
DOI: 10.1126/science.1167782 
, 1453 (2009); 323Science

  et al.Dimitris Achlioptas,
Explosive Percolation in Random Networks

This copy is for your personal, non-commercial use only.

. clicking herecolleagues, clients, or customers by 
, you can order high-quality copies for yourIf you wish to distribute this article to others

. herefollowing the guidelines 
 can be obtained byPermission to republish or repurpose articles or portions of articles

 (this information is current as of March 29, 2010 ):
The following resources related to this article are available online at www.sciencemag.org

 http://www.sciencemag.org/cgi/content/full/323/5920/1453
version of this article at: 

 including high-resolution figures, can be found in the onlineUpdated information and services,

 http://www.sciencemag.org/cgi/content/full/323/5920/1453/DC1
 can be found at: Supporting Online Material

found at: 
 can berelated to this articleA list of selected additional articles on the Science Web sites 

 http://www.sciencemag.org/cgi/content/full/323/5920/1453#related-content

 http://www.sciencemag.org/cgi/content/full/323/5920/1453#otherarticles
, 1 of which can be accessed for free: cites 6 articlesThis article 

 10 article(s) on the ISI Web of Science. cited byThis article has been 

 http://www.sciencemag.org/cgi/collection/comp_math
Computers, Mathematics 

: subject collectionsThis article appears in the following 

registered trademark of AAAS. 
 is aScience2009 by the American Association for the Advancement of Science; all rights reserved. The title 

CopyrightAmerican Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 
 (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by theScience

 o
n 

M
ar

ch
 2

9,
 2

01
0 

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/help/about/permissions.dtl
http://www.sciencemag.org/cgi/content/full/323/5920/1453
http://www.sciencemag.org/cgi/content/full/323/5920/1453/DC1
http://www.sciencemag.org/cgi/content/full/323/5920/1453#related-content
http://www.sciencemag.org/cgi/content/full/323/5920/1453#otherarticles
http://www.sciencemag.org/cgi/collection/comp_math
http://www.sciencemag.org


38. S. Choi, J. Klingauf, R. W. Tsien, Philos. Trans. R. Soc.
London Ser. B 358, 695 (2003).

39. Q. Zhou, C. C. Petersen, R. A.Nicoll, J. Physiol.525, 195 (2000).
40. K. M. Franks, C. F. Stevens, T. J. Sejnowski, J. Neurosci.

23, 3186 (2003).
41. We thank N. C. Harata for help with high-frequency

imaging and data analysis, R. J. Reimer and members of the
Tsien lab for comments, J. W. Mulholland and J. J. Perrino

for help with imaging, and X. Gao and M. Bruchez for
consultation on quantum dots. Supported by grants from
the Grass Foundation (Q.Z.), the National Institute of Mental
Health, and the Burnett Family Fund (R.W.T.).

Supporting Online Material
www.sciencemag.org/cgi/content/full/1167373/DC1
Materials and Methods

Figs. S1 to S9
Movie S1
References

20 October 2008; accepted 27 January 2009
Published online 12 February 2009;
10.1126/science.1167373
Include this information when citing this paper.

REPORTS
Explosive Percolation in
Random Networks
Dimitris Achlioptas,1 Raissa M. D’Souza,2,3* Joel Spencer4

Networks in which the formation of connections is governed by a random process often undergo a
percolation transition, wherein around a critical point, the addition of a small number of
connections causes a sizable fraction of the network to suddenly become linked together. Typically
such transitions are continuous, so that the percentage of the network linked together tends to zero
right above the transition point. Whether percolation transitions could be discontinuous has been
an open question. Here, we show that incorporating a limited amount of choice in the classic
Erdös-Rényi network formation model causes its percolation transition to become discontinuous.

Alarge system is said to undergo a phase
transition when one or more of its prop-
erties change abruptly after a slight change

in a controlling variable. Besides water turning into
ice or steam, other prototypical phase transitions
are the spontaneous emergence of magnetization
and superconductivity in metals, the epidemic spread
of disease, and the dramatic change in connectivity
of networks and lattices known as percolation. Per-
haps the most fundamental characteristic of a phase
transition is its order, i.e., whether the macroscopic
quantity it affects changes continuously or dis-

continuously at the transition. Continuous (smooth)
transitions are called second-order and include many
magnetization phenomena, whereas discontinuous
(abrupt) transitions are called first-order, a familiar
example being the discontinuous drop in entropy
when liquid water turns into solid ice at 0°C.

We consider percolation phase transitions in
models of random network formation. In the classic
Erdös-Rényi (ER) model (1), we start with n iso-
lated vertices (points) and add edges (connections)
one by one, each edge formed by picking two ver-
tices uniformly at random and connecting them
(Fig. 1A). At any given moment, the (connected)
component of a vertex v is the set of vertices that
can be reached from v by traversing edges. Com-
ponents merge under ER as if attracted by gravita-
tion. This is because every time an edge is added, the
probability two given components will be merged is
proportional to the number of possible edges be-
tween themwhich, in turn, is equal to the product
of their respective sizes (number of vertices).

One of the most studied phenomena in prob-
ability theory is the percolation transition of ER
random networks, also known as the emergence of
a giant component. When rn edges have been
added, if r < ½, the largest component remains
miniscule, its number of verticesC scaling as log n;
in contrast, if r > ½, there is a component of size
linear in n. Specifically, C ≈ (4r − 2)n for r slightly
greater than ½ and, thus, the fraction of vertices
in the largest component undergoes a continuous
phase transition at r =½ (Fig. 1C). Such continuity
has been considered a basic characteristic of per-
colation transitions, occurring in models ranging
from classic percolation in the two-dimensional
grid to randomgraphmodels of social networks (2).

Here, we show that percolation transitions in
random networks can be discontinuous. We dem-
onstrate this result for models similar to ER,
thus also establishing that altering a network-
formation process slightly can affect it dra-
matically, changing the order of its percolation
transition. Concretely, we consider models that,
like ER, start with n isolated vertices and add
edges one by one. The difference, as illustrated
in Fig. 1B, is that to add a single edge we now
first pick two random edges {e1,e2}, rather than
one, each edge picked exactly as in ER and inde-
pendently of the other. Of these, with no knowl-
edge of future edge-pairs, we are to select one and
insert it in the graph and discard the other. Clearly,
if we always resort to randomness for selecting
among the two edges, we recover the ER model.
Whether nonrandom selection rules can delay (or
accelerate) percolation in such models, which have
become known as Achlioptas processes, has re-
ceived much attention in recent years (3–6).
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Fig. 1. Network evolu-
tion. (A) Under the Erdös-
Rényi (ER) model, in each
step two vertices are cho-
sen at random and con-
nected by an edge (shown
as the dashed line). In
this example, two com-
ponents of size 7 and 2
get merged. (B) In mod-
els with choice, two ran-
dom edges {e1,e2} are
picked in each step yet
only one is added to the
network based on some selection rule, whereas the other is discarded.
Under the product rule (PR), the edge selected is the one minimizing the
product of the sizes of the components it merges. In this example, e1 (with
product 2 × 7 = 14) would be chosen and e2 discarded (because 4 × 4 =

16). In contrast, the rule selecting the edge minimizing the sum of the com-
ponent sizes instead of the product would select e2 rather than e1. (C) Typical
evolution of C/n for ER, BF (a bounded size rule with K = 1), and PR, shown for
n = 512,000.
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A selection rule is classified as “bounded-size”
if its decision depends only on the sizes of the com-
ponents containing the four end points of {e1,e2}
and, moreover, it treats all sizes greater than some
(rule-specific) constantK identically. For example, a
bounded-size rule with K = 1 due to Bohman and
Frieze (BF) (3), the first selection rule to be analyzed,
proceeds as follows: If e1 connects two components
of size 1, it is selected; otherwise, e2 is selected. So, in
Fig. 1B, e2would be selected. Bounded-size rules, in
general, are amenable to rigorousmathematical anal-
ysis, and in (3, 4) it was proven that such rules are
capable both of delaying and of accelerating perco-
lation. In contrast, unbounded-size rules seembeyond
the reach of current mathematical techniques. A cru-
cial point is that the percolation transition is strongly
conjectured to be continuous for all bounded-size rules
(4). This conjecture is supported both by numerical
evidence and mathematical considerations, though
a fully rigorous argument has remained elusive.

Here, we provide conclusive numerical evidence
that, in contrast, unbounded-size rules cangive rise to
discontinuous percolation transitions. For concrete-
ness, we present evidence for the so-called product-
rule (PR): Always retain the edge that minimizes
the product of the sizes of the components it joins,
breaking ties arbitrarily (Fig. 1B). Thus, the PR se-
lection criterion attempts to reduce the aforemen-
tioned gravitational attraction between components.
We note that other unbounded-size rules also yield
first-order transitions. For example, results similar to
those for PR hold when “product” is replaced by

“sum.” It is also worth noting that the criterion em-
ployed by PR can also be used to accelerate perco-
lation by always selecting the edge that maximizes
rather than minimizes the product of the size of the
components it merges (and similarly for sum). Nev-
ertheless, in that case, the percolation transition
remains continuous, reflecting the completely dif-
ferent evolution of the component-size distribution
in the maximizing versus the minimizing case.

Let C denote the size of the largest component,
t0 denote the last step for which C < n1/2, and t1 the
first step for which C > 0.5n. In continuous tran-
sitions, the interval D = t1 − t0 is always extensive,
i.e., linear in n. For example, D > 0.193n in ER. In
contrast, as we show in Fig. 2B, D is not extensive
for the product rule; indeed,D <2n2/3 and it appears
that D/n2/3→ 1. As a result, the fraction of vertices
in the largest component jumps from being a van-
ishing fraction of all vertices to a majority of them
“instantaneously.” Although t0/n and t1/n converge
to rc = 0.888… (Fig. 2C), the variance in the value
of t0 and t1 is enough to prevent the direct obser-
vation of a first-order transition. That is, measur-
ing the size of the largest component as a function
of the number of steps and averaging it over dif-
ferent realizations smears out the transition point,
motivating our introduction of D and its measure-
ment along different realizations. Specifically, each
data point in Fig. 2, A to C, represents an average
over an ensemble of 50 independent identically dis-
tributed realizations, and the dashed lines are the sta-
tistical best fits to the data (for details, see the

supportingonlinematerial).Our computer implemen-
tationmakes use of efficient procedures (7) for track-
ing how components merge as edges are added.

Our choice of n1/2 and 0.5n above for defining
D was simply illustrative. To demonstrate the dis-
continuity of PR’s percolation transition, it suffices
to find constants A > 0 and b,g < 1 such that the
number of steps between C < ng and C > An is
smaller than nb. Indeed, we have discovered a gen-
eral scaling law associated with PR’s percolation.
For a range of values for A, we find that the same
simple linear scaling relation governs the bound-
ary of valid parameter choices, namely g + lb = m,
where to the best of our numerical estimates, l ≈
1.2 and m ≈ 1.3. Convergence to this behavior for
A= 0.5 is shown in Fig. 2D. Here, each data point
depicts an individual realization, and color is used
to show the relative error between the empirical
value and that predicted by the scaling relation
(see supporting online material for details).

We have demonstrated that small changes in
edge formation have the ability to fundamental-
ly alter the nature of percolation transitions. Our
findings call for the comprehensive study of this
phenomenon, and of its potential use in bringing
phase transitions under control.
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The Initial Stages of Template-Controlled
CaCO3 Formation Revealed by Cryo-TEM
Emilie M. Pouget,1,2 Paul H. H. Bomans,1,2 Jeroen A. C. M. Goos,1 Peter M. Frederik,2,3
Gijsbertus de With,1,2 Nico A. J. M. Sommerdijk1,2*
Biogenic calcium carbonate forms the inorganic component of seashells, otoliths, and many marine
skeletons, and its formation is directed by an ordered template of macromolecules. Classical
nucleation theory considers crystal formation to occur from a critical nucleus formed by the
assembly of ions from solution. Using cryotransmission electron microscopy, we found that
template-directed calcium carbonate formation starts with the formation of prenucleation clusters.
Their aggregation leads to the nucleation of amorphous nanoparticles in solution. These
nanoparticles assemble at the template and, after reaching a critical size, develop dynamic
crystalline domains, one of which is selectively stabilized by the template. Our findings have
implications for template-directed mineral formation in biological as well as in synthetic systems.

Innature, hybrid materials consisting of a com-
bination of soft organic and hard inorganic
components are used for a variety of purposes,

including mechanical support, navigation, and
protection against predation (1, 2). These bio-
minerals, such as bones, teeth, and shells, often
combine fascinating shapes with remarkable
mechanical (3) and optical (4) properties, which
generally are related to a high level of control
over structure, size, morphology, orientation, and
assembly of the constituents.

Calcium carbonate is the most abundant crys-
talline biomineral. In nature, its formation gener-
ally takes place in specialized, self-assembled
compartments, such as vesicles or layeredmacro-
molecular structures, where domains of acidic
proteins induce oriented nucleation (5, 6). Avoid-
ing the complexity and dynamics of the biolog-
ical mineralization systems, template-directed
CaCO3 mineralization has been studied in vitro
through the use of two-dimensional (2D) molec-
ular assemblies as model systems (7).

According to classical nucleation theory, the
crystallization of inorganic minerals starts from
their constituting ions, which, on the basis of their
ionic complementarity, form small clusters in a
stochastic process of dynamic growth and dis-
integration (8). These clusters become stable when
a critical size is reached at which the increasing sur-
face energy related to the growing surface area is
balanced by the reduction of bulk energy related to

the formation of a crystal lattice. The resulting pri-
mary nanoparticles form the critical crystal nuclei that
are the basis of further growth through the associated
reduction of the Gibbs free energy of the system.

In contrast to what is described by classical
nucleation theory, calcium carbonate crystal for-
mation has been shown to occur from a transient
amorphous precursor phase, both in biological
(9, 10) and in biomimetic systems (11, 12).
Moreover, it was recently shown that CaCO3

nucleation (13) is preceded by the formation of
nanometer-sized prenucleation clusters, which
also is not foreseen by classical nucleation theory.
Although a recent model described how a tem-
plate can direct orientated nucleation from an
amorphous calcium carbonate (ACC) precursor
phase (14), the role of prenucleation clusters in
template-directed mineralization is still unknown.

Previously, with the use of a vitrification robot
and attached glovebox, we were able to load a
self-organized monolayer with adhered mineral-
ization solution onto a holey carbon cryotransmis-
sion electron microscopy (cryo-TEM) grid with
minimal disturbance of the system while main-
taining 100% humidity and constant temperature
(fig. S1) (11, 15). Plunge-freeze vitrification of
the sample at various time points allowed trap-
ping of the different stages of the mineralization
reaction and monitoring of the development of
the mineral phase in its native hydrated state by
cryo-TEM. Using 2D imaging and diffraction,
we showed the formation of a transient ACC
phase and demonstrated its transformation into
oriented vaterite before the formation of the final
product, oriented calcite. However, this study did
not show which steps in the mineralization process
depended critically on the presence of the mono-
layer, nor did it discover the prenucleation clusters.

The present work used a stearic acid mono-
layer as a template deposited on a supersaturated

9 mM Ca(HCO3)2 solution (16). We studied the
system through a combination of cryoelectron
tomography (cryo-ET) (17) and low-dose selected-
area electron diffraction (SAED), obtaining mor-
phological and structural information with 3D
spatial resolution. This allowed us to image, locate,
and identify CaCO3 nanoparticles in solution and
to establish whether they were actually in contact
with the template. Also, by using high-resolution
cryo-TEM, we could visualize prenucleation
clusters and collect evidence for their role in the
nucleation of the amorphous nanoparticles. To-
mography revealed that these particles nucleated
in solution but later assembled at the template
surface, where crystallinity developed; low-dose
SAED showed selective stabilization of single
crystallographic orientation through the interac-
tion of the mineral with the monolayer.

High-resolution cryo-TEM studies of fresh
9 mM Ca(HCO3)2 solutions showed prenuclea-
tion clusters with dimensions of 0.6 to 1.1 nm
(Fig. 1, A and B). At the same time, a small pop-
ulation of larger clusters (<4 nm) was detected
(Fig. 1C, inset), indicating the onset of the
aggregation process leading to nucleation. After
reaction times of 2 to 6 min, small nanoparticles
with a size distribution centered around 30 nm
were observed (Fig. 2A).

Samples were taken from the crystallization
solution at different time points (figs. S2 and S3)
(15) and analyzedwith analytical ultracentrifugation,
which detects species in solution according to the
difference in their sedimentation coefficient s (18).
Large and dense particles sediment faster than
smaller or less dense particles, thereby yielding a
higher value of s. These experiments confirmed
the presence of nanoclusters (s = 1.5 × 10−13 to
3× 10−13 s) coexistingwith ions (s≤ 0.6× 10−13 s),
followed by the aggregation of the clusters (s ≥ 4.5 ×
10−13 s) before the nucleation event.

Gebauer et al. (13) provided convincing evi-
dence that the existence of prenucleation clusters
is due to thermodynamic equilibrium among sol-
vent, individual hydrated ions, and hydrated clus-
ters, as represented by

z{Ca2+}aq + z{CO3
2–}aq ↔ {CaCO3}z,aq (1)

in which the clusters are considered as a solute
entity and z is the number of CaCO3 units in a
cluster. In the absence of data on prenucleation
cluster concentrations, and a value for z, quanti-
tative assessment is currently not possible. They
speculated that the release of water molecules from
the hydration shell of ions provides a substantial en-
tropy gain favoring prenucleation cluster formation.

Low-dose SAED showed that the 30-nm
nanoparticles were amorphous, and cryo-ET dem-
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