
Ecological Modelling 132 (2000) 167–173

Self-thinning rule: a causal interpretation from ecological
field theory

Bai-Lian Li a,*, Hsin-i Wu b, Guangzhou Zou b

a Department of Biology, Uni6ersity of New Mexico, 167 Castetter Hall, Albuquerque, NM 87131-1091, USA
b Center for Biosystems Modelling, Texas A&M Uni6ersity, College Station, Texas, TX 77843-3131, USA

Abstract

The self-thinning rule relates plant mass to plant density in crowded, even-aged stands by a power-law equation
with an exponent −3/2. The rule is widely accepted as an empirical generalization and quantitative rule that applies
across the plant kingdom. It has been called the only law in plant ecology. But the evidence supporting it has recently
come under critical scrutiny. The theoretical and empirical bases for the density–mass boundary have been
questioned. Here we use ecological field theory and statistical mechanics to show how the stochastic nature of
ecological interactions among individuals, due to spatial field effects such as the availability of neighborhood
resources at the microscopic level, leads to self-thinning at the macroscopic level. The self-thinning rule emerges as a
natural result of our theoretical approach. Puzzling experimental data that contradict the rule are also explained.
© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The −3/2 power rule of self-thinning (also
called the −3/2 power rule or Yoda’s law) relates
average plant biomass to density when density-de-
pendent mortality occurs, such that populations
decline in density as biomass increases. Let M( and
n be the mean plant biomass and density (stems
per unit area). The self-thinning rule is described
by a power function,

M=zn g

where z and g are constants and are referred to as
the thinning coefficient and exponent, respec-
tively. The g has been claimed to take the value
approximately −3/2 (Yoda et al., 1963; Harper,
1977; Hutchings, 1983; Westoby, 1984). An equiv-
alent relationship also exists between the stand
biomass (e.g. total biomass for all plants), B, and
density, B=j %nq, where q=g+1 and is approxi-
mately −1/2. Existing theories explain self-thin-
ning from geometric, allometric and dynamic
growth arguments (Sprugel, 1984; Zeide, 1987;
Weller, 1987a,b; Lonsdale, 1990; Burrows, 1991;
Adler, 1996; Enquist et al., 1998; Franco and
Kelly, 1998), but they lack a specific mechanism.
We show that self-thinning results from individual
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interactions, which also explain the variability in
experimental data.

To grasp the mechanistic essence of the self-
thinning phenomena requires a thorough under-
standing of the relationship between spatial
interactions among individuals and spatial ar-
rangements of these individuals. Spatial interac-
tion has to be defined and described on an
individual physiological level, while spatial ar-
rangement which leads to the spatial pattern of a
population we see only has a meaning on the
population level.

Most empirical studies on spatial patterns in
ecology focus on the statistical analysis of field
samples and remotely sensed data (Pielou, 1977;
Turner and Gardner, 1991). These studies gener-
ally do not address the intrinsic causality of the
pattern. Therefore, they can not explain why pat-
terns change with abiotic conditions or the traits
of individuals. Nor can they offer mechanistic
insight about the self-thinning processes.

Spatial patterns can arise as a consequence of
interactions among component individuals. These
interactions result from such processes as growth
and competition for space and other resources.
Ecological field theory (EFT) quantifies the effect
of an individual on its neighbors using geometric
zones of influence that surround individual plants
(Wu et al., 1985; Sharpe et al., 1986; Walker et al.,
1989; Mou et al., 1993). It provides the basis for
a methodology to analyze spatial interactions
among plants of different size, function and
growth-form in models of population and com-
munity dynamics. An ecological field (or zone of
influence) is generated by a living entity, or, by an
abiotic process that affects a living entity includ-
ing the physical space occupied by and the sur-
rounding space influenced by the entity’s presence
and activities.

In the original EFT, Wu et al. (1985) proposed
a concept called interference potential as a mea-
sure of the effect neighboring plants have on a
newly germinated seedling. Here we extend the
concept of interference potential and propose a
measure for the competition between two grown-
up neighboring individuals. Furthermore, we will
demonstrate a straightforward way to derive the
self-thinning rule from EFT and statistical
mechanics.

2. Methods

In our model, the presence of an individual
plant alters the availability of neighborhood re-
sources. Neighboring plants interact with each
other through their spatial zones of influence. The
influence of one or more plants through its effect
on neighborhood resources can be described by
the intensity of ecological fields. The field inten-
sity is characterized by two parameters: the
‘origin’ field intensity and its influence domain.
The ‘origin’ field intensity I0 is calculated at the
plant origin 0 and is defined as

I0=1−
actual relative growth rate of the plant

potential relative growth rate of the plant
(1)

A relative growth rate is defined as

dM
Mdt

,

where M is the biomass of an individual. The idea
under this definition is that a plant alters the
availability of resources in its neighborhood. An
influence field arises only when resources are
scarce and has an effect on growth. It is similar to
Newton’s action and reaction law. We express the
effect of a plant on resources by measuring its
reaction, i.e. the effect of resource level on plant
growth. When all resources are sufficiently abun-
dant, the plant has no significant influence on its
neighborhood, such that I0=0. When all re-
sources are extremely limited, the plant, although
still alive, has a growth rate near zero and exerts
the greatest impact on the availability of its neigh-
borhood resources. In this case, I0=1. The influ-
ence domain (D) about a plant is defined as the
distance over which one plant may alter the re-
sources or microclimate of the plant community.
Thus, the field intensity I(r) at a distance r away
from the plant origin 0 can simply be expressed as
a Gaussian influence function (Zou and Wu,
1995):

I(r)=I0 exp
�

−
r2

2D2

�
(2)

Eq. (2) describes the influence of a plant on its
neighborhood resources when there are no other
plants around.
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When the domains of two individuals overlap,
they interact with each other. Then an interaction
intensity P is generated. Consider two individuals
‘A’ and ‘B’ located at rA and rB, respectively.
According to Eq. (2), the influence on the neigh-
borhood resources is described by functions

IA(r−rA)IB(r−rB) and IB(r−rB)

for plant ‘A’ and ‘B’, respectively. We define the
overlap of their influence by:

OAB=
&�

0

IA(r−rA)IB(r−rB)ds (3)

where ds is the area element at the point r. The
phase volume of function IA which is not over-
lapped by IB is defined as the complement of
overlap OAB with respect to individual ‘A ’, that is,

OAB
A =

&�
0

IA(r−rA)[IA(r−rA)−kABIB(r−rB)]ds

=OAA−kABOAB (4)

where OAA=	�0 IA(r−rA)IA(r−rA)ds, and kAB

represents the different interaction effect if A and
B are different species. The parameter kAB is
positive for suppressive interactions and negative
for facilitative interactions. Similarly we can de-
scribe the complement of individual ‘B’ as:

OAB
B =OBB−kBAOAB (5)

The interaction intensities of individual ‘B ’ on
individual ‘A ’(PAB) and individual ‘A ’ on individ-
ual ‘B ’(PBA) are defined:

PAB=kAB

OAB

OAB
A and PBA=kBA

OAB

OAB
B (6)

Generally, the interaction intensity on an indi-
vidual ‘i ’ caused by another individual ‘j ’ which is
located at distance rij can be expressed as:

Pij(rij)=

kij exp
�

−
r ij

2

2(Di
2+Dj

2)
n

�Ioi(Di
2+Dj

2)
2IojDj

2

n
−kij exp

�
−

r ij
2

2(Di
2+Dj

2)
n (7)

where Ioi, Ioj, Di and Dj are maximum influence
intensities and domains for individuals ‘i ’ and ‘j ’,
respectively.

A spatial pattern is defined to be stable if its
nearest-neighbor distribution and average interac-
tion intensity do not change over a specific time
period. Whenever there is an overlap in spatial
influence, neighboring individuals experience an
interaction intensity. The tolerance of an individ-
ual for interaction intensity should have an upper
limit (Harper, 1977; Tilman, 1988; Huston and
DeAngelis, 1994). Above that limit, the individual
can not survive. Therefore, the average interaction
intensity of a pattern should also have an upper
limit. Below this limit, all individuals in the pat-
tern can grow with a low probability of mortality
and additional individuals can recruit into the
distribution. When plant growth causes the aver-
age interaction intensity, P, to reach its upper
threshold P0, compensatory behavior, such as
self-thinning mortality, occurs, such that the aver-
age interaction intensity remains below the upper
threshold, P0. Therefore, one constraint for a
stable spatial pattern is that the P must equal P0.
Note that P0 is a system constant and depends on
the integrated effect of all factors that influence
plant growth such as the total availability of
resources, environmental conditions, and spatial
distribution of individuals.

If there are N individuals in a stand and the
interaction intensity on the i-th individual is Pi,
then for a stable pattern, the average interaction
intensity, must be:

P=
1
N

%
N

i=1

Pi=P0=constant (8)

This constraint, however, does not guarantee
that individuals are arranged over the entire land
area to utilize resources most efficiently. To de-
velop an additional constraint, we use the concept
of the nearest-neighbor area pr i

2 of the i-th indi-
vidual (Wu et al., 1985; Zou and Wu, 1995). The
average nearest-neighbor area of a stand is also
determined by growth and therefore by the
availability of resources and environmental fac-
tors. For constant resource and environmental
conditions, the nearest-neighbor distribution be-
comes stable, and the average nearest-neighbor
area is given by:
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A=
1
N

%
N

i=1

pr i
2=A0=constant (9)

Eqs. (8) and (9) provide two mathematical con-
straints for stable spatial processes. Constant P
describes the repulsive (negative) interaction
among individuals, while constant A represents
the aggregate tendency of these individuals.

Let n(ra) be the number of individuals whose
nearest neighbors are within distances

ra to ra+Dr,

where ra (a=1, 2,…., k) represents all possible
nearest-neighbor distances observable in the spa-
tial pattern. If we let q(ra)=n(ra)/N, the set
{q(ra)} (a=1, 2,.., k) specifies the nearest-neigh-
bor distribution of the spatial pattern. We can
rewrite Eqs. (8) and (9) in terms of q(ra):

P= %
k

a=1

q(ra)P(ra)=P0=constant (10)

A= %
k

a=1

q(ra)pra
2=A0=constant (11)

Statistical mechanics is a microscopic theory
corresponding to a macroscopic one: thermody-
namics. In so-called Predictive Statistical Mechan-
ics, it is viewed as statistical inference based on
incomplete information, but not as physical the-
ory. On the basis of the principle of maximum
entropy, the probability distribution is determined
by maximizing entropy under the constraints of
known information. Then all the thermodynamic
quantities can be calculated (Wu, 1997). We can
recall extremal entropy properties of some proba-
bility distributions we are familiar with. For ex-
ample, uniform distribution has maximum
entropy among all distributions with bounded
support, exponential distribution has maximum
entropy among all distributions concentrated on
the positive halfline and possessing finite expecta-
tions, and normal distribution is the law with
maximum entropy among all distributions with
finite variances (e.g. see Gnedenko and Korolev,
1996). Because of its central place in the founda-
tion of statistical mechanics, the maximum en-
tropy formalism is perhaps the most familiar
procedure for obtaining distribution functions of
both common and complex statistical problems.

Because of its power and elegance there has been
considerable interest in identifying suitable con-
straints that would permit the application of vari-
ational technique to a wider set of systems
(Robledo, 1999).

Among the possible set of q(ra), the one that
maximizes information entropy corresponds to
the most probable distribution and the most likely
to be observed in ecological systems. For each
possible nearest-neighbor distribution, we can ex-
press the corresponding information entropy H as
follows:

H(q(r1), q(r2),..., q(rk))= −K %
k

a=1

q(ra) log(q(ra))

(12)

where K is a positive constant. To maximize
information entropy under constraints Eqs. (10)
and (11) and the normalization condition

%
k

a=1

q(ra)=1 (13)

We introduce the Lagrange multipliers b and o

in the conventional manner. Following standard
mathematical procedures (Wu, 1997), the most
probable nearest-neighbor distribution is given
by:

q(ra)=Cra exp(−bP(ra)−opra
2) (14)

where C is a normalization constant. Comparing
the above equation with the nearest-neighbor dis-
tribution for dimensionless points (Pielou, 1977),
the constant o is interpreted as the number density
n (individuals per unit area). Parameter b is con-
trolled by available resources and environmental
conditions. The role of b in the nearest-neighbor
distribution is tantamount to temperature in
Boltzmann’s distribution of thermodynamic sys-
tems (Zou and Wu, 1995). Although Eq. (14) is
for individuals of the same species having similar
size, it can be adjusted for a community of multi-
ple species and sizes by using a weighted nearest-
neighbor distribution of the form in Eq. (14).

When a population reaches its carrying capac-
ity, the average interaction intensity approaches a
maximum value P0:
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P= %
k

a=1

Cra exp(−bP(ra)−npra
2)P(ra)�P0

=constant (15)

This equation provides a dynamic equilibrium
relationship between biomass accumulation and
the density of the population. To simplify our
computation, we treat individuals in a population
as having similar sizes and the nearest-neighbor
distances as a continuum. Then Eq. (7) becomes

P(r)=
exp(−r2/4D2)

1−exp(−r2/4D2)
(16)

The most probable nearest-neighbor distribu-
tion, Eq. (14), is then expressed as:

q(r)=Cr exp(−bP(r)−npr2) (17)

and the corresponding average interaction inten-
sity becomes:&�

0

q(r)P(r)dr=P0=constant (18)

The interaction intensity in Eq. (16) decreases
rapidly as r increases. This implies that the influ-
ence domain D is only significant at small r. For
small r, P(r) can be approximated by:

P(r)=

4D2

r2 −1 if rB2D

0 otherwise
(19)

When r is near zero, r2 can be ignored in
comparison with r−2. Changing variable r to y by
letting

y2=
r2

4bD2,

the integral in Eq. (18) then can be simplified to:&�
0

q(r)P(r)dr

:C
& 2D

0

�4D2

r2 −1
�

exp(−4bD2/r2)rdr

=4CD2& b−1/2

0

�exp(−y−2)
y

−by exp(−y−2)
�

dy

=P0 (20)

The normalization constant C can be deter-
mined from

&�
0

q(r)dr=1

which yields&�
0

q(r)dr

:C
�& 2D

0

exp(−4bD2/r2)rdr

+
&�

2D

exp(−npr2)rdr
n

=C
�

4bD2c1+
exp(−4npD2)

2np

n
(21)

where c1 is a constant that only depends on b :

c1=
& b−1/2

0

e−y−2
ydy.

For the first-order approximation, the normal-
ization constant C can be expressed as:

C:
2np

1−4npbD2 (22)

where b=1−2bc1. Evaluating the integral in Eq.
(20) yields:

P0=
8nphD2

1−4npbD2 (23)

where h=c−1−bc1 with c−1

=
& b−1/2

0

y−1e−y−2
dy.

Rearranging Eq. (23), we obtain

n=
P0

4p(2h+bP0)
D−2. (24)

3. Results

Because biomass accumulation for most tall
plants is three-dimensional, the influence domain
D is roughly proportional to M1/3 (Walker et al.,
1989). Eq. (24) thus becomes:

M=
'� P0

4p(2h+bP0)
�3

�n−3/2 (25)

Eq. 25 is the traditional −3/2 self-thinning rule

Á
Ã
Í
Ã
Ä
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�
g= −3/2 and z=

'� P0

4p(2h+bP0)

�3��
For two-dimensional growing plants (ground-

cover plants) or some sessile animals, the influence
domain or territory may be proportional to the
average biomass of the population, or D28M.
Therefore, the thinning rule becomes:

M=
P0

4p(2h+bP0)
�n−1 (26)

Here g= −1 and

z=
P0

4p(2h+bP0)
.

Other power-law relationships can easily be estab-
lished based on different biomass and influence
domain functions in the framework of fractal
geometry. For example, we can let D8M1/h. For
the case of the -4/3 power rule derived from
dynamic growth model (Burrows, 1991) and allo-
metric scaling model (Enquist et al., 1998), the
space filling property of biomass is h=8/3B3
(dimensions), which gives

z=
� P

4p(2h+bP0)

�4/3

.

Therefore, we have accomplished the derivation
of a generalized self-thinning rule for the different
thinning exponents found in the ecological litera-
ture (the upper and lower limit bounds are −1 and
−3/2, respectively) (Yoda et al., 1963; Harper,
1977; Hutchings, 1983; Sprugel, 1984; Westoby,
1984; Zeide, 1987; Weller, 1987a,b; Lonsdale, 1990;
Burrows, 1991; Adler, 1996; Enquist et al., 1998;
Franco and Kelly, 1998). In previous theories, the
thinning coefficient z was not given ecological
meaning. In our approach, z is a function of
average interaction intensity in a population, and
serves as a system-level constraint that generates
the self-thinning phenomenon. This result may well
serve as a starting point for further theoretical and
experimental work toward the understanding of
self-thinning patterns and processes.

4. Discussion

The real ecological goal is to elucidate the

underlying processes — the interactions among
individuals and between species — that generate
such patterns. The theoretical analysis given above
incorporates a field concept in physics, in terms of
interaction intensity, to derive the −3/2 self-thin-
ning rule. When a stand reaches its carrying capac-
ity, the average interaction intensity becomes a
constant, which results in self-thinning. During the
self-thinning phase, the average nearest neighbor
area changes continuously until the entire distribu-
tion becomes stable. Our result generates a new
testable explanation for the underlying processes
for this spatial pattern. It emerges from ecological
interactions among individuals (or local spatial
field effects). This explains the different empirically
derived thinning exponents that have puzzled ecol-
ogists and challenged the generality of the rule.
Similar to other macroscopic patterns, such as
turbulence and critical phenomena (Bramwell et al.,
1998), including the so-called theory of self-orga-
nized criticality (Bak, 1996), we have demonstrated
that the observed power-law distribution that char-
acterizes self-thinning can result from interactions
among individuals at the microscopic level. Further
studies are needed to understand the underlying
reasons behind such similarities, and their conse-
quences for the behavior of complex systems.
Finally our approach provides a novel, systematic
method for modeling the macro-ecological dynam-
ics of a large collection of interacting micro-ecolog-
ical agents or units.
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