
J. Theoret. Biol. (1964) ‘7, 1-16 

The Genetical Evolution of Social Behaviour. I 

W. D. HAMILTON 

The Galton Laboratory, University College, London, W.C.2 

(Received 13 May 1963, and in revisedform 24 February 1964) 

A genetical mathematical model is described which allows for inter- 
actions between relatives on one another’s fitness. Making use of Wright’s 
Coefficient of Relationship as the measure of the proportion of replica 
genes in a relative, a quantity is found which incorporates the maximizing 
property of Darwinian fitness. This quantity is named “inclusive fitness”. 
Species following the model should tend to evolve behaviour such that each 
organism appears to be attempting to maximize its inclusive fitness. This 
implies a limited restraint on selfish competitive behaviour and possibility 
of limited self-sacrifices. 

Special cases of the model are used to show (a) that selection in the 
social situations newly covered tends to be slower than classical selection, 
(b) how in populations of rather non-dispersive organisms the model may 
apply to genes affecting dispersion, and (c) how it may apply approximately 
to competition between relatives, for example, within sibships. Some 
artificialities of the model are discussed. 

1. Jntroduction 

With very few exceptions, the only parts of the theory of natural selection 
which have been supported by mathematical models admit no possibility 
of the evolution of any characters which are on average to the disadvantage 
of the individuals possessing them. If natural selection followed the classical 
models exclusively, species would not show any behaviour more positively 
social than the coming together of the sexes and parental care. 

Sacrifices involved in parental care are a possibility implicit in any model 
in which the definition of fitness is based, as it should be, on the number of 
adult offspring. In certain circumstances an individual may leave more 
adult offspring by expending care and materials on its offspring already 
born than by reserving them for its own survival and further fecundity. A 
gene causing its possessor to give parental care will then leave more replica 
genes in the next generation than an allele having the opposite tendency. 
The selective advantage may be seen to lie through benefits conferred in- 
differently on a set of relatives each of which has a half chance of carrying 
the gene in question. 
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From this point of view it is also seen, however, that there is nothing 
special about the parent-offspring relationship except its close degree and a 
certain fundamental asymmetry. The full-sib relationship is just as close. 
If an individual carries a certain gene the expectation that a random sib will 
carry a replica of it is again one-half. Similarly, the half-sib relationship is 
equivalent to that of grandparent and grandchild with the expectation of 
replica genes, or genes “identical by descent” as they are usually called, 
standing at one quarter; and so on. 

Although it does not seem to have received very detailed attention the 
possibility of the evolution of characters benefitting descendants more 
remote than immediate offspring has often been noticed. Opportunities for 
benefitting relatives, remote or not, in the same or an adjacent generation 
(i.e. relatives like cousins and nephews) must be much more common than 
opportunities for benefitting grandchildren and further descendants. As a 
first step towards a general theory that would take into account all kinds 
of relatives this paper will describe a model which is particularly adapted to 
deal with interactions between relatives of the same generation. The model 
includes the classical model for “non-overlapping generations” as a special 
case. An excellent summary of the general properties of this classical model 
has been given by Kingman (1961b). It is quite beyond the author’s power 
to give an equally extensive survey of the properties of the present model 
but certain approximate deterministic implications of biological interest will 
be pointed out. 

As is already evident the essential idea which the model is going to use 
is quite simple. Thus although the following account is necessarily somewhat 
mathematical it is not surprising that eventually, allowing certain lapses from 
mathematical rigour, we are able to arrive at approximate principles which 
can also be expressed quite simply and in non-mathematical form. The most 
important principle, as it arises directly from the model, is outlined in the 
last section of this paper, but a fuller discussion together with some attempt 
to evaluate the theory as a whole in the light of biological evidence will be 
given in the sequel. 

2. The Model 

The model is restricted to the case of an organism which reproduces once 
and for all at the end of a fixed period. Survivorship and reproduction can 
both vary but it is only the consequent variations in their product, net repro- 
duction, that are of concern here. All genotypic effects are conceived as 
increments and decrements to a basic unit of reproduction which, if possessed 
by all the individuals alike, would render the population both stationary and 
non-evolutionary. Thus the fitness d of an individual is treated as the sum 
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of his basic unit, the effect 6a of his personal genotype and the total e” of 
effects on him due to his neighbours which will depend on their genotypes: 

a*= 1+6a+e0. (1) 
The index symbol ’ in contrast to ’ will be used consistently to denote the 

inclusion of the personal effect 6a in the aggregate in question. Thus equation 
(1) could be rewritten 

a’= l+e*. 

In equation (I), however, the symbol ’ also serves to distinguish this neigh- 
bour modulated kind of fitness from the part of it 

a=l+& 

which is equivalent to fitness in the classical sense of individual fitness. 
The symbol 6 preceding a letter will be used to indicate an effect or total 

of effects due to an individual treated as an addition to the basic unit, as 
typified in 

a = 1+6a. 

The neighbours of an individual are considered to be affected differently 
according to their relationship with him. 

Genetically two related persons differ from two unrelated members of 
the population in their tendency to carry replica genes which they have both 
inherited from the one or more ancestors they have in common. If we 
consider an autosomal locus, not subject to selection, in relative B with 
respect to the same locus in the other relative A, it is apparent that there are 
just three possible conditions of this locus in B, namely that both, one only, 
or neither of his genes are identical by descent with genes in A. We denote 
the respective probabilities of these conditions by c2, c1 and cO. They are 
independent of the locus considered; and since 

c,+c,+c, = 1, 

the relationship is completely specified by giving any two of them. Li & 
Sacks (1954) have described methods of calculating these probabilities 
adequate for any relationship that does not involve inbreeding. The mean 
number of genes per locus i.b.d. (as from now on we abbreviate the phrase 
“identical by descent”) with genes at the same locus in A for a hypothetical 
population of relatives like B is clearly 2c, + cl. One half of this number, 
c,+$c,, may therefore be called the expected fraction of genes i.b.d. in a 
relative. It can be shown that it is equal to Sewall Wright’s Coefficient of 
Relationship r (in a non-inbred population). The standard methods of 
calculating r without obtaining the complete distribution can be found in 
Kempthorne (1957). Tables of 

f=+r=+(cz++cl) and F=c, 
l-2 
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for a large class of relationships can be found in Haldane & Jayakar (1962). 
Strictly, a more complicated metric of relationship taking into account 

the parameters of selection is necessary for a locus undergoing selection, 
but the following account based on use of the above coefficients must give 
a good approximation to the truth when selection is slow and may be hoped 
to give some guidance even when it is not. 

Consider now how the effects which an arbitrary individual distributes to 
the population can be summarized. For convenience and generality we will 
include at this stage certain effects (such as effects on parents’ fitness) which 
must be zero under the restrictions of this particular model, and also others 
(such as effects on offspring) which although not necessarily zero we will not 
attempt to treat accurately in the subsequent analysis. 

The effect of A on specified B can be a variate. In the present deterministic 
treatment, however, we are concerned only with the means of such variates. 
Thus the effect which we may write (&zfather)A is really the expectation of the 
effect of A upon his father but for brevity we will refer to it as the effect on 
the father. 

The full array of effects like (&,ther)A, (8Uspecified sister)A, etc., we will 
denote 

bkel.1‘4. 
From this array we can construct the simpler array 

ih, czh 
by adding together all effects to relatives who have the same values for the 
pair of coefficients (r, cZ). For example, the combined effect da*,, might 
contain effects actually occurring to grandparents, grandchildren, uncles, 
nephews and half-brothers. From what has been said above it is clear that 
as regards changes in autosomal gene-frequency by natural selection all the 
consequences of the full array are implied by this reduced array-at least, 
provided we ignore (a) the effect of previous generations of selection on the 
expected constitution of relatives, and (b) the one or more generations that 
must really occur before effects to children, nephews, grandchildren, etc., 
are manifested. 

From this array we can construct a yet simpler array, or vector, 

{&IA, 
by adding together all effects with common Y. Thus da, would bring together 
effects to the above-mentioned set of relatives and effects to double-first 
cousins, for whom the pair of coefficients is (t, &). 

Corresponding to the effect which A causes to B there will be an effect of 
similar type on A. This will either come from B himself or from a person who 
stands to A in the same relationship as A stands to B. Thus corresponding to 
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an effect by A on his nephew there will be an effect on A by his uncle. The 
similarity between the effect which A dispenses and that which he receives 
is clearly an aspect of the problem of the correlation between relatives. Thus 
the term e” in equation (1) is not a constant for any given genotype of A since 
it will depend on the genotypes of neighbours and therefore on the gene- 
frequencies and the mating system. 

Consider a single locus. Let the series of allelomorphs be G,, G,, GJ, . . . , G,, 
and their gene-frequenciesp,, p2, p3, . . . , p,,. With the genotype GiGj associate 
the array { ~arel.}ij; within the limits of the above-mentioned approximations 
natural selection in the model is then defined. 

If we were to follow the usual approach to the formulation of the progress 
due to natural selection in a generation, we should attempt to give formulae 
for the neighbour modulated fitnesses a:. In order to formulate the expecta- 
tion of that element of eFj which was due to the return effect of a relative B 
we would need to know the distribution of possible genotypes of B, and to 
obtain this we must use the double measure of B’s relationship and the gene- 
frequencies just as in the problem of the correlation between relatives. Thus 
the formula for e$ will involve all the arrays {Bar,c2)ij and will be rather 
unwieldy (see Section 4). 

An alternative approach, however, shows that the arrays (Sa,>, are 
sufficient to define the selective effects. Every effect on reproduction which is 
due to A can be thought of as made up of two parts: an effect on the repro- 
duction of genes i.b.d. with genes in A, and an effect on the reproduction of 
unrelated genes. Since the coefficient I measures the expected fraction of 
genes i.b.d. in a relative, for any particular degree of relationship this break- 
down may be written quantitatively: 

(~aredA = r(hel.L + Cl- r)(JaredA. 
The total of effects on reproduction which are due to A may be treated 

similarly : 

IX, WreJA = IX, @adA + z, Cl- r) @areA 

or 

F (h), = F r@& + C Cl- r>(WA, 
r 

which we rewrite briefly as 
6T; = 6Rf4 + 6S,, 

where 6Rz is accordingly the total effect on genes i.b.d. in relatives of A, 
and SS, is the total effect on their other genes. The reason for the omission 
of an index symbol from the last term is that here there is, in effect, no 
question of whether or not the self-effect is to be in the summation, for if 
it is included it has to be multiplied by zero. If index symbols were used 
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we should have SS~ =SSi, whatever the subscript; it therefore seems more 
explicit to omit them throughout. 

If, therefore, all effects are accounted to the individuals that cause them, 
of the total effect 6Ti~ due to an individual of genotype GiGj a part SRG 
will involve a specific contribution to the gene-pool by this genotype, while 
the remaining part SSij will involve an unspecific contribution consisting of 
genes in the ratio in which the gene-pool already possesses them. It is clear 
that it is the matrix of effects SRG which determines the direction of selection 
progress in gene-frequencies; SSij only influences its magnitude. In view of 
this importance of the SRG it is convenient to give some name to the concept 
with which they are associated. 

In accordance with our convention let 

then RG will be called the inclusivefitness, SR,‘, the inclusive fitness efSect and 
SSij the diluting effect, of the genotype GiGj. 

Let 

Tijl= 1+X$. 

So far our discussion is valid for non-random mating but from now on for 
simplicity we assume that it is random. Using a prime to distinguish the new 
gene-frequencies after one generation of selection we have 

C Pi PjRTj + Pi C Pj Pk as,, 
pf= j 

& PjPlcx: 

1 PjR$ +,& PjPkSSjk 
= pi j 

,cxpjikT; ’ 

The terms of this expression are clearly of the nature of averages over a 
part (genotypes containing G,, homozygotes GiGi counted twice) and the 
whole of the existing set of genotypes in the population. Thus using a well 
known subscript notation we may rewrite the equation term by term as 

Rz +6S 
p; = pi I’+ 

T. 

or 

Ap, = R. Fas. WT. - Rf.1. 
.a . . 

This form clearly differentiates the roles of the Rz and SSG in selective 
progress and shows the appropriateness of calling the latter diluting effects. 
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For comparison with the account of the classical case given by Moran 
(1962), equation (2) may be put in the form 

where alapi denotes the usual partial derivative, written dIdpi by Moran. 
Whether the selective effect is reckoned by means of the a; or according 

to the method above, the denominator expression must take in all effects 
occurring during the generation. Hence a.: = T.0. 

As might be expected from the greater generality of the present model the 
extension of the theorem of the increase of mean fitness (Scheuer & Mandel, 
1959 ; Mulholland & Smith, 1959 ; a much shorter proof by Kingman, 1961 a) 
presents certain difficulties. However, from the above equations it is clear 
that the quantity that will tend to maximize, if any, is R.:, the mean inclusive 
fitness. The following brief discussion uses Kingman’s approach. 

The mean inclusive fitness in the succeeding generation is given by 

RTI =CPIP~R; = ~~~,pipjR~(R:+sS..)(R~j+~S..). 
i, j a. i,J 

. . . R~.'-R~.= AR” = ~~~ 
. . 

+R:@f -R'T;y . 

Substituting R.: + SS.. for T-y in the numerator expression, expanding and 
rearranging : 

Cpipj R~R:R:j-R03 + . . 
GJ 1 

+ 26s.. 
( 
C PiPjR~R~.-R~2 . 
i,j 

We have ( ) > 0 in both cases. The first is the proven inequality of the 
classical model. The second follows from 

CpiPjRtR: =CpiRyT > (7 piR:)2 = RTf'* 
4 j 

Thus a sufficient condition for AR.: > 0 is SS.. 3 0. That AR.: > 0 for 
positive dilution is almost obvious if we compare the actual selective changes 
with those which would occur if {RG} were the fitness matrix in the classical 
model. 

It follows that R.: certainly maximizes (in the sense of reaching a local 
maximum of R.:) if it never occurs in the course of selective changes that 
SS.. < 0. Thus R.y certainly maximizes if all SSij > 0 and therefore also if 
all (&,,r.)ij > 0. It still does SO even if some or all 6Uij are negative, for, as 
we have seen SS, is independant of liaij. 
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Here then we have discovered a quantity, inclusive fitness, which under the 
conditions of the model tends to maximize in much the same way that fitness 
tends to maximize in the simpler classical model. For an important class of 
genetic effects where the individual is supposed to dispense benefits to his 
neighbours, we have formally proved that the average inclusive fitness in the 
population will always increase. For cases where individuals may dispense 
harm to their neighbours we merely know, roughly speaking, that the change 
in gene frequency in each generation is aimed somewhere in the direction of 
a local maximum of average inclusive fitness,? but may, for all the present 
analysis has told us, overshoot it in such a way as to produce a lower value. 

As to the nature of inclusive fitness it may perhaps help to clarify the 
notion if we now give a slightly different verbal presentation. Inclusive 
fitness may be imagined as the personal fitness which an individual actually 
expresses in its production of adult offspring as it becomes after it has been 
first stripped and then augmented in a certain way. It is stripped of all com- 
ponents which can be considered as due to the individual’s social environ- 
ment, leaving the fitness which he would express if not exposed to any of the 
harms or benefits of that environment. This quantity is then augmented by 
certain fractions of the quantities of harm and benefit which the individual 
himself causes to the fitnesses of his neighbours. The fractions in question 
are simply the coefficients of relationship appropriate to the neighbours whom 
he affects : unity for clonal individuals, one-half for sibs, one-quarter for half- 
sibs, one-eighth for cousins, . . . and finally zero for all neighbours whose 
relationship can be considered negligibly small. 

Actually, in the preceding mathematical account we were not concerned 
with the inclusive fitness of individuals as described here but rather with 
certain averages of them which we call the inclusive fitnesses of types. But 
the idea of the inclusive fitness of an individual is nevertheless a useful one. 
Just as in the sense of classical selection we may consider whether a given 
character expressed in an individual is adaptive in the sense of being in the 
interest of his personal fitness or not, so in the present sense of selection we may 
consider whether the character or trait of behaviour is or is not adaptive in 
the sense of being in the interest of his inclusive fitness. 

3. Three Special Cases 

Equation (2) may be written 
6Rf-6R' 

Api = pied+. 
. . 

(3) 

t That is, it is aimed “ uphill “: that it need not be at all directly towards the local 
maximum is well shown in the classical example illustrated by Mulholland & Smith (1959). 
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Now ST: = c (&z,),~ is the sum and 6Rb = 1 r(&~,.),~ is the first moment 

about r = 0 of ;he array of effects {BU,,,,}ij cauie by the genotype GiGi; it 
appears that these two parameters are sufficient to fix the progress of the 
system under natural selection within our general approximation. 

Let 

SRf. 
rt = s*j (ST; # 0); 

and let 
6R~j 

rFj = gT39 (6T~j # 0). 

(4) 

(5) 

These quantities can be regarded as average relationships or as the first 
moments of reduced arrays, similar to the first moments of probability 
distributions. 

We now consider three special cases which serve to bring out certain 
important features of selection in the model. 

(a) The sums 6TG differ between genotypes, the reduced first moment r” 
being common to all. If all higher moments are equal between genotypes, 
that is, if all arrays are of the same “shape”, this corresponds to the case 
where a stereotyped social action is performed with differing intensity or 
frequency according to genotype. 

Whether or not this is so, we may, from equation (4) substitute r’6TG 
for SR: in equation (3) and have 

Api = pi? 
6T;.-dT:. 

1+6T;. ’ 

Comparing this with the corresponding equation of the classical model, 

da,.-da.. 
APi=Pi l+sa . 

. . 

we see that placing genotypic effects on a relative of degree r’ instead of 
reserving them for personal fitness results in a slowing of selection progress 
according to the fractional factor I*. 

If, for example, the advantages conferred by a “classical” gene to its carriers 
are such that the gene spreads at a certain rate the present result tells us that 
in exactly similar circumstances another gene which conferred similar 
advantages to the sibs of the carriers would progress at exactly half this rate. 

Jn trying to imagine a realistic situation to fit this sort of case some concern 
may be felt about the occasions where through the probabilistic nature of 
things the gene-carrier happens not to have a sib, or not to have one suitably 
placed to receive the benefit. Such possibilities and their frequencies of reali- 
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zation must, however, all be taken into account as the effects (b~+,~)~, etc., 
are being evaluated for the model, very much as if in a classical case allowance 
were being made for some degree of failure of penetrance of a gene. 

(b) The reduced first moments rz differ between genotypes, the sum 6T” 
being common to all. From equation (4), substituting rG8p for 6R; in 
equation (3) we have 

Ap, = pi $ (r:. - 4.). 

But it is more interesting to assume 6a is also common to all genotypes. 
If so it follows that we can replace o by ’ in the numerator expression of 
equation (3). Then, from equation (5), substituting r,“,6T” for aRig, we have 

Api = Pi~(rp.-rp.). 

Hence, if a giving-trait is in question (6T” positive), genes which restrict 
giving to the nearest relative (r: greatest) tend to be favoured; if a taking- 
trait (6T” negative), genes which cause taking from the most distant relatives 
tend to be favoured. 

If all higher reduced moments about r = r; are equal between genotypes 
it is implied that the genotype merely determines whereabouts in the field 
of relationship that centres on an individual a stereotyped array of effects is 
placed. 

With many natural populations it must happen that an individual forms 
the centre of an actual local concentration of his relatives which is due to a 
general inability or disinclination of the organisms to move far from their 
places of birth. In such a population, which we may provisionally term 
“viscous”, the present form of selection may apply fairly accurately to genes 
which affect vagrancy. It follows from the statements of the last paragraph 
but one that over a range of different species we would expect to find giving- 
traits commonest and most highly developed in the species with the most 
viscous populations whereas uninhibited competition should characterize 
species with the most freely mixing populations. 

In the viscous population, however, the assumption of random mating is 
very unlikely to hold perfectly, so that these indications are of a rough qualita- 
tive nature only. 

(c) Si$ = 0 for all genotypes. 

.*. 6TFj = -aaij 
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for all genotypes, and from equation (5) 

11 

SR,“j = -8aijri”j. 

Then, from equation (3), we have 

Api = pi(SRy.-6Rf:) = pi{(6ai.+6Ri”)-(6a..+6R.q)} 

= pi(6Ui,(l- rp.)-6a..(l- rp.)). 

Such cases may be described as involving transfers of reproductive 
potential. They are especially relevant to competition, in which the indi- 
vidual can be considered as endeavouring to transfer prerequisites of survival 
and reproduction from his competitors to himself. In particular, if rb = r” 
for all genotypes we have 

Api = pi(l-r”)(&i.-da,,). 

Comparing this to the corresponding equation of the classical model 
(equation (6) ) we see that there is a reduction in the rate of progress when 
transfers are from a relative. 

It is relevant to note that Haldane (1923) in his first paper on the mathe- 
matical theory of selection pointed out the special circumstances of com- 
petition in the cases of mammalian embryos in a single uterus and of seeds 
both while still being nourished by a single parent plant and after their 
germination if they were not very thoroughly dispersed. He gave a numerical 
example of competition between sibs showing that the progress of gene- 
frequency would be slower than normal, 

In such situations as this, however, where the population may be con- 
sidered as subdivided into more or less standard-sized batches each of which 
is allotted a local standard-sized pool of reproductive potential (which in 
Haldane’s case would consist almost entirely of prerequisites for pre-adult 
survival), there is, in addition to a small correcting term which we mention 
in the short general discussion of competition in the next section, an extra 
overall slowing in selection progress. This may be thought of as due to the 
wasting of the powers of the more fit and the protection of the less fit when 
these types chance to occur positively assorted (beyond any mere effect of 
relationship) in a locality; its importance may be judged from the fact that 
it ranges from zero when the batches are indefinitely large to a halving of the 
rate of progress for competition in pairs. 

4. Artificialities of the Model 

When any of the effects is negative the restrictions laid upon the model 
hitherto do not preclude certain situations which are clearly impossible 
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from the biological point of view. It is clearly absurd if for any possible 
set of gene-frequencies any aiT turns out negative; and even if the magnitude 
of 6aij is sufficient to make a; positive while 1 +e,g is negative the situation 
is still highly artificial, since it implies the possibility of a sort of overdraft 
on the basic unit of an individual which has to be made good from his own 
takings. If we call this situation “improbable” we may specify two restrictions : 
a weaker, e; > - 1, which precludes “improbable” situations; and a stronger, 
eiT > - 1, which precludes even the impossible situations, both being 
required over the whole range of possible gene-frequencies as well as the 
whole range of genotypes. 

As has been pointed out, a formula for e: can only be given if we have the 
arrays of effects according to a double coefficient of relationship. Choosing 
the double coefficient (cz, cl) such a formula is 

e$ = c’ [CZ Dev (6a,,, CJij + $cl f.Dev (aac2, CJi. + Dev (aac2, .,I. j)l + 5 T c2, Cl 
where 

Similarly 

Dev (8ac2,cl)ij = (dacz, dij - (8ac2, J., etc. 

e:j = Co ["]+dTP., 

the self-effect (ha,, ,Jij being in this case omitted from the summations. 
The following discussion is in terms of the stronger restriction but the 

argument holds also for the weaker; we need only replace . by ’ throughout. 
If there are no dominance deviations, i.e. if 

(6arei.)ij = ${(6arei.)ii +(6a,,i,)jj} for all in’ and rel., 

it follows that each ij deviation is the sum of the i. and the j. deviations. In 
this case we have 

et = c’ rDev(6aJjj+6TT.. 

Since we must have e,: = 6T.y, it is obvious that some of the deviations 
must be negative. 

Therefore 6T.T > - 1 is a necessary condition for e; > - 1. This is, in 
fact, obvious when we consider that 6T.q = - 1 would mean that the 
aggregate of individual takings was just sufficient to eat up all basic units 
exactly. Considering that the present use of the coefficients of relationships 
is only valid when selection is slow, there seems little point in attempting 
to derive mathematically sufficient conditions for the restriction to hold; 
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intuitively however it would seem that if we exclude over- and under- 
dominance it should be sufficient to have no homozygote with a net taking 
greater than unity. 

Even if we could ignore the breakdown of our use of the coefficient of 
relationship it is clear enough that if 6T.y approaches anywhere near - 1 
the model is highly artificial and implies a population in a state of cata- 
strophic decline. This does not mean, of course, that mutations causing 
large selfish effects cannot receive positive selection; it means that their 
expression must moderate with increasing gene-frequency in a way that is 
inconsistent with our model. The “killer” trait of Paramoecium might be 
regarded as an example of a selfish trait with potentially large effects, but 
with its only partially genetic mode of inheritance and inevitable density 
dependance it obviously requires a selection model tailored to the case, and 
the same is doubtless true of most “social” traits which are as extreme as this. 

Really the class of model situations with negative neighbour effects which 
are artificial according to a strict interpretation of the assumptions must be 
much wider than the class which we have chosen to call “improbable”. The 
model assumes that the magnitude of an effect does not depend either on the 
genotype of the effectee or on his current state with respect to the pre- 
requisites of fitness at the time when the effect is caused. Where taking- 
traits are concerned it is just possible to imagine that this is true of some 
kinds of surreptitious theft but in general it is more reasonable to suppose 
that following some sort of an encounter the limited prerequisite is divided 
in the ratio of the competitive abilities. Provided competitive differentials 
are small however, the model will not be far from the truth; the correcting 
term that should be added to the expression for Api can be shown to be small 
to the third order. With giving-traits it is more reasonable to suppose that 
if it is the nature of the prerequisite to be transferable the individual can 
give away whatever fraction of his own property that his instincts incline 
him to. The model was designed to illuminate altruistic behaviour; the 
classes of selfish and competitive behaviour which it can also usefully illu- 
minate are more restricted, especially where selective differentials are potenti- 
ally large. 

For loci under selection the only relatives to which our metric of relation- 
ship is strictly applicable are ancestors. Thus the chance that an arbitrary 
parent carries a gene picked in an offspring is +, the chance that an arbitrary 
grandparent carries it is ), and so on. As regards descendants, it seems 
intuitively plausible that for a gene which is making steady progress in gene- 
frequency the true expectation of genes i.b.d. in a n-th generation descendant 
will exceed y, and similarly that for a gene that is steadily declining in 
frequency the reverse will hold. Since the path of genetic connection with a 
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simple same-generation relative like a half-sib includes an “ascending part” 
and a “descending part” it is tempting to imagine that the ascending part 
can be treated with multipliers of exactly 4 and the descending part by 
multipliers consistently more or less than 4 according to which type of 
selection is in progress. However, a more rigorous attack on the problem 
shows that it is more difficult than the corresponding one for simple des- 
cendants, where the formulation of the factor which actually replaces i is 
quite easy at least in the case of classical selection, and the author has so 
far failed to reach any definite general conclusions as to the nature and 
extent of the error in the foregoing account which his use of the ordinary co- 
efficients of relationship has actually involved. 

Finally, it must be pointed out that the model is not applicable to the 
selection of new mutations. Sibs might or might not carry the mutation 
depending on the point in the germ-line of the parent at which it had occurred, 
but for relatives in general a definite number of generations must pass before 
the coefficients give the true-or, under selection, the approximate-expecta- 
tions of replicas. This point is favourable to the establishment of taking- 
traits and slightly against giving-traits. A mutation can, however, be expected 
to overcome any such slight initial barrier before it has recurred many 
times. 

5. The Model Limits to the Evolution of Altruistic and Selfish 
Behaviour 

With classical selection a genotype may be regarded as positively selected 
if its fitness is above the average and as counter-selected if it is below. The 
environment usually forces the average fitness a.. towards unity; thus for an 
arbitrary genotype the sign of 6aij is an indication of the kind of selection. 
In the present case although it is T.: and not R.‘f that is forced towards unity, 
the analogous indication is given by the inclusive fitness effect 6R$, for the 
remaining part, the diluting effect SSij, of the total genotypic effect ST; has 
no influence on the kind of selection. In other words the kind of selection 
may be considered determined by whether the inclusive fitness of a genotype 
is above or below average. 

We proceed, therefore, to consider certain elementary criteria which 
determine the sign of the inclusive fitness effect. The argument applies to 
any genotype and subscripts can be left out. 

Let 
6T” = kiia. (7) 

According to the signs of 6a and 6T” we have four types of behaviour as 
set out in the following diagram: 
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behaviour 

? 
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behaviour 

? 

k +ve 

Counter- 
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The classes for which k is negative are of the greatest interest, since for 
these it is less obvious what will happen under selection. Also, if we regard 
fitness as like a substance and tending to be conserved, which must be the 
case in so far as it depends on the possession of material prerequisites of 
survival and reproduction, k -ve is the more likely situation. Perfect con- 
servation occurs if k = - 1. Then 6T’ = 0 and T’ = 1: the gene-pool 
maintains constant “volume” from generation to generation. This case has 
been discussed in Case (c) of section 3. In general the value of k indicates 
the nature of the departure from conservation. For instance, in the case of 
an altruistic action ]k] might be called the ratio of gain involved in the 
action: if its value is two, two units of fitness are received by neighbours for 
every one lost by an altruist. In the case of a selfish action, Ikj might be called 
the ratio of diminution: if its value is again two, two units of fitness are 
lost by neighbours for one unit gained by the taker. 

The alarm call of a bird probably involves a small extra risk to the indi- 
vidual making it by rendering it more noticeable to the approaching predator 
but the consequent reduction of risk to a nearby bird previously unaware of 
danger must be much greater.7 We need not discuss here just how risks are 
to be reckoned in terms of fitness : for the present illustration it is reasonable 
to guess that for the generality of alarm calls k is negative but jkj > 1. How 
large must Ikl be for the benefit to others to outweigh the risk to self in 
terms of inclusive fitness ? 

t The alarm call often warns more than one nearby bird of course-hundreds in the 
case of a flock-but since the predator would hardly succeed in surprising more than one 
in any case the total number warned must be comparatively unimportant. 
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6R’ = 6R” + da 
= r”6T”+6a from (5) 
= Ga(kr” + 1) from (7). 

Thus of actions which are detrimental to individual fitness (6a -ve) only 

those for which -k > $ will be beneficial to inclusive fitness (6R* + ve). 

This means that for a hereditary tendency to perform an action of this 
kind to evolve the benefit to a sib must average at least twice the loss to the 
individual, the benefit to a half-sib must be at least four times the loss, to a 
cousin eight times and so on. To express the matter more vividly, in the world 
of our model organisms, whose behaviour is determined strictly by genotype, 
we expect to find that no one is prepared to sacrifice his life for any single 
person but that everyone will sacrifice it when he can thereby save more than 
two brothers, or four half-brothers, or eight first cousins . . . Although 
according to the model a tendency to simple altruistic transfers (k = - 1) 
will never be evolved by natural selection, such a tendency would, in fact, 
receive zero counter-selection when it concerned transfers between clonal 
individuals. Conversely selfish transfers are always selected except when from 
clonal individuals. 

As regards selfish traits in general (6a +ve, k - ve) the condition for a 

benefit to inclusive fitness is -k < LO. Behaviour that involves taking too 

much from close relatives will not evolve. In the model world of genetically 
controlled behaviour we expect to find that sibs deprive one another of 
reproductive prerequisites provided they can themselves make use of at least 
one half of what they take; individuals deprive half-sibs of four units of 
reproductive potential if they can get personal use of at least one of them; 
and so on. Clearly from a gene’s point of view it is worthwhile to deprive a 
large number of distant relatives in order to extract a small reproductive 
advantage. 
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