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Abstract

Open-ended evolution (OEE) has long served as a goal and
guiding principle for Artificial Life researchers. However,
despite the common use of embodied agents in OEE simula-
tions, the role of embodiment in facilitating OEE has received
relatively little attention. Here we introduce three recent re-
search projects that demonstrate how the body of a learning
and/or evolving agent can provide more opportunity for ap-
proaching OEE than an equivalent yet non-embodied system.
In the first example, evolution of morphology, if done cor-
rectly, along with the neural control of embodied machines
is shown to sustain OEE for over 6000 generations. In the
second example, morphology is shown to be a way to resist
catastrophic interference, a phenomenon that often frustrates
OEE. The final example deals with the crowdsourcing of Ar-
tificial Life studies, one way to scale up such studies to real-
ize OEE (assuming sustained crowd involvement), and how
morphology can help or hinder this form of crowdsourcing.
We hope that these examples will inspire other researchers to
discover yet other ways in which embodiment may increase
the probability of realizing OEE in future simulations or real
world settings.

1. Introduction
Open-ended evolution (OEE) is the long-term goal for many
Artificial Life researchers. If the agents being considered
are embodied and are thus capable of performing multiple
tasks in multiple environments, one can consider algorithms
that realize less or more OEE as points embedded in a three-
dimensional space (Fig. 1). The position of a given method
in this space indicates how well it is able to improve the be-
havioral performance of agents (dimension 1), how many
environments those agents can perform in (dimension 2),
and how many tasks they can perform well in those envi-
ronments (dimension 3).

In this paper we demonstrate how carefully considering
not just the neural controller but also the morphology of the
evolving agents can improve agents along all three of these
dimensions. To do so, we describe three recent experiments
that improve agents for one task in one environment (Sect.
2), in multiple environments (Sect. 3), and for multiple tasks
(Sect. 4).
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Figure 1: Visualizing OEE systems that evolve embodied
agents as embedded within a three-dimensional space. A
given system may be worse or better at improving an agent’s
performance (x) in multiple environments (y) of different
tasks (z).

2. Morphology
Arguably the first demonstration of a new path toward open-
ended evolution with embodied agents was the pioneer-
ing work of Karl Sims, who showed a number of popu-
lations successfully evolving body plans and control poli-
cies against several objective functions (Sims (1994)). Since
then, a number of studies have followed in which morphol-
ogy and control are simultaneously evolved in an attempt
to realize ever increasing complexity in the face of ever
increasing task environments and objective functions (e.g.
Komosinski and Rotaru-Varga (2000); Hornby and Pollack
(2002); Hotz (2004); Lipson and Pollack (2000); Bongard
and Pfeifer (2003); Brodbeck et al. (2015)).

However, it was not clear from those studies how much
useful morphological complexity could indeed be generated,
or whether such complexity would continue to increase in-



definitely, given the appropriate evolutionary selection pres-
sures and sufficient computational resources. This is due
to the fact that such evolutionary systems tend to have low
evolvability: any morphological mutation tends to have a
much larger behavioral impact than control mutations do,
and thus the former are less likely to yield beneficial mu-
tations. This results in a system where evolution becomes
trapped in local optima that consist of a fixed morphology;
evolution can only realize behavioral improvement through
changes in control. In effect then, evolution is forced to per-
form random search along the morphological dimensions of
the fitness landscape (Cheney et al. (2016)).

Yet morphology holds particular promise for realizing
OEE beyond that afforded by optimizing the topologies of
neural networks in non-embodied agents or embodied agents
with fixed morphologies. This is because changes to an
agent’s body can expose it to novel sensorimotor experi-
ences. For example, the control policy of a morphologically-
fixed bipedal robot can be tuned to realize a large set of gaits,
but object manipulation will forever be beyond the agent’s
reach unless evolution can exapt legs and feet into arms and
hands. A non-embodied deep learning system can continu-
ously improve its ability to categorize objects in images, yet
never learn about their affordances (Xia et al. (2018)) un-
less it is able to evolve sensors and manipulators that allow
it to interact with the objects in those images in diverse ways
(Cariani (1993); Broersma et al. (2017)).

However, it is likely that potential morphological innova-
tions are often lost during evolutionary simulations because
selection removes them from the population before control
policy changes are found that realize that potential: hands
and feet are useless unless appropriate controllers can en-
able them to perform object manipulation. To this end, we
recently introduced an evolutionary algorithm that lessens
selection pressure on embodied agents (and their descen-
dants) that have recently experienced morphological muta-
tions (Cheney et al. (2017)). This method builds on a multi-
objective optimization method that protect members of new
lineages against members of older lineages within a multi-
lineage population Schmidt and Lipson (2011). In (Cheney
et al. (2017)), the age of the lineage objective is replaced
with the number of generations since the ancestor in a lin-
eage experienced a morphological mutation.

It was shown that if this method is applied to evolving lo-
comotion strategies for soft robots, not only is evolvability
increased, but effective open-ended evolution (EOEE) was
sustained for over 6000 generations (Fig. 2). Interestingly,
EOEE is not achieved if the method is inverted such that
potential control innovations are protected for a time to de-
termine to determine whether morphologies can be found
by evolution to realize those potentials (Fig. 3). This sug-
gests that morphological change may provide unique oppor-
tunities for subsequent evolutionary exploitation that are not
provided by control changes.
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Figure 2: Effective open-ended evolution achieved via mor-
phological protection. In (a), a population of soft robots was
evolved to locomote rapidly. In (b), selection pressure was
decreased on lineages that recently suffered a morphologi-
cal mutation. Each colored line corresponds to a collection
of robots with identical morphologies but differing control
policies.

This work is but one exemplar of a larger body of work
(Bernatskiy and Bongard (2018)) that suggests that simu-
lating adaptive processes at different time scales may be
one approach to eventually achieve open-ended evolution.
More specifically, morphological adaptations occurring at
slower time scales may create opportunities to adapt con-
trol on faster time time scales. In Cheney et al. (2017),
both intra-lineage and inter-lineage competition occurred at
evolutionary time scales, but multiple timescale simulations
that include evolutionary, developmental and learning time
scales may yield systems even more capable of exhibiting
open-ended evolution (Kriegman et al. (2017)).



a

Figure 3: Protecting potential control innovations to enable
evolutionary time for compensating morphological adapta-
tions to be found (blue line) is equivalent to protecting nei-
ther morphological nor control innovations (red line), and
does not realize effective open-ended evolution in the same
way that protecting morphological innovations does (green
line).

3. Catastrophic Interference
One roadblock on the path to open-ended evolution is the
concept of catastrophic forgetting. This phenomenon is of-
ten observed in sequential learning tasks: an agent learns
(or is evolved to perform) one task and then, when trained
to perform a new task, ‘forgets’ the previous task. This phe-
nomenon is also known as catastrophic interference when an
agent is trained to perform multiple tasks simultaneously. A
number of methods to resist catastrophic interference have
been proposed in the literature, including modularity (Lip-
son et al. (2002); Kashtan and Alon (2005); Espinosa-Soto
and Wagner (2010); Clune et al. (2013); Bongard et al.
(2015)) and selective synaptic plasticity (Velez and Clune
(2017); Kirkpatrick et al. (2017)).

When methods are reported that successfully resist catas-
trophic interference, it is usually because the agents have
been given some ability to capture features common across
their training environments in their neural controllers. In
modularity approaches, this facilitates the rewiring of neu-
ral feature detectors when their environments change. In
synaptic plasticity approaches, plasticity is suppressed for
synapses that handle features common across multiple envi-
ronments. However, both approaches focus on neural rather
than morphological adaptation to resist catastrophic interfer-
ence.

In recent work we have shown that morphology can also
help to resist this phenomenon (Powers et al. (2018)). We
investigated this in an evolutionary setting in which embod-
ied agents with three different body plans (Fig. 4) were
evolved to perform phototaxis in a number of different en-
vironments. Catastrophic interference was measured as the
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Figure 4: Three classes of robots (legged (a), wheeled
(b), and whegged (c)) were evolved using Pyrosim (ccap-
pelle.github.io/pyrosim) to perform phototaxis in multiple
environments. Each robot has eight degrees of freedom, as
depicted by the black and white arrows which indicate the
axis (straight) and direction (curved) of rotation for a partic-
ular hinge joint (a, c) or wheel (b, c). Video of all three robot
types can be seen at youtu.be/yY7Vi7fw7Ik.

amount of improvement that could be made in an offspring
agent across all environments without adversely impacting
its parent’s original competency in any one of the environ-

https://ccappelle.github.io/pyrosim/
https://ccappelle.github.io/pyrosim/
https://youtu.be/yY7Vi7fw7Ik


Figure 5: The nine panels correspond to the best individu-
als produced from nine evolutionary simulations. In the left,
center, and right columns, the legged, wheeled, or whegged
robot was employed respectively (see Fig. 4). In the top,
center, and bottom rows, performance in both environments
was summed, averaged, or performance in the worst envi-
ronment was used to calculate fitness respectively. Each
point corresponds to a mutation: a child controller’s fitness
relative to its parent controller in the first and second envi-
ronments is plotted against the horizontal and vertical axes
respectively. Points that fall in the upper right of each panel
thus indicate child controllers that resisted catastrophic in-
terference: they achieved an increase in fitness in both en-
vironments, relative to their parent controllers. Color indi-
cates the generation during which that mutation occurred.
As can be seen, the wheeled and whegged robots were much
more resistant to catastrophic interference than the legged
robot when the best fitness function (min) was employed.
Indeed these two experimental variants (bottom-middle and
bottom-right panels) were significantly more evolvable than
the other seven variants. More details about this work are
provided in Powers et al. (2018).

ments (Fig. 5). We found that some body plans enabled evo-
lution to find neural changes that achieved this much more
often than in other body plans.

The reasons why one morphology resists catastrophic in-
terference better than another is not yet clear. One pos-
sibility suggests that, because differing morphologies pro-
vide embodied agents with the ability to generate different
kinds of sensorimotor feedback loops, some morphologies
may allow an agent to align itself with its environment in
such a way that two seemingly different environments are
perceived, from the point of view of the agent, as similar.
Agents that lack this particular morphology may not be able
to generate this perception and thus have to evolve or learn

Figure 6: A tracing of a typical whegged robot (blue) and
legged robot (red) drawn from the experimental variants re-
ported in the lower left and lower right panels of Fig. 5,
respectively (see video youtu.be/uWy33A5HZGM). In en-
vironment 1 the light source was placed at (9, 0). In envi-
ronment 2 the light source was placed at (−9, 0).

different strategies for these ‘different’ environments.
Anecdotal evidence to support this argument can be seen

in Fig. 6: the whegged robot produces rotationally sym-
metric trajectories in two environments, suggesting that its
perception over time in these two environments is very sim-
ilar. A legged robot equipped with an evolved controller, on
the other hand, performs two very different trajectories when
approaching the light source in these environments, suggest-
ing evolution has had to discover neural networks capable to
generating two different sensorimotor feedback loops to ac-
complish phototaxis in these environments.

Future work will involve investigating how to measure
this ability of an embodied agent to induce sensory con-
vergence across seemingly different environments, thus re-
ducing catastrophic interference and facilitating open-ended
evolution against a continuously expanding set of task en-
vironments. Another future strand of inquiry will involve
evolving morphology and control to maximize two objec-
tives: fitness and sensory convergence.

4. Crowdsourcing
Section 2 demonstrated how morphology could may facil-
itate the eventual realization of OEE for embodied agents
operating in one environment; the previous section demon-
strated how morphology could facilitate OEE for embodied
agents in a growing number of environments. Another di-
mension along which to pursue OEE is to evolve robots ca-
pable of performing an increasing number of tasks.

In evolutionary robotics, this requires construction of
multiple fitness terms that select for the various desired be-
haviors. However, designing a fitness function that does not
succumb to perverse instantiation (Bostrom (2014)) is an
open challenge in the field: highly-fit embodied agents of-
ten evolve that exhibit surprising behavior that does not ful-
fill the investigator’s original intent (Lehman et al. (2018)).
This difficulty is exacerbated when a complex fitness func-
tion must simultaneously select for multiple desired behav-
iors, yet guard against perverse instantiation in all of them.

https://youtu.be/uWy33A5HZGM


Figure 7: The Twitch Plays Robotics front end, as seen by a participant. a) A robot is simulated for thirty seconds under the
current command, ‘jump’. b) A panel listing information about the current robot including its ID, age, and type, the number
of yes’s and no’s provided during the current evaluation, and the number of likes and dislikes the current robot has received
overall. c) A panel explaining how users can reinforce the current robot. d) A panel prompting users to propose or vote for the
next command for the next three minute window. e) A top five commands by score list plus the current proposed command and
score. f) A top five users by score list plus the last active user in the chat and their score. g) The live chat session where users
enter reinforcement, commands, help inquiries, and other messages.

In response to this, some have argued for objective-free
evolutionary algorithms: only behavioral novelty is selected
for (Lehman and Stanley (2008)). However, this approach
has proved inadequate for many problems as it weights ex-
ploration much too heavily compared to exploitation. In re-
sponse to this, behavioral novelty is often embedded in a
multiobjective optimization framework that includes ‘tradi-
tional’ fitness functions that select for the desired behavior
as the other objectives (Mouret (2011)).

An alternative path toward realizing agents that can suc-
ceed in a growing number of environments while avoiding
perverse instantiation is to enable a crowd of non-experts to
collective formulate fitness functions and evaluate embod-
ied agents against them. The field of human-robot interac-
tion (HRI) has long studied ways of enabling non-experts to
train robots. However, with the recent advent of free, large-
scale, easy-to-use, and abuse-hardened web infrastructure,
it has become relatively easy for a small research group to
build and deploy systems that enable large numbers of non-
experts to interact with simulated or physical robots via the
web.

Besides combating perverse instantiation, the crowd-
sourcing of robotics also offers the promise of scaling up
robotics in a similar way that large stores of easy-to-access
labeled data sets enabled the scaling up of machine learn-
ing methods. Although large amounts of high-dimensional,
labeled input data such as video and LIDAR is available for

training robots with few mechanical degrees of freedom (e.g.
quadcopters and autonomous cars), high degree-of-freedom
(DOF) robots have not benefited from this data revolution
because large amounts of labeled motor data does not exist:
sensor signals generated by a robot’s movements to which
humans have attached sensorimotor accounts such as ‘walk-
ing’.

In pursuit of the dual goals of combating perverse in-
stantiation and scaling up evolutionary robotics to facilitate
OEE, we have have been developing an HRI paradigm called
‘Twitch Plays Robotics’1 (TPR). Twitch.tv is particularly
popular among people live streaming themselves playing
video games as well as people who enjoy watching others
play those games. Each Twitch channel contains a live video
stream from a content provider and a real-time chat interface
that enables viewers to interact with the content provider
and/or the stream itself. Twitch is an attractive option for
crowdsourcing studies because it has a very large user base
(15 million daily active users); it is hardened against bot and
human abuse; it is simple to stream content to, and collect
text responses from it; and, given its size, significant num-
bers of unpaid participants can be recruited, assuming the
task set for them is relatively engaging.

The method is summarized visually in Fig. 7 (the sys-
tem’s front end) and Fig. 8 (the system’s back end) and is

1twitch.tv/twitchplaysrobotics



Figure 8: Overview of the Twitch Plays Robotics back end. Three processes (a, h, and k) run continuously and in parallel on
a local server. They serve content to, and receive data back from, a third-party web service (twitch.tv). (a) primaryPopulation
maintains a population of simulated robots and optimizes them to maximize obedience to a human crowd. Every thirty seconds,
a random robot is selected (b), rendered inside of a physics engine (c), and streamed via a local broadcasting application (d) to
the web service (e) where the simulation is seen by zero or more participants simultaneously (f). In response to what they see,
the participants may provide feedback by typing in text to a chat window (g) which is captured by a chatbot (h) and stored in a
database. Additional visualizations are created (i) and overlaid (j) on the streamed video: this includes instructions to the users
about the system, as well as a high score board designed to motivate participation. A secondary population (k) continuously
evolves robots that exhibit different behaviors when issued with user commands to ensure that they respond when shown to the
crowd issued differing commands. Periodically, a robot from the secondary population is injected into the primary population.
This also ensures the crowd is shown a continual flow of novel robots and behaviors to retain their interest.

compromised of five parts. First, robots with differing mor-
phologies are shown to human participants, who may inter-
act with them in various ways. Second, the crowd may issue
commands to the robots using natural language, which is
converted into numbers or vectors that the robots ‘hear’: the
encoded language is fed into the input layer of the robot’s
neural controller. Third, users may provide positive or nega-
tive reinforcement to a given robot who is performing some
action in response to a crowd-issued command. Fourth, The
robots evolve to collect as much positive reinforcement as
possible. Finally, a critic model is trained to take as input a
crowd-issued command and sensor data generated by a robot
responding to that command, and output a prediction about
how much positive reinforcement that robot is likely to col-
lect, if it was exposed to the crowd.

Two experiments have been conducted using the TPR
platform to date. In the first (Anetsberger and Bongard

(2015)), we demonstrated that, even though unpaid, par-
ticipants tended to provide, on average, honest reinforce-
ment. This was proven by showing that the critic could
successfully predict crowd reinforcement from an unseen
test set when trained on crowd reinforcement from a non-
overlapping training set. (If the crowd tended to type in
random positive or negative reinforcement, critic predictions
would be no better than chance.)

In more recent work (Mahoor et al. (2017)) we exposed
the crowd to a set of 10 morphologically-distinct robot
‘species’ (Fig. 9). It was found that, for 10 critics trained
against each of these species’ data sets, some of the critics
were more predictive than others (Fig. 10). This indicates
that morphology is important when attempting to scale up
robotics using human trainers: depending on the morphol-
ogy, a participant may have an easier or harder time deter-
mining how to reinforce a particular controller for that mor-



a) stickbot b) twigbot c) branchbot d) treebot e) spherebot

f) starfishbot g) crabbot h) quadruped i) tablebot j) snakebot

Figure 9: The ten robot species employed in the crowdsourcing experiment reported in (Mahoor et al. (2017)).

phology.
Two challenges facing any crowdsourcing of robotics

project is how to elicit commands from the crowd that robots
can be evolved to obey, while simultaneously holding the in-
terest of these unpaid participants. In future work we plan
to address this challenge by not exposing the crowd to 10
robots with fixed morphologies, but populations of robots
with evolving body plans and control policies. By start-
ing with morphologically simple and thus behaviorally con-
strained agents, we predict the crowd will only issue simple,
motoric commands (such as ‘move’ and ‘jump’). As the
agents evolve to obey these commands, we will allow grad-
ual morphological complexification. This may suggest new
behavioral opportunities to the observing crowd, who may
begin to issue more complex commands (such as ‘move to-
ward’ or ‘grasp’). This may in turn lead to a virtual cycle of
increasingly complex, capable, and interesting robots, thus
better engaging the crowd and growing our number of par-
ticipants. If this cycle can be sustained indefinitely, crowd-
sourcing of robotics may prove to be a road toward open-
ended evolution.

5. Conclusions
This paper has summarized three experiments which demon-
strate how morphology can facilitate the future realization
of open-ended evolutionary experiments along three fronts:
evolving agents that are more competent, in more environ-
ments, at successfully performing more tasks.
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