL'

T

PROOF: 14 By the theorem of Section 3, for every cohaft m,

x;<" N
(5.6) _!'" ,.l d'~ + [log, (Q'" + N mod Q'")1;

cf. o.\}. We need the followi;;gf

LEMMA 1: For every strictly positive integer q ~ N,

(5.7) l: j+ [log,(q+Nmodq)l ,.fN(q)·

PROOF: Write

N=nq+r,

We wish to show that

o~ r < q:

nq + r
n + [Iog,(q + r)1 ,. -- + log, q,

q

or that

r
[log, (q + r)1- log,( q) - - ,. 0.

q

For this, it is sufficient to show that

r
log,(q + r) -log, (q) - -,. 0,

- q

or that

(5.8) g(x) ",Iog,(] +x) -x,.o, o,;;x<l.

However, g is concave, and g(O) = gO) = 0, which proves (5.8), and hence the
lemma.

From the lemma and (5.6), we see that, for every cohort m,

I~ Unlike the corresponding theorem for the one-shot mode, this result appears to be new to the
computer science literature.
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It is straight"fOf',yVr to ~ify that the function IN is continuous and convex on
the interval"[l, N]; ence, f~very M, by (5.9),

~
.fv\

1 M "1 M 'I) 1',
L:c"';,-L:IN(Q"');'INl- Q"', W .

Ivl m _ 1 A1"'_1 l\t{m_1

and, letting M increase without bound we get (5.4).
To prove (5.5), first note that the addition of N items requires exactly (N - 1)

additions; hence at least (N - 1) processor-cycles are needed. Furthermore, if
Q'" processors are actually used for cohort m, then an additional QItI proces
sor-cycles are needed to add the first item in every processor's in-box into its
register. Hence the total number of processor-cycles used in cohort m is at least

Jtv,1l == N - I + Q'" I

and the long-run-average number of processor-cycles used per cycle is at least
as large as (N - 1 + Q)/T, which proves (5.5), and completes the proof of the
theorem.

The preceding theorem provides a curve L of points (PL(Q), CL(Q), parame
terized by Q as in (5.4) and (5.5), which forms a lower bound on all points
(p,e) that can be attained by steady networks (given Nand T). It is interesting
to compare this bound with the corresponding one for the one-shot mode
(Sec. 3). As in that case, we have

.?? (5.10) e;, I + log, N,

and this bound can actually be attained with equality if N is a power of 2, for
example by taking Q~ N/2 and

P ~ [I + l;g, N j'~

[n other words, the systolic mode can be as fast as the one-shqt mode if one is
willing to use enough processors (this was already evident from the preceding
discussion of ROSE networks). On the other hand, from (5.5), P;' N /T, so P
must grow at least proportionality to N, for fixed T. This contrasts strongly with
the one-shot case, in which P can be reduced to I (at tbe expense, of course, of
making C ~ N).

5.3. Efficient Networks

The previously cited work by Van Zandt (1990) has implications for the
sharpness of the bounds (5.4) and (5.5). He considers a slightly smaller class of
networks, called stationary, IS in which Q'" (the number of processors used by
cohort m) and C'" (the delay for cohort m) are each the same for all cohorts m;

.IS I shall not give a precise definition here.

•
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call the respective values Q and C. Let P(C, N, T) be the minimum number of
processors in a stationary systolic network needed to achieve a delay C when a
cohort of N items arrives every T cycles, and let ptJC, N, T) be the correspond
ing lower bound in (5.5). Fix T, and for each N let CN be a feasible delay, i.e.,

1 + [log, N 1<; CN <; N.

Finally, let qN denote the minimum number of processors needed to process N
items in CN cycles in a one-shot network.

PROPOSITION 1 (Van Zandt, 1990): 16
1. If N --+ 00 and qN/N --+ 0, then

P(CN,N,T) -1 =O([qN]').
PL(CN,N,T) N

2. If qN < N 1/' and T <; (N 1/2/2) - 2, rhen

P(CN,N,T) -PL(CN,N,T) <;2.

To interpret the proposition, observe that any upper bound on the rule at
which qN increases with N corresponds to a IOlYer bound on the rate at which
CN increases with N. To make this more precise, let c(q, N) denote the
minimum number of cycles needed to process N items in Ihc one-shot mode
with q processors. From (3.1),

c(q,N) = l; j + [log,(q+Nmodq)] <;; +log,(2q) + 1

N
~-+log,q+2~fN(q)+2;

q -

cf. (5.3). Hence, for any q between 1 and N,

CN> fN(q) + 2 = CN> c(q, N) = qN <q.

In particular, taking q = N I-a/{3, with {3 > 0, °< a <; 1, we gel

CN> {3Na + (1- a) log2 N -log{3 + 2 =qN < N I -a/{3 =qN/N --+ 0,

so lhat Part 1 of the Proposition is applicable. To apply Part 2, take a = 1/2
and (3 = 1 in the above, so that

CN> IN + 10g,IN + 2 = qN < IN.
Figure 7 illustrates efficient (stationary) networks and the lower bound, for
N = 106•

16 See also Radner and Van Zandt (992) for a summary of this and relalcd resulls.
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5 N = 10·
T = 10

4

u
'" 3.Q

2

65234

log (P-10')

FIGURE 7.-Efficient systolic-mode networks and the lower bound.

5.4. Some "Good" Ba/anced Trees

In this subsection I consider two families of rather simple networks that come
"close" to efficiency, and also close to the lower bound of Section 5.2. The first
family is adapted from the preprocessing!tree networks of Section 4. For
reasons that will become clear in a moment, I shall call them preprocessing!
overhead (PPO) networks.

A PPO network is characterized by two parameters, Po and K, with

(5.11)
1 ~Po~N.

Each cohort of N items is assigned to a group of Po preprocessors as equally as
possible. After the group of preprocessors has finished, their partial sums are
passed up to the first level of a balanced hierarchy with fan-in K at every level;
this hierarchy will be called the overhead Iree. The group of preprocessors will
then turn to the next '(lvailable cohort. If the preprocessing time of the first
cohort exceeds T, then a second group of preprocessors will be assigned to the
second cohort, etc., until the first group is free. On the other hand, since K <; T,
only one overhead tree is needed; after K cycles spent on one cohort, the first
level is free to process the preprocessed partial sums from the next cohort.
Typically, different levels of the overhead tree will be working simultaneously on
different cohorts (this is sometimes called "pipelining"). Note that the overhead
tree is acting like a PPT of Section 4 with respect to each group of preproces
sors.
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If we number the levels in the overhead tree r ~ I, ... , R, and denote the
number of processors at level r by Pr , then

(5.12) ~r~1Pr K' .- 1~ r:::;;; R,

and R is determined by

(5.13) PR = 1;

cf. (4.4). The number of preprocessing cycles in each cohort is

(5.14) k =[;'1.
Hence the number of groups of preprocessors is

(5.15)

(5.18)

(5.19)

the total number of preprocessors is

and the total number of processors is

(5.16) po=por~1 + t Pro
r-l

For 1 "r < R, each cohort spends K cycles at level r of the overhead tree; at
level 1 it spends (PR-I mod K) cycles. Hence the delay for each cohort is

(5.17) Co=[;'1+(R-l)K+PR_lmodK.

In the special case in which Po is a divisor of N and a power of K, and T is a
divisor of k, I shall say that the PPO is strictly balanced, and (5.16) and (5.17)
become:

N Po-l
P =-+--o T K-l'

N
Co = - + K 10gK po.

Po

Given Nand T, as we vary the parameters Po and K, subject to (5.1 I), we get
a family of points (PII , Co). Since we have a two-parameter family, it is not
implausible that some pairs are "more efficient" than others. I shall say that a
PPO is relatively efficiem if it is efficient within the family of PPOs. We can
study the relatively efficient PPOs in a way that corresponds to 0.3)-0.6) for
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(5.27)

the one-shot mode. Given Nand T, we wish to choose Po and K to minimize

(5.21) Lo = Co+aPo,

where a is a fixed, positive parameter. One can show (see Appendix A4) that, as
N gets large with T fixed, for the optimal choice of Po and K,

( - ?)._2) K~T,

(5.23) Po- [(T~I)Nr,

aN ]1/2
(5.24) Co - [T-I '

1/2

(5.25) Po - ~ - [a(:-I)]
N ]1/2aN a

(5.26) Lo - T -2[T_I

Thus, if the cost of delay is linear in delay, there are increasing returns to scale,
but asymptofically returns to scale are constant. In fact, we know from (5.5) that
the latter is unavoidable, and this is an important respect in which the systolic
mode differs from the one-shot mode.

It is interesting to observe, in addition, that

. Co
lim 'I ~a,

N_z I
P--o T

(5.28) Co(PO-~)-T~I'

Note that, by (5.5), for any steady network P>N/T, so' that (P-(N/T»
represents the part of the total number of processors that can actually be
controlled.

The asymptotic results (5.22)-(5.25) enable us to compare the performance of
optimal PPOs with the lower bound (5.4)-(5.5), for large N. One can show (see
Appendix A4) that, if we choose Q in (5.5) to make PL = Po, then

Co T
(5.29) lim - = --

N-= CL T-l

Thus, for large N, the delay for an optimal PPO (in the strictly balanced case)
exceeds the lower bound by at most a constant factor, when the number of
processors is the same as the lower bound. Asymptotically, this factor is at most
2(T ~ 2), and approaches 1 as T gets large.
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From (5.24) we see that, for "optimal" PPO networks, the delay grows
asymptotically like IN, when we fix the" relative prices" of processors and delay.
On the other hand, we know from (5.10) and the discussion following it that
delay can be made to grow more slowly, i.e., like log, N, provided the number
of processors is increased fast enough. The latter corresponds to letting the
relative price of processors approach zero as N increases. In fact, one can show
that the fastest PPO networks are attained for K = 3, and that for the fastest
(strictly balanced) PPO networks

(5.30) min Co - 1.89 log, N.

Another family of simple networks, suggested by M. R. Garey,17 performs
well in the (P, C) region where C is close to its minimum. The basic idea is to
construct a balanced hierarchy of "modules," in which each module is itself a
one-shot-efficient tree whose delay equals T (or is as close to T as possible
without exceeding it). I shall call these Garey Irees; a precise definition and
analysis is given below.

Figure 8 illustrates the foregoing ideas for the case in which N = 10 6 and
T = 10. It shows (I) the lower bound discussed in Section 5.2, represented by
the continuous curve, (2) selected points corresponding to PPO networks,
represented by solid dots, and (3) selected points corresponding to Garey trees,
represented by "plus" marks. The horizontal axis measures P - (NIT) = P
IDs, and the vertical axis measures C, both on logarithmic scales. We see that (j)
the lower bound looks similar to the efficiency frontier in the one-shot-mode
(Fig. 5); OJ) the PPO networks are quite close to the lower bound, except when

11 Private communication.
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the number of processors is very large; (iii) the Garey trees are also close to the
lower bound, but their range is limited to the region of faster networks with
many processors.

A more precise description of Garey trees and their performance characteris
tics is given in Appendix AS.

6. APPLlC;\TIONS

6.1. Linear Operations ill ACCOWlCillg and Control

I have already mentioned (in Sec. I) the use of linear operations in typical
accounting processes, and I shall not repeat those remarks here. I only note
here that in computing a linear function, say

CIX 1 + ... +CNX N •

the individual products, cjx;. can be computed in parallel, and then added as
described in Sections 3-5.

Linear operations are also common in the methods of statistical prediction
and control, especially under the popular assumptions of Gaussian uncertainty
and quadratic payoff functions. (For material on this subject in a specifically
organizational setting, see Marschak and Radner (1972), Aoki (1986), and
Radner and-Van Zandt (1992).) Here the situation is usually explicitly dynamic,
involving both the periodic aggregation of contemporaneous data and the
updating of previous predictions and/or actions using the new aggregates. The
reader is referred to Radner and Van Zandt (1992) for an analysis of examples
of this kind in the context of parallel computation.

6.2. Project Selectioll

In this section I shall sketch the application of the preceding ideas to some
models of project selection. I start with the simplest case. There is given a set of
N projects, XI"'" X N • I shall write Xi ~ Xi if Xi is "at least as good as" Xi'
The task is to find a best project. In one cycle a processor can compare a project
in its in-box to one in its register, and keep the better one in its memory,
discarding the other. (If they are equally good, the one that was in the memory
is kept there.) If the memory is empty, then it takes one cycle to put a project
from the in-box into the memory. The interpretation is that it takes one cycle to
"evaluate" a project; a project in the memory has already been evaluated, but
one in the in-box has not. A processor can also send a project from its memory
to another processor's in-box, in zero time. However, the next processor must
then "evaluate" the project all over again. (One processor cannot simply accept
another processor's evaluation of a project!) As just stated, the task of finding a
best project out of N is isomorphic to the task of adding N items, and the
results of Sections 3-5 are immediately applicable.

The situation is more complicated if the task is one of finding the best M
projects out of the original N. To handle this task, the capability of the
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processors must be enhanced. For example, suppose that each processor can
store M evaluated projects in its memory, in rank order. Furthermore, in one
cycle a processor can evaluate a project from its in-box and insert it in the
proper order in its memory, discarding the worst project if it has M + 1 projects
there. Such a processor can take /I projects from its in-box and pick the best M
of them in /I cycles. The delay for a tree of such processors can be calculated as
follows. At the preprocessing stage (lowest level), a processor receives /I:;' N
projects, which it processes in n cycles; the best M of these are sent up to its
immediate superior. Whenever a processor receives a batch of M projects from
an immediate subordinate, it requires M cycles to process the batch. With this
modification, the analyses corresponding to Sections 3-5 can be carried out in
the obvious way.

If M is large, it may be of interest to adopt a procedure in which processors
at level r send up a number of projects, say mrJ where m r is significantly
smaller than M at the lower levels. However, with such a procedure, there will
be a positive probability that the M projects finally selected will not be the M
best in the original set of N. The problem is then to balance this risk against the
reduction of delay. A thorough discussion of this and other methods is beyond
the scope of this paper. One would also want to consider more sophisticated
models of project selection. For example, different projects may require invest
ments of dif(erent magnitudes, with an upper limit on the total investment
(capital budgeting). Also, the "technology" of project comparison may differ
from that described above.'·

6.3. Nearest-Neighbor Classification

According to some models of decision-making, actions are chosen by a
process of pattern-recognition or classification. In such a model, there is a given
finite partition of the set of possible alternative observations of the environment
(a "classification scheme"), and to each element of the partition there corre
sponds a particular action to be taken. For example, in the nearest-neighbor
classification scheme, the observation of the environment takes the form of a
vector, say X, whose possible values are contained in some set, say %. The
partition of dF is generated by a finite set of reference vectors, Yt,···, Y:\J'
which are also in %. The set % is partitioned into sets A" ... , A ,\./ such that,
for every m and every X in Am'

(6.1 ) IIX - Ymll = minliX - Y,n,lI,
m'

where II II denotes Euclidean length. (Note that the classification of vectors on
the boundary between two sets in the partition is arbitrary.) Thus X is classified
as being in set Am ("of type Ill") if Ym is its nearest neighbor among the
reference vectors YI , ..• , Y:...,. To each set Am corresponds an action, say am; if

18 For material on selection see Plaxton (1980), Kruskal Cl aJ. (1988), Mcgiddo (1982), and Ihe
references cited therein.
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•

the decision-maker observes that the environment is of type In (in Am) then he
takes action a In-

Now suppose that the vector X has components x 1>' . " X N' which are
themselves vectors, and that different components are observed by different
members of the same organization (see Section 1). Furthermore, think of N as
large, and also that the dimension of each component is sufficiently large so that
the process of finding the nearest neighbor needs to be "decentralized." I shall
describe one way to do this using a tree of processors.I'

For each m, let (Ymn ) be the components of the reference vector Ym ,

corresponding to the N components of X. Define

(6.2) Zmn '" IIx" - Ym"II',
N

(6.3) IVm '" L Zm" = IIX - Ymll'.
n -I

Thus the nearest-neighbor classification can be performed in three stages: (i) for
each m and n, calculate Zmn; (ij) for each 111, calculate Wm ; (iii) find the mthat
minimizes wm "

Since both addition and choosing a minimum are associative operations, the
nearest-neighbor computation easily lends itself to parallel processing. Here is
one way to do it:

l. Assign Ymn to a processor (m, n); there will be M x N of these, and they
will constitute the lowest level of a tree.

2. When the input vector X = (x) arrives, assign a copy of xn to each
processor (m, n), which then computes zmn"

3. For each m,_ calculate wm using a tree; thus there will be a separate tree
corresponding to each component.

4. Using a trec, find the ';1 that minimizes IVm .

Note that three types of processor have been used, one to calculate the
distances zmn' one for pairwise addition of numbers, and one for choosing the
minimum of two numbers. The use of more powerful processors would, of
course, permit one to use smaller trees. For example, it is clear how one might
do this if one had processors that could add vectors of dimension M, and/or
could find the minimum of more than two numbers at a time. (On the other
hand, the computation of the distances z"", could itself be made parallel with
processors that can only add and processors that can only multiply.)

7. CONCLUDING REMARKS

In this paper [ proposed a model of parallel processing to describe the
decentralized computation of organizational decisions. In fact, in certain cases
efficiency-in terms of the number of processors and computational time-in

19 However, no attempt is made here 10 characterize efficient networks for this task. For other
material on parallel paucrn·rccognition algorithms using lre~s, sec Gorin et al. (1990).
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the class of all architectures could be attained by trees (or hierarchies). I offer
here some tentative remarks on the interpretation of these results.

1. Organizations are called upon to make many different decisions, i.e.,
compute many different functions. In principle, different trees might be used to
compute different decisions, or different classes of decisions. In particular, this
might be a way to interpret the practice called "matrix management." Also,
even where there is only one tree of authority (which is by far the most common
case), it is well known that many-or most-of the information flows do not
follow it.2o

2. The decentralization of information typically implies that the amount of
data in any cohort is subject to stochastic variation, a circumstance that gives
rise to stochastic queuing in the network of processors. (This problem will be
explored in a forthcoming paper.)

3. I have considered here only the case in which the computation of organiza
tional decisions requires primarily associative operations. Indeed, there seems
to be a view in the computer science literature that associative operations are
the most amenable to parallel computation (see, e.g., Schwartz (1980», although
I am not aware of any precise result along these lines. If this view is correct,
then the results presented in'this paper provide lower bounds for all operations.

4. Finally, I want to make some brief observations about returns to scale in
information p.!'ocessing. The material of Sections 3-5 (specifically (3.4)-(3.6),
(4.5)-(4.6), and (5.21)-(5.26» can be interpreted as showing that there are
increasing returns to scale (decreasing average costs), provided that the "cost"
of delay is linear, with a coefficient that is independent of the number, N, of items
processed. In this section 1 illustrate with two examples how quite different
returns to scale can be implied by different, but plausible, cost functions. To
simplify the discussion, I consider only the "one-shot" mode of Section 3,
although similar remarks can be made about the systolic mode. (A fuller
treatment will be found in Radner and Van Zandt (1992).)

First, imagine that N reflects the "size" of the enterprise, and that the cost of
delay is proportional to N. Thus replace the cost function (3.4) by

(7.1) L =NyC+4>P.

It is immediate that the optimal number of processors is now proportional to N:

P= 'ifN,

1 [I ]1/2--+ ---+4a
In2 (In 2/

'if ~ ----"-''-:---'-----'--
2a

(In equation (3.5), replace a by a/N; one can check that 0 < ," < 1.) One

20 See, for example, Mintzberg (1979).
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verifies that
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I
C = 4 + log, 1i' + log, N,

L
N =yC+c/>1f/,

so that the cost per item is increasing in the number of items (decreasing
returns to scale).

In the second example, suppose that the gross benefit from processing N
items is proportional to N but decreases exponentially to zero as a function of
the delay. (For a class of organizational decision problems with this property see
Marschak and Radner (1972, Ch. 7),) To be precise, the gross benefit is

(7.2) B = N{3e- Yc ,

where (3 and yare positive constants, and the net benefit, or value, is

(7.3) V=B-c/>P.

In this example, for sufficiently large N the optimal number of processors is I,
and indeed, for sufficiently large N the maximum net benefit, V, will actually be
negative. To see this, first note that

C;> 1 + log, N = I + In N(1/ln')

(the lower bound is attained when P = N). Hence, from (7.2),

B .::;;; e-YN 1-(I/ln 2),

Thus the maximum gross benefit approaches zero as N increases without
bound; for sufficiently large N this gross benefit will in fact be less than the cost
of a single processor. (In a statistical decision problem, this would imply that the
decision should be based on prior information, without using any observations.)"

8. BIBLIOGRAPHIC NOTES

Two strands of literature have influenced the ideas presented here, one from
economics, and one from computer science. T. A. Marschak and C. B. McGuire
(I97]) were probably the first to propose the model of a finite automalon as a
formalism of the notion of a boundedly rational decision-maker. The model of a
decision-making organization as a network of information processors was ex
plored by J. Marschak and R. Radner (1972, Ch. 9), but their analysis was
concerned more with the decentralization of information than of information
processing. In a similar spirit, T. A. Marschak and S. Reichelstein (1992)
studied conditions under which a "hierarchical" structure of decision-making
would be efficient in a broader set of structures. In their model, every processor
is also responsible for the final decision about some action variable, and the

2\ Keren and Levhari (983) studied a hierarchical model in which each manager's decision-mak·
ing lime is a linenr function of his span of control, and output is a decreasing function of delay.
Taking the spans of control at different levels as the organizational parameters to be optimized, they
derive conditions for eventual decreasing returns to scale. It is difficult, however, 10 fit their model
into the prescnt framework.
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only cost of processing is that of communication. Their analysis derived some
conditions under which hierarchy would be preferred, but I shall not attempt to
summarize their results here. In the "economics strand," the current research of
K. R. Mount and S. Reiter is most closely related to the present paper, and I
have benefited from exposure to it in unpublished papers (Mount and Reiter
(1982, 1990)), and private communications. Recently, several other authors have
explored the question of organizational design from a similar viewpoint, notably
Moore et al. (1992), Bolton and Dewatripont (1992), and Jehiel (1992). (I have
already noted the work of Keren and Levhari (1983); for further references see
Radner (1992).)

T. A. Marschak (1972) and J. Marschak and R. Radner (1972, Ch. 7) studied
the effect of delay on the value of decisions, particularly in the context of
decentralization of information. As pointed out in Section 7, the cost of delayed
decision may not be simply proportional to the delay; the functional form of the
dependence of cost on delay will depend on the intertemporal statistical
properties of the stochastic process of environmental data.

From the "computer-science strand," the reader familiar with the article,
"Ultracomputers," by J. T. Schwartz (1980), will recognize how heavily I have
relied on the ideas in that paper. I have also benefited from the lecture notes on
the course by T. Leighton, et al. (1988), and the paper by Kruskal el al. (1988).

The significance of the boundedness of the rationality of economic decision
makers, especially in an organizational context, has been emphasized by
H. Simon (1972), who also has an interesting discussion of the significance of
hierarchy in the design and organization of lasks (1981, Ch. 5).

Recently, some game-theorists have used the aUlomaton model to explore
how the botindedness of rationality might alter the predictions of Nash equilib
rium theory, especially in sequential games (see, e.g., Rubinstein (1986);
Neyman (1985); Kalai and Stanford (1988); Abreu and Rubinstein (1988); and
the references cited there). In most of these explorations, however, the bound
edness of a player's rationality is expressed only by a bound on the number of
states of the automaton, a direction that is quite orthogonal to the one taken
here.

AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974 U.SA.
and

Dept. of Economics, New York University, New York, NY 10003, U.S.A.

Manuscript receiued ltme, 1990; final reuision received March. 1993.

APPENDIX

AI. A FORMAL MODEL OF A PROGRAMMED NETWORK: The model of a programmed network {in
the O~e-sh?t m?de'> described in Section 2 is a specialization of whal is sometimes called a parallel
machine With dlstnbuted memory. The network consisls of P processors connected by a given graph
of one-way links. A pair of processors, say i and j, may be connected by no link, by one link. or by
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two links (on~ from j to j and one from j to n. A processor may (but need not) also have one
"output" link; at least one processor has one.

Each individual processor consists of (0 a processing lIr1ir and (2) a finite number of memory
locatiolls, numbered 0 to M. A memory location may contain at most one item from some
prescribed set, say X. In a single lime period (cycle) a processor may do one or both of the
following: (I) "read" the contents of two of its memory locations into its processing unit, perform a
prescribed associative binary operation on them (say *, from X 2 to X), and "write" the result into
one of its memory locations; (2) read the contents of one of its memory locations and write it (or
copies of it) into a memory location of one or more other processors to which it is directly
connected. (Some rule must specify what happens if two or more processors try to write simultane·
ously into the same memory location.) In any cycle, a processor may also be idle. One is given N
data items from X, say x I, ... , XN' and it is required to calculate y - x I '" Xz '" ... ~ x",.

A program (I) initially assigns the N data items 10 a set of memory locations. one item per
location, and (2) prescribes a sequence of activities for each processor. A program is feasible with
finite delay d, if at the end of cycle d (but not before), the answer. y. is read out on the output link
of some designated processor.

In a more general model, (i) different processors might have different numbers of rpemory
locations, (ij) each processor might be able to compute several different functions of 2 or more
variables stored in its own memory, (iii) different processors might have different sets of functions,
and (iv) the final answer might be read out by more than one processor.

On the other hand, the model in the present paper is even more specialized, as follows. To each
individual processor there corresponds a particular memory location, called ils register; the
remaining M locations constitute its ill-box. Whenever a processor performs the operation'" on two
items, one of the items must be in the register, and the result must be written into the rcgister.
Further, I makc the convention that, if the register is "cmpty," then it contains the identity item 0
for the operation -, i.c., for all x in X, 0* x =x -0 .. O. Because of this convention, it takes one
cycle to read an item from a processor's in-box into its "cmpty" register. This assumption is
intendcd to rellect situations in which processing time is required to "digest" (understand. interpret)
each item before it can be operated upon.

Finally, it is assumed here that a processor can only send an item from its register to another
processor's in-box.

A2. PROOF OF THEOREM AND COROI.LARY OF SECftON 3: Thc proof is in two parts; I first show
that the right-hand side of (3. J) is a lower bound on C, and then that this bound can be attained by
a tree.

Let 1I(c) denote the number of "items" remaining at the end of cyclc c, where an "itcm" is
either a partial sum in a processor's register or an original data item in a processor's in-box. Make
thc convention that before cycle I each processor has a panial sum cqual to 0 in its register: with
this convention.

(AZ.I) n(O) - N + P.

During anyone cycle, the number of .. itcms" can at most be reduced by half; also. il can be
reduced by no more than P. Hence

. {,,(C) }
n(c)-n(c+ l) .. min -Z-.P •

which is equivalent to

(AZ.Z) n(c+l)"max{"~).,,(C)-p}.

Let M('} denote the solution of thc difference equation,

C~O,M(c + I) _ max{[ M;C) 1. M(C) - p}.

M(O) - N + p.

and let C be the first c such that M(c)"" 1. Then ,,(c) ~ M(C) and C~ C. I shall show that C is
given by the right-hand side of <3.1).

(AZ.3)
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(A2.6)

To calculate C, first notc that after c cycles. the number of remaining cycles, C- c. is determined
by the v<:llue of M(C), through (A2.3). Accordingly, define RJm) to be the rem<:lining number of
cycles if M(c) "" m. 1n panicular, RO) = 0 and R(N + P) = C. For 2" m < 2P. if M(c) = m then
M(c + t) "" rm(c)/21. Hence it i~ str<:lightforward to show by induction that

(A2.4) R(m) = pog2ml, I:s;m < 2P.

For m;;fJ 2P. if M(c) = m then M(c + t) = m - P. Hence,

(A2.5) R(m)= lm;PJ +~P+mmodP), m~2P.

Putting (A2.4) and (A2.5) together we havc, for N ~ p,

C-R(N+P)

-[ ~] + [iog,(P+Nmod P)].

It remains to show that (3.12) can be att<:lined by a tree. Number the processors consecutively
from 1 to P. St<:ln by assigning the N dat<:l items as equally as possible: if N mod P> 0 then assign
these remaining items to the first N mod P processors.

Let Co iii INIP J. In the first Co cycles. coP data items will be "preprocessed:' leaving a panial
sum in each processor, and N mod P data items not yet preprocessed but assigned to the first
N mod P processors (one each). In describing cycle (en + I) il is useful to distinguish two c:lses:

Case I. N mod P = O. For each even j make processor i the dircct subordinate of U - O. and in
cycle (co + t) processor i's partial sum is added to (i - I)'s registcr and i's registcr is emptied.

Case 2. N mod P> O. Each of the first N mod P processors has nnc remaining dnta item, which is
added to its register in cycle (ell + I). Treat the remaining P - N mod P processors as in Case I
(with appropriatc:..renumbering).

In both cases, let p ~ n(co + I); this is the number of remaining processors with panial sums to
be added after cycle (co + O. Number these processors from 1 to p. and arrange them in a tree as
follows:

I. For each even i, make (i - 0 the direct superior of i. retaining the links established
previously.

2. Renumber the top-level processors consecutively. For c;.Ich even i. make (i - I) the direct
superior of i, retaining the links established previously. etc.

Continue this procedure until the top lcvel contains only I processor. The resulting Iree attains
the minimum number of cycles, (3.12).

Note that if NIP is an integer and P is a power of 2. then the above tree is exactly a
"reduction" of a balanced hierarchy, as described in Section 3.

. To prove the Corollary. first nOle that, for fixed N. C is nonincreasing in P for 1 ~ p::;;: I NI2!.
For(N/2) < P "N.

P+Nmodp-N

[~j - I.

and so (3.2) is satisfied. If N /2 is an integer. then for P = N12. (3.2) is also satisfied. Finally, the
argument leading up to (A2A) sho\..·s that the delay cannot be reduced by using more th"n N
processors.

A3. BAL\NCED HIERARCHIES IS THE ONE-SHOT MoOl:: Here I derive the asymptotics for
relatively efficient PPTs (Section 4). One verifies (cf. (4.5» that

aL

aK

(A3.1)

(A3.2)

aL yK ,J,KN

ok, ~y- k,lnK- k!(K-I)'

y In rN)(In K_I) </> (1 _N)
k. k l+-'--...:..;-
(InK)' (K-l)'
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From (A). I) we sec thal, as a (unction of k l• L is convex. On the other hand, rewrite (4.12) as

(A3.3)
oL
oK

y(ln p,)(ln K - I)

(In-K)'

"'(P, - I)

(K - I)'

Recall that 2 " K "p" A delailed examination of (A3.3) shows that. as a function of K t L is initially
decreasing, and then may increase; however. il need not be convex throughout. For it" iii (cP /r)
sufficiently small (given N), L will be minimized by taking k l = K = 3. For a suflicicntly large, L
will be minimized by laking k I = N( PI ""' I), in which case there is only one processor and one level,
i.e .• there is only preprocessing, and the "trec" is degenerate. Setting K = PI in (A3.3), we see that

which (for fixed y and t/J) becomes positive and small as PI becomes large. As we shall see, this
implies that, for fixed a, for N large the oplimal PPT will be "interior."

From (AJ.n. the first-order condition for an optimum with respect to k l is

(A3.4)

k'- (~)k _ oKN -0
I In K I K-I '

'"a Ii -,

y

which is a quadratic equation in k!. and has Ihe positive root

(A3.5)

(A3.6)
K

b3-
In K'

oK
C=--.

K-I

On the other hand. the first·order condition corresponding to (A3.2) is

(A3.7)
(K-I)'(ln K-I)

(In K)'

I shall now show that K must increase without bound as tV -+ 00. Suppose to the contrary that K
were bounded for some infinitc subsequence of tV: thcn band C would also be bounded, and so, by
(AJ.5). k 1 would be O([iil. But the right-hand side of (AJ.7) would diverge 10 00, whereas the
left-hand side would be bounded (recJII thai K;i'J. 2). a contradiction. Hence K diverges 10 00;

(A3.B) lim K::+oo.
N-""

From (4.18) it follows thai

lim c >: a,
N-.

that b diverges to 00, and hence (by AJ.5) Ihat k I diverges to lXI.

I shall now show, in fact. that

(A3_9)

Before J do so. however. note that this implies thai

(A3.10) (N)'"p.- -
o
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and that (as 1 shall show)

(4aN)'/'
(A3.l1) K- InN

It then follows from (4.10) and (4.11) that C, P, and L are all O({ii).
I conclude this section by proving (AJ.9) and (AJ.ll). First, since K -+ 0:,

K'
(A3.l2) LHS(A3.I) - In K'

and diverges to co; hence the right· hand side of (AJ.7) also diverges to ::r:l, and hence

(A3.13)

(A3.14)

(recall that p,-N/k,). From (A3.5) and the fact that c -a, we have

K [( K )' 4aN]'/'---+ --- +-- -,
kllnK k.lnK kf _.

Write

(A3.15) :~ - (k, ~ K) (a:,) (In/).

From (A3.7). (A3.12l, and (A3.l3).

(A3.16)

and hence

(A3.17) (a:,)(InKK) - K In ( ~ ) -~.

If, for some subsequence of N,

K

kiln K

were bounded away from zero, then, by (AJ.17), the left·hand side of (A3.14) would diverge to 00,

and not converge to 2. Hence

(
K )lim --- -0

N ..... a> k t In K '

~hich, by (AJ.14), implies (AJ.9). One can now derive (AJ.IO) from (A3.16).

a(po- I)

(K - 1)'

(In po)(ln K - I)

(In K)'

(A4.1)

A4. PREPROCESSING / OVERHEAD NETWORKS: This appendix section is dcvotcd to deriving
(5.22)-(5.29) of Section 5.

From (5.18), (5.19), and (5.2\),

iJLo N K Q'

---+---+--
iJpo p~ Po In K K - I '
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Selling the right side of (A4.0 to zero we gCI

(A4.2)

Since K is bounded between 2 and T, (A4.2) shows that Po increases without bound with N; hence
the right-hand side o(A4.1) eventually becomes negative. so the optimal K = T. which proves (5.2),
It is now straightforward to verify (5.23)-(5.28),

To prove (5.29), firsl nole thai, from (5.5) and (5.18), PL = Po implies

(A4.3) (2-1 Po-I
-T--T=!'

_ T(Po-l)
Q-I + .

T-I

Hence. from (5.23)

(2 - T[ (T ~VI )0] 'I',

so from (5.3) :md (5.4)

(A.4)

Comparing (5.34) with (5.24) proves (5.29),

AS. G,\REY TREES: Call a Iriple ('I, c, p) one-sho(·ejficielll COSE) if there is;:1n efficient one-shot
network thaI processes n items in c cycles with p processors. Recnll that if (n.c. p) is OSE, thcn

c~i(",p): l;j + [Iog,(p+"modp)];

cr. 0,0, Fix Nand T. A T-module with parameters (If.p) is a one-shot efficient network that
achieves a OSE triple (n, c, p) such that

1. c ~ T;
2. if (If·,C'.P') is OSE and c'>c. then c' > T.
Let E be Ihe set of parameter pairs corresponding to T-modules. Fix some (f1, p) in E, and let

R: flog" N],

Le., R is the smallest integer r such that Il';;,. N. A Garey free is a R·level n·ary tree of T-modules
with parameters (If. p). Assign the N items as equally as possible to the fiR -1 bottom modules. No
bottom module will have more than f1151 fN/II

R
-

l l items, and at least one will have that mnny.
Thus the number of cycles at the bottom level is (=(11 1, p). At each higher level the number of cycles
will be (=(11. p). Hence the Iota I number of cycles is

(A5.1) CG - i("" p) + (R - l)i(", pl.

The 10lal number of modules is

and so Ihe total number of processors is

(A5.2)
(

IIR _ I )
PG <2p -- .

" - I
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lac,. N" R ~ log" N + l, 'll <", Cc; <T(lo&" N + I).
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In the case in which "everything comes out even." i.c .. N is a power of nand c"" T, then
(A5.1-2) become

CG~ TloS" N.

p(N-I)
PG~ .

n -I

In this C<lSC the fasiesl Garey tree has

min Cc '" ( G ~ 1 ) 10&2 N

(t omit Ihe details). Compare this with the corresponding results for PPO networks, (5.30), and fully
efficient networks, (S.10).

Finally. I nole thai, in the definition of a Garey tree one could have allowed any c <: T. However.
it can be shown that relative efficiency {within the class of Gmey trees thus defined} would imply
that c must be as close to T as possible. Again. I omit the details.
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