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Abstract

Organisms result from multiple adaptive processes occurring and interacting at different
time scales. One such interaction is that between development and evolution. In modeling
studies, it has been shown that development sweeps over a series of traits in a single agent,
and sometimes exposes promising static traits. Subsequent evolution can then canalize these
rare traits. Thus, development can, under the right conditions, increase evolvability. Here,
we report on a previously unknown phenomenon when embodied agents are allowed to
develop and evolve: Evolution discovers body plans which are robust to control changes,
these body plans become genetically assimilated, yet controllers for these agents are not
assimilated. This allows evolution to continue climbing fitness gradients by tinkering with
the developmental programs for controllers within these permissive body plans. This exposes
a previously unknown detail about the Baldwin effect: instead of all useful traits becoming
genetically assimilated, only phenotypic traits that render the agent robust to changes in
other traits become assimilated. We refer to this phenomenon as differential canalization.
This finding also has important implications for the evolutionary design of artificial and
embodied agents such as robots: robots that are robust to internal changes in their
controllers may also be robust to external changes in their environment, such as transferal
from simulation to reality, or deployment in novel environments.

Author summary

The ‘Baldwin effect’ describes a process whereby an advantageous characteristic
acquired during the development of individuals can create a new selection pressure
favoring descendants that more rapidly realize this trait. This can reduce the
flexibility of development in later generations, to the point where the advantageous
trait becomes genetically determined. While the Baldwin effect has been observed
in engineered systems, these systems were primarily abstract controllers without a
body to control. Because we investigated evolution and development in simulated
robots, we discovered a phenomenon unreported in the literature: developmental
flexibility is only reduced around body plans robust to changes in their control,
rather than all advantageous traits. This throws light on the kinds of acquired
characters which can ultimately become inherited and also on the types of robots
which may be robust to, and thus successful in unseen environments.
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Introduction

The shape of life changes on many different time scales. From generation to generation,
populations gradually increase in complexity and relative competency. At the individual
level, organisms grow from a single-celled egg and exhibit extreme postnatal change as
they interact with the outside world during their lifetimes. At a faster time scale still,
organisms behave such as to survive and reproduce.

Many organisms manifest different traits as they interact with their environment. It
seems wasteful not to utilize this extra exploration to speed the evolutionary search for
good genotypes. However, to communicate information from these useful but temporary
traits to the genotype requires inverting the generally very complex, nonlinear and
stochastic mapping from DNA to phenotype. Inverting such a function would be
exceedingly difficult to compute. However, organisms can pass on their particular
capacity to acquire certain characteristics. Thus phenotypic plasticity can affect the
direction and rate of evolutionary change by influencing selection pressures. Although
this phenomenon was originally described by Baldwin [1], Morgan [2] and
Waddington [3], among others, it has become known as ‘the Baldwin effect’. In
Baldwin’s words: ‘the most plastic individuals will be preserved to do the advantageous
things for which their variations show them to be the most fit, and the next generation
will show an emphasis of just this direction in its variations’ [1]. In a fixed environment,
when the ‘advantageous thing’ to do is to stay the same, selection can favor genetic
variations which more easily, reliably, or quickly produce these traits. This can lead to
the genetic determination of a character which in previous generations needed to be
developed or learned.

Learning and evolution

Thirty years ago, Hinton and Nowlan [4, 5] provided a simple computational model of
the Baldwin effect that clearly demonstrated how phenotypic plasticity could, under
certain conditions, speed evolutionary search without communication to the genotype.
They considered the evolution of a bitstring that is only of value when perfectly
matching a predefined target string. The search space therefore has a single spike of
high fitness with no slope leading to the summit. In such a space, evolution is no better
than random search.

Hinton and Nowlan then allowed part of the string to randomly change at an
additional (and faster) developmental time scale. When the genetically specified portion
of the string is correct, there is a chance of discovering the remaining portion in
development. The speed at which such individuals tend to find the good string will be
proportional to the number of genetically determined bits. When the target string is
found, development stops and the individual is rewarded for the amount of remaining
developmental time. This has the effect of creating a gradient of increasing fitness
surrounding the correct specification that natural selection can easily climb by
incrementally assimilating more correct bits to the genotype.

Hinton and Nowlan imagined the bitstring as specifying the connections of a neural
network in a very harsh environment. We are also interested in this interaction of
subsystems unfolding at different time scales, but consider an embodied agent situated
in a physically-realistic environment rather than an abstract control system. This
distinction is important as it grounds our hypotheses in the constraints and
opportunities afforded by the physical world. It also allows us to investigate how
changes in morphology and control might differentially affect the direction or rate of
evolutionary search. More specifically, it exposes the previously unknown phenomenon
of differential canalization reported here.
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Inspired by Hinton and Nowlan, Floreano and Mondada [6] explored the interaction
between learning and evolution in mobile robots with a fixed body plan but plastic
neural control structure. Synaptic weights were initialized to small random values and
updated at each timestep according to genetically specified Hebbian learning rules as
the robot interacted with its environment. They noted that the acquisition of stable
behavior in ontogeny did not correspond to stability (no further change) of individual
synapses, but rather was regulated by continuously changing synapses which were
dynamically stable. In other words, agents exploited this ontogenetic change for
behavior, and this prevented its canalization. In this paper, we structure development
in a way that restricts its exploitation for behavior and thus promotes the canalization
of high performing static phenotypes. Also, the robot’s body plan was fixed in [6],
whereas in the work reported here, evolution and development may modify body plans.

Related work by Husbands et al. [7, 8] introduced neural controllers whose plasticity
was modulated by a mechanism inspired by freely diffusing nitric oxide in nerve cells.
They demonstrated that embodied agents controlled by networks with this spatial
diffusion mechanism evolved considerably faster than agents controlled by networks
without this mechanism. Subsequent analysis indicated that this increased evolvability
was due to mediation of plasticity occurring over a range of different time scales during
operation [9]. They argued that the availability of mechanisms operating over a wide
range of potential time courses is a crucial property for controllers used to generate
adaptive behavior over time. The model presented here is related to this work in that
the subsystems of robots change over a wide range of potential rates and frequencies
during operation. However, because our system enabled behavior which did not exploit
this multiscale developmental change, we observed its differential canalization. Also, in
addition to considering ontogenetic change in the control of an agent, we consider
morphological development.

Morphological development and evolution

Several models that specifically address morphological development of embodied agents
have been reported in the literature. For example, Dellaert and Beer [10] introduced a
developmental model based on random Boolean networks and demonstrated that a
range of morphologies were evolvable. Later, it was shown how such morphological
development could be evolved to produce functional autonomous agents able to execute
simple tasks [11]. Eggenberger [12] demonstrated how shape could emerge during
growth in response to physical forces acting on the growing entity. Hogeweg [13] showed
how many natural behaviors of morphogenesis could evolve as a side-effect of minimal
cellular dynamics. Bongard and Pfeifer [14] adopted models of genetic regulatory
networks to demonstrate how evolution could shape the developmental trajectories of
embodied agents. Miller [15] introduced a developmental model that enabled growing
organisms to regrow structure removed by damage or other environmental stress.
Stanley [16] demonstrated how evolutionary algorithms could combine mathematical
functions to produce nested spatial regularities seen in development, such as repetition,
symmetry and variations on a theme. Doursat [17] demonstrated the possibility of
multiscale pattern formation based on an expanding lattice of hierarchical gene
regulatory nets, which could also be induced to grow appendages. None of these models
however investigated the relationship between morphological development and
evolvability. Moreover, none of the above examples considered postnatal change as the
agent behaves and interacts with the environment through physiological functioning at
a faster time scale.

We are only aware of four cases reported in the literature in which a simulated
robot’s body was allowed to change while it was behaving. In the first two cases [18, 19],
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it was not clear whether this ontogenetic morphological change facilitated the evolution
of behavior. Later, Bongard [20] demonstrated how such change could lead to a form of
self-scaffolding that smoothed the fitness landscape and thus increased evolvability.
This ontogenetic change also exposed evolution to much more variation in sensor-motor
interactions which increased robustness to unseen environments. Recently, Kriegman et
al. [21] showed how development can sweep over a series of body plans in a single agent,
and subsequent heterochronic mutations canalize the most promising body plan in more
morphologically-static descendants.

We are not aware of any cases reported in the literature to date in which a simulated
robot’s body and control are simultaneously allowed to change while it is behaving. In
this paper, we investigate such change in the morphologies and controllers of soft robots
as they are evolved for coordinated action in a simulated 3D environment. By
morphology we mean the current state of a robot’s shape, which is slowly changed over
the course of its lifetime by a developmental process. We distinguish this from the
controller, which sends propagating waves of actuation throughout the individual, which
also affects the instantaneous shape of the robot but to a much smaller degree. We here
refer to these two processes as ‘morphology’ and ‘control’. As both processes change the
shape, and thus behavior, of the robot, this distinction is somewhat arbitrary. However,
the central claim of this paper, which is that some traits become canalized while others
do not, is not reliant on this distinction.

Soft robots

Soft robots are ideal models for studying development since they provide many more
degrees of developmental freedom compared to traditional robots composed of rigid
links connected by rotary or linear actuators. This flexibility allows soft robots to
accomplish tasks that would be otherwise impossible for their rigid-bodied counterparts,
such as squeezing through small apertures [22] or continuously morphing to meet
different tasks. Recent advancements in materials science are enabling the fabrication of
3D-printed muscles [23] and nervous systems [24]. However, there are several challenges
to the field of soft robotics, including an overall lack of design intuition: What should a
robot with nearly unbounded morphological possibility look like, and how can it be
controlled? Controllability often depends on precision actuation and feedback control,
but these properties are difficult to maintain in soft materials in which motion in one
part of the robot can propagate in unanticipated ways throughout the body [25].

Although a good choice of morphology can simplify control in an embodied
agent [26–28], the simultaneous co-optimization of morphology and control has remained
a challenge [29,30], as evidenced by the lack of progress in the two decades since Sims’
foundational work [31,32]. Previous work in soft robotics has addressed this problem
with better genotype to phenotype transformations [33–36] and improved evolutionary
search algorithms [37–39]. Here, we extend a recent model of morphological development
under a fixed control policy [21] to incorporate developmental change in the controller
as well. This new model represents an alternative approach to the challenging problem
of morphology-control co-optimization and presents an in silico testbed for hypotheses
about evolving and developing embodied systems. This expanded model led to the
discovery of differential canalization and how it can increase evolvability.

Results

All experiments were performed in the open-source soft-body physics simulator Voxelyze,
which is described in detail in Hiller and Lipson [40]. We consider a locomotion task,
over flat terrain, for soft robots composed of a 4× 4× 3 grid of voxels (Fig 1). Robots
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are evaluated for 40 actuation cycles at 4 Hz, yielding a lifetime of ten seconds. Fitness
is taken to be distance traveled measured in undeformed body lengths (four unit voxels,
i.e. 4 cm). Example robots are shown in Figs 1 and 4, and S1 Video.

What we separately denote as the morphology and controller of a soft robot both
modify its volume, but they do so on distinct scales in both space and time. The
morphology of a robot is given by the resting length of each voxel. The shape and
volume of each voxel is changed by external forces from the environment and internal
forces via behavior. The morphology of a robot is denoted by the
4× 4× 3 = 48-element vector `, where each element is the resting length of that voxel
(with possible values within 1.0± 0.75 cm). Like most animals, our robots are bilaterally
symmetrical. The lefthand 2× 4× 3 = 12 resting voxel lengths are reflected on the
other, righthand side of the midsagittal line, yielding 24 independent resting lengths.
The controller, however, is not constrained to be symmetrical since many behaviors,
even for symmetric morphologies, consist of asymmetric gaits, and is given by the phase
offset of each voxel from a global oscillating signal with an amplitude of 0.14 cm. The
controller is denoted by the 48-element vector φ, where each element is the phase offset
of that voxel (with possible values within 0± π/2).

We investigated the impact of development in this model by comparing two
experimental variants (Fig 8). The control treatment, Evo, lacks development and
therefore maintains a fixed morphology and control policy in a robot as it behaves over
its lifetime. Two parameters per voxel are sufficient to specify an evolved robot at any
time, t, in its lifetime: its morphology, `k, and controller, φk. An evolutionary algorithm
optimizes 24 morphological and 48 control parameters. The experimental treatment
Evo-Devo evolves a developmental program rather than a static phenotype (Fig 1).
For each parameter in an Evo robot, an Evo-Devo robot has two: its starting and final
value. The morphology and controller of the kth voxel change linearly from starting to
final values, throughout the lifetime of a developing robot. The starting and final points
of development are predetermined by a genome which in turn fixes the direction
(compression or expansion) and rate of change for each voxel. Development is thus
ballistic in nature rather than adaptive, as it cannot be influenced by the environment.
The evolutionary algorithm associated with the Evo-Devo treatment thus optimizes 48
morphological and 96 control parameters.

For both treatments we conducted 30 independent evolutionary trials. At the end of
evolutionary optimization, the non-developmental robots (Evo) tend to move on average
with a speed of 10 body lengths in 10 seconds, or 1 length/sec. The evolved and
developing robots (Evo-Devo) tend to move at over 5 lengths/sec (Fig 2A). To ensure
evolved and developing robots are not exploiting some unfair advantage conferred by
changing body plans and control policies unavailable to non-developmental robots, we
manually remove their development by setting `∗ = ` and φ∗ = φ, which fixes the
structure of their morphologies and controllers at birth (t = 0). The resulting reduced
robots suffer only a slight (and statistically non-significant) decrease in median speed
and still tend to be almost five times faster than the systems evolved without
development (Fig 2B, treatment ‘Evo-Devo removed’). Ballistic development is
therefore beneficial for search but does not provide a behavioral advantage in this task
environment.

To investigate this apparent search advantage, we trace development and fitness
across the 30 lineages which produced a ‘run champion’: the robot with highest fitness
at the termination of a given evolutionary trial (Fig 3). The developmental window is
defined separately for morphology (Eq 6) and control (Eq 7) as the absolute difference
in starting and final values summed across the robot and divided by the total amount of
possible development, such that 0 and 1 indicate no and maximal developmental change,
respectively. Evo robots by definition have development windows of zero, as do
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Fig 1. Modeling development. An evolved soft robot changes its shape during its lifetime (postnatal development),
from a walking quadruped into a rolling form. Evolution dictates how a robot’s morphology develops by setting each
voxel’s initial (`k) and final (`∗k) resting length. The length of a single voxel k is plotted to illustrate its (slower) growth
and (faster) actuation processes. Voxel color indicates the current length of that cell: the smallest voxels are blue,
medium sized voxels are green, and the largest voxels are red. As robots develop and interact with a physically realistic
environment, they generate heterogeneous behavior in terms of instantaneous velocity (bottom arrows). Soft robot
evolution, development and physiological functioning can be seen in S1 Video.
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Fig 2. Evolvability and development. Morphological development drastically increases evolvability (A), even when
development is manually removed from the optimized systems by setting the final parameter values equal to their
starting values (`∗k = `k and φ∗k = φk), in each voxel (B). Median fitness is plotted with 95% bootstrapped confidence
intervals for three treatments: evolving but non-developmental robots (Evo), evolving and developing robots (Evo-Devo),
and evolving and developing robots evaluated at the end of evolution with their development removed (Evo-Devo
removed). Fitness of just the final, evolved populations are plotted in B.

Evo-Devo robots that have had development manually removed. An Evo-Devo robot
with a small developmental window has thus become canalized [3]. In terms of fitness,
there were two observed basins of attraction in average velocity: a slower design type
which either trots or gallops at a speed of less than 1 length/sec (Fig 4A,B), and a
faster design type that rolls at 5-6 lengths/sec (Fig 4C). After ten thousand generations,
25 out of a total of 30 Evo-Devo trials (83.3%) find the faster design, compared to just 6
out of 30 Evo trials (20%).

Differential canalization

Modular systems are more evolvable than non-modular systems because they allow
evolution to improve one subsystem without disrupting others [41–45]. Modularity may
be a property of the way a system is built, or it may be an evolved property [46]. The
robots evolved here are by definition modular because the genes which affect
morphology are independent of those which affect its control. Although the more
successful Evo-Devo lineages evolved an additional form of modularity, which we term
differential canalization. Some initially developmentally plastic traits become integrated
and canalized, while other traits remain plastic. In the successful Evo-Devo trials,
morphological traits were canalized while control traits were not. Evidence for this is
provided in Fig 3. Trajectories of controller development (green curves) do not follow
any discernible pattern and appear upon visual inspection to be consistent with a
random walk or genetic drift. The trajectories of morphological development (red
curves), however, follow a consistent pattern. The magnitude of morphological
development increases slightly, but significantly (p < 0.001), before decreasing all the
way to the most recent descendant, which is the most fit robot from that trial (the run
champion). The morphological development window of the most fit robot is significantly
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Fig 3. Evolutionary change during 30 Evo-Devo trials. The amount of morphological development, WL (see Eq 6),
controller development, WΦ (see Eq 7), and fitness, F , for the lineages of the 30 Evo-Devo run champions. Evolutionary
time, T , moves from the oldest ancestor (left) to the run champion (right). A general trend emerges wherein lineages
initially increase their morphological development in T (rising red curves) and subsequently decrease morphological
development to almost zero (falling red curves). Five of the 30 evolutionary trials, annotated by ∗, fell into a local
optima.
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Fig 4. Evolved behavior. (A) An evolved trotting soft quadruped with a two-beat gait synchronizing diagonal pairs of
legs (moving from left to right). (B) A galloping adult robot which goes fully airborne mid-gait. (C) A galloping juvenile
robot which develops into a rolling adult form. (D) A rolling juvenile robot at 10 points in ontogeny immediately after
birth. Arrows indicate the general directionality of movement, although this is much easier to observe in S1 Video. Voxel
color indicates the amount of subsequent morphological development remaining at that cell: blue indicates shrinking
voxels (`k > `∗k), red indicates growing voxels (`k < `∗k), green indicates little to no change either way (`k ∼= `∗k).

less than the starting morphological development window (p < 0.001), but there is no
significant difference between starting and final control development windows.
Furthermore, this pattern tends to correlate with high fitness: in trials in which this
pattern did not appear (runs 6, 8, 16-18), fitness did not increase appreciably over
evolutionary time. Finally, this process within the lineages of the run champions is
consistent with a more general correlation found in all designs explored during
optimization across all runs: Individuals with the highest fitness values tend to have
very small amounts of morphological development, while their control policies are free
to develop (Fig 5). However, despite the fact that morphological development tends to
be canalized in the most fit individuals, it cannot simply be discarded as the
non-developmental systems have by definition small morphological windows, and small
controller windows, but also low fitness.

To test the sensitivity of the canalized morphologies to changes in their control
policies, we applied a random series of control mutations to the Evo and Evo-Devo run
champions for each of the 30 evolutionary trials. For each run champion, we perform
1000 subsequent random controller mutations that build upon each other in series (a
Brownian trajectory in the space of controllers)—and repeat this process ten times for
each run champion, each with a unique random seed. It was found that optimized
Evo-Devo robots tend to possess body plans that are much more robust to control
mutations than those of Evo robots (Fig 6A). The first control mutation to optimized
Evo robots tends to immediately render them immobile, whereas optimized Evo-Devo
robots tend to retain most of their functionality even after 1000 successive random
changes to their controllers. Within Evo-Devo designs, the functionality of the 25 fast
designs are minimally affected by changes to their control, whereas the five slow designs
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Fig 5. Differential canalization. Median fitness as a function of morphology and controller development windows
(i.e. the total lifetime developmental change), for all Evo-Devo designs evaluated, as given by Eqs 6 and 7 in the
Methods section. The fastest designs tend to have small amounts of morphological development, but are free to explore
alternative control policies.

also tend to break after the first control mutation (Fig 6B). Thus it can be concluded
that these five robots are non-modular: their non-canalized morphologies evolved a
strong dependency on their controllers. The Evo robots are similarly non-modular: they
are brittle to control mutations.

To test the sensitivity of the evolved controllers to changes in their morphologies, we
applied the same procedure described in the previous paragraph but with random
morphological mutations rather than control mutations. It was found that both
developmental and non-developmental systems tend to evolve controllers that are very
sensitive to morphological mutations (Fig 6C). The first few morphological mutations to
optimized robots, in both treatments, tend to immediately render them immobile.
Within Evo-Devo design types, neither of which canalized development in their
controllers (Fig 3), both the fast and slow designs possessed controllers sensitive to
changes in their morphologies (Fig 6D). These findings are consistent with that of
Cheney et al. [39] who also reported that controllers are dependent on their morphology.
Thus it can be concluded that the non-canalized controllers evolved a strong
dependency on their morphologies. The same is true of the non-developmental systems.
Therefore, the only trait which was successfully canalized was also the only trait which
was robust to changes in other traits.

Heterochrony in morphological development

The evolutionary algorithm can rapidly discover an actuation pattern that elicits a very
small amount of forward movement in these soft robots regardless of the morphology.
There is then an incremental path of increasing locomotion speed that natural selection
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Fig 6. Sensitivity to morphological and control mutations. Ten random walks were taken from each run champion.
(A) Successive control mutations to the Evo and Evo-Devo run champions. (B) The previous Evo-Devo results
separately for fast and slow design types. (C) Successive morphological mutations to the Evo and Evo-Devo run
champions. (D) The previous Evo-Devo results separately for fast and slow design types. Medians plotted with 99%
confidence intervals. The faster Evo-Devo robots tend to possess body plans that are robust to control mutations.

can climb by gradually growing legs to reduce the surface area touching the floor and
thus friction, and simultaneously refining controller actuation patterns to better match
and exploit the morphology (Fig 4A,B).

There is, however, a vastly superior design partially hidden from natural selection—a
‘needle in the haystack’, to use Hinton and Nowlan’s metaphor [4]. On flat terrain,
rolling can be much faster and more efficient than walking, but finding such a design is
difficult because the fitness landscape is deceptive. Rolling over once is much less likely
to occur in a random individual than shuffling forwards slightly. As a population
continues to refine walking morphologies and gaits, lineages containing rocking
individuals which are close to rolling over, or roll over just once, do not survive long
enough to eventually produce a true rolling descendant. Natural selection has no
foresight and thus cannot see the long term advantage of retaining these almost-rolling
designs.

Development can alter the search space evolution operates in because individuals
sweep over a continuum of phenotypes, with different velocities, rather than single static
phenotype that travels at a constant speed. This can be seen in Fig 8J, where the
velocity is plotted at intervals of two actuation cycles for two Evo-Devo run champions
with minimal canalization (runs 6 and 7) compared to their Evo counterparts in Fig 8E.
The lineages which ultimately evolved the faster rolling design initially increased their
morphological plasticity in phylogenetic time as evidenced by the initial upward trends
in the red curves in Fig 3 which contain a statistically significant difference between
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Fig 7. Late onset discoveries. Ontogenetic time before the discovery of rolling over, taken from the lineages of the
best robot from the each of the 25 Evo-Devo trials that produced a rolling design. Median time to discovery, with 95%
C.I.s, for (A) the lineage from the most distant ancestor (T = 0) to more recent descendants, and (B) the first ancestor
to roll over compared to the final run champion. Rolling over is measured from the first time step the top of the robot
touches the ground, rather than after completely rolling over. The first ancestors to roll over tend to do so at the end of
their lives, their descendants tend to roll sooner in life, and the final run champions all begin rolling immediately at birth.
These results are a consequence of dependent time steps: because mutational changes affect all downstream steps, their
phenotypic impact is amplified in all but the terminal stages of development. Thus, late onset changes can provide
exploration in the search space without breaking rest-of-life functionality, and subsequent evolution can gradually
assimilate this trait to the start of development.

their starting and maximum developmental window sizes (p < 0.001). This exposes
evolution to a wider range of body plans and thus increases the chance of randomly
rolling at least once at some point during the evaluation period. The peak of
morphological plasticity in Fig 3 generally lines up with the start of an increasing trend
in fitness (blue curves) and marks the onset of differential canalization. Rolling just
once allows an individual to move further (1 body length) than some early walking
behaviors but they incur the fitness penalty of having fallen over and thus not being
able to subsequently walk for the rest of the trial. Therefore this tends to happen at the
very end of ontogeny (Fig 7), as individuals evolve to ‘dive’ in the last few time steps of
the simulation of their behavior, thus incurring an additional increase of fitness over
their parent, which does not exhibit this behavior. Since more rolling incurs more
fitness than less rolling, a form of progenesis occurs as heterochronic mutations move `k
closer to `∗k, for each voxel. This gradually earlifies rolling from a late onset behavior to
one that arises increasing earlier in ontogeny (S1 Video). As more individuals in the
population discover and earlify this rolling behavior, the competition stiffens until
eventually individuals which are not born rolling from the start are not fast enough to
compete (Fig 4C,D).

Generality of results

For the results above, the mutation rate of each voxel was under evolutionary control
(self-adaptation). In an effort to assess the generality of our results, we replicated the
experiment described above for various fixed mutation rates λ (S1 Fig), a variable
defined in S2 Appendix. The fastest walking behaviors are produced with the lowest
mutation rate we tested (λ = 1/48). This was the initial mutation rate used in the
evolved mutation rate experiment described in the previous sections. The best rolling
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behaviors are also produced by the lowest mutation rates, although higher mutation
rates facilitate the discovery of this phenotype. Without development, as in [4], the
search space has a single spike of high fitness. One can not do better than random
search in such a space. When λ = 1, optimizing Evo morphologies is indeed random
search, which is the only mutation rate at which Evo does not require significantly more
generations to find the faster design type, compared to Evo-Devo. This can be observed
in S1 Fig, for λ ∈ {1/6, 1/3, 1/2, 2/3, 1}, when the slopes of the median fitness curves
increase dramatically at some generation.

Discussion

In these experiments, the intersection of two time scales—slow linear development and
rapid oscillatory actuation, as from a central pattern generator—generates positive and
negative feedback in terms of instantaneous velocity: the robot speeds up and slows
down during various points in its lifetime (Fig 8J). Prior to canalization, unless all of
the phenotypes swept over by an individual in development keep the robot motionless,
there will be intervals of relatively superior and inferior performance. Evolution can
thus improve overall fitness in a descendant by lengthening the time intervals containing
superior phenotypes and reducing the intervals of inferior phenotypes. However, this is
only possible if such mutations exist.

We have found here that such mutations do exist in cases where evolutionary
changes to one trait do not disrupt the successful behavior contributed by other traits.
For example, robots that exhibited the locally optimal trotting behavior (Fig. 4A)
exhibited a tight coupling between morphology and control, and thus evolution was
unable to canalize development in either one, since mutations to one subsystem tended
to disrupt the other. Brief ontogenetic periods of rolling behavior (Fig. 4C), on the
other hand, could be temporally extended by evolution through canalization of the
morphology alone (Fig. 4D), since these morphologies are generally robust to the
pattern of actuation. The key observation here is that only phenotypic traits that
render the agent robust to changes in other traits become assimilated, a phenomenon we
term differential canalization.

This insight was exposed by modeling the development of simulated robots as they
interacted with a physically realistic environment. Differential canalization may be
possible in disembodied agents as well, if they conform to appropriate conditions
described in S1 Appendix.

This finding of differential canalization has important implications for the
evolutionary design of artificial and embodied agents such as robots. Computational
and engineered systems generally maintain a fixed form as they behave and are
evaluated. However, these systems are also extremely brittle when confronted with
slight changes in their internal structure, such as damage, or in their external
environment such as moving onto a new terrain [47–51]. Indeed, a perennial problem in
robotics and AI is finding general solutions which perform well in unseen
environments [51–54]. Our results demonstrate how incorporating morphological
development in the optimization of robots can reveal, through differential canalization,
characters which are robust to internal changes. Robots that are robust to internal
changes in their controllers may also be robust to external changes in their
environment [20]. Thus, allowing robots to change their structure as they behave might
facilitate evolutionary improvement of their descendants, even if these robots will be
deployed with static phenotypes or in relatively unchanging environments.

These results are particularly important for the nascent field of soft robotics in
which engineers cannot as easily presuppose a robot’s body plan and optimize
controllers for it [25, 55] because designing such machines manually is unintuitive. Our
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approach addresses this challenge, because differential canalization provides a
mechanism whereby static yet robust soft robot morphologies may be automatically
discovered using evolutionary algorithms for a given task environment. Furthermore,
future soft robots could potentially alter their shape to best match the current task by
selecting from previously trained and canalized forms. This change might occur
pneumatically, as in [56], or it could modulate other material properties such as stiffness
(e.g using a muscular hydrostat). This latter possibility seems promising given that
softer materials have been shown to simplify certain tasks [57] and are employed
extensively in some natural environments, such as underwater, while stiffer materials
are notably relied on for support in other environments, such as on land.

We have shown that for canalization to occur in our developmental model, some
form of paedomorphosis must also occur. However, there are at least two distinct
methods in which such heterochrony can proceed: progenesis and neoteny. Progenesis
could occur through mutations which move initial parameter values (`, φ) toward their
final values (`∗, φ∗). Neoteny could instead occur through mutations which move final
values (`∗, φ∗) toward their initial values (`, φ). Although a superior phenotype can
materialize anywhere along the ontogenetic timeline, late onset mutations are less likely
to be deleterious than early onset mutations. This is because our developmental model
is linear in terms of process, and interfering with any step affects all
temporally-downstream steps. Since the probability of a mutation being beneficial is
inversely proportional to its phenotypic magnitude [58], mutational changes in the
terminal stages of development require the smallest change to the developmental
program. Hence, late-onset discoveries of superior traits are more likely to occur
without breaking functionality at other points in ontogeny, and these traits can become
canalized by evolution through progenesis: mutations which reduce the amount of
ontogenetic time prior to realizing the superior trait (by moving `→ `∗ and/or φ→ φ∗).
Indeed progenesis was observed most often in our trials (Fig. 7): late onset mutations
which transform a walking robot into a rolling one are discovered by the evolutionary
process, and are then moved back toward the birth of the robots’ descendants through
subsequent mutations.

Finally, we would like to note the observed phenomenon of increased phenotypic
plasticity prior to genetic assimilation. Models of the Baldwin effect usually assume
that phenotypic plasticity itself does not evolve, although it has been shown how major
changes in the environment can select for increased plasticity in a character that is
initially canalized [59]. In our experiments however, there is no environmental change.
There is also a related concept known as ‘sensitive periods’ of development in which an
organism’s phenotype is more responsive to experience [60–62]. Despite great interest in
sensitive periods, the adaptive reasons why they have evolved are unclear. In our model,
increasing the amount of morphological development increases the chance of capturing
an advantageous static phenotype, which can then be canalized, once found. There is a
balance, however, as a phenotype will not realize the globally optimal solution by simply
maximizing development. This would merely produce a cube of maximum volume
shrinking to a cube of minimum volume, or vice versa.

The developmental model described herein is intentionally minimalistic in order to
isolate the effect of morphological and neurological change in the evolutionary search for
embodied agents. The simplifying assumptions necessary to do so make it difficult to
assess the biological implications. For example, we model development as an open loop
process and thus ignore environmental queues and sensory feedback [63–65]. We also
disregard the costs and constraints of phenotypic plasticity [66–69]. However, by
removing these confounding factors, these results may help generate novel hypotheses
about morphological development, heterochrony, modularity and evolvability in
biological systems.
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Conclusion

In previous modeling studies it has been shown that development sweeps over a series of
phenotypes in a single agent and sometimes exposes promising static phenotypes, which
can be subsequently canalized in later generations. Here, we introduced an embodied
model of development in which the agents’ morphologies and controllers were allowed to
change as they behaved and interacted with the environment. We observed differential
canalization as evolution discovered body plans robust to control changes and
genetically assimilated them, but the robots’ corresponding controllers were not
assimilated. Ontogenetic change in our case promoted late onset mutations in behaviors
because they cause only small changes in fitness, and are thus less likely to break the
system. This enabled the discovery of novel, superior phenotypes late in the life of
agents, and subsequent heterochronic mutations were able to prolong this behavior by
earlifying it during ontogeny, producing robots which exhibited the superior behavior
from birth. Other evolutionary trials discovered and refined good but inferior behaviors,
but evolution was unable to canalize them due to a tight coupling between morphology
and control: changes in either one tended to disrupt the other. The canalized body
plans of the superior behavior were the only traits discovered by evolution which
rendered the agent robust to changes in other traits, and they were also the only traits
to become genetically assimilated. This exposed a previously unknown detail about the
Baldwin effect: instead of all beneficial traits becoming genetically assimilated, only
phenotypic traits that render the agent robust to changes in other traits become
assimilated. For roboticists and AI researchers, these findings suggest that incorporating
ontogenetic change can reveal, through differential canalization, robots robust to
internal changes in their controllers, and which might thus also be robust to external
changes in their environment. For biologists, this suggests new mechanisms that may be
operating during the evolution of development which are hard to observe in biological
populations, but can be exposed in initially computational yet embodied models.

Methods

Resting length

Voxelyze [40] simulates a soft materials as a lattice of spring-like beam elements and
point masses. By default, voxels are perfect cubes with equal height, width and depth.
In these experiments, however, we alter the size of the voxels—shrinking some and
growing others—to sculpt mobile morphologies from a fixed collection of voxels. Under
this deformation, most voxels will not retain a cubic shape but instead will be
asymmetrically stretched and squeezed according to their own desired size and that of
their neighbors. For convenience we refer to voxels by their ‘length’, but in actuality we
are referring to a property of the beams exiting the center point of a voxel and
connecting it to its neighbors.

Ballistic development

Ballistic development, β(·), is simply a linear function from a starting value, a, to a
final value, b, across ontogenetic time, t ∈ (0, τ), with slope t/τ .

β(t | a, b, τ) = a+
t(b− a)

τ
(1)

For Evo, a = b, and hence
β(t | a, b, τ) = a (2)

15/27



How morphological development can guide evolution

which is just a constant value in ontogenetic time.

Current length

For smaller voxels, it is necessary to implement damping into their actuation to prevent
the center points of neighboring voxels from penetrating each other which can lead to
simulation instability. In voxels with resting length less than one centimeter, actuation
amplitude is limited by a linear damping factor, ξ(x), which approaches zero (no
actuation) as the resting length goes to its lower bound of 0.25 cm.

ξ(x) =

{
1 x ≥ 1
4x−1

3 x < 1
(3)

Actuation of the kth voxel, ωk(t), therefore depends on not just the starting and
final phase offsets (φk, φ

∗
k), but also the starting and final resting lengths (`k, `

∗
k). With

fixed amplitude A = 0.14 cm and frequency f = 4 Hz, we have

ωk(t) = A · sin
[
2πft+ φk +

t(φ∗k − φk)
τ

]
· ξ
[
`k +

t(`∗k − `k)
τ

]
(4)

The current length of the kth voxel at time t, which we denote by Ck(t), is the
resting length plus the offset and damped signal, ωk(t).

Ck(t) = `k +
t(`∗k − `k)

τ
+ ωk(t) (5)

Current length is broken down into its constituent parts for a single (undamped) voxel,
under each treatment, in Fig 8.

Evolutionary algorithm

We employ a standard evolutionary algorithm, Age-Fitness-Pareto Optimization [70],
which uses the concept of Pareto dominance and an objective of age (in addition to
fitness) intended to promote diversity among candidate designs. For 30 runs, a
population of 30 robots is evolved for 10000 generations. Every generation, the
population is first doubled by creating modified copies of each individual in the
population. Next, an additional random individual is injected into the population.
Finally, selection reduces the population down to its original size according to the two
objectives of fitness (maximized) and age (minimized). This procedure allows newer
lineages more freedom to explore alternative designs than older lineages which must be
highly fit to survive.

The mutation rate is also evolved for each voxel, by maintaining a separate vector of
mutation rates which are slightly modified every time a genotype is copied from parent
to child. These 48 independent mutation rates are initialized such that only a single
voxel is mutated on average. Mutations follow a normal distribution (σ` = 0.75 cm,
σφ = π/2) and are applied by first selecting what parameter types to mutate
(φk, φ

∗
k, `k, `

∗
k), and then choosing, for each parameter separately, which voxels to

mutate. In S2 Appendix we provide exact derivations of the expected genotypic impact
of mutations in terms of the proportions of voxels and parameters modified for a given
fixed mutation rate, λ. There is a negligible difference between Evo and Evo-Devo in
terms of the expected number of parent voxels modified during mutation (S2 Fig).
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Fig 8. Experimental treatments. The phase of an oscillating global temperature (A, F) is offset in the kth voxel by a
linear function from φk to φ∗k (B, G). The resting length of the kth voxel is a linear function from `k to `∗k (C, H). For
Evo, there is no development, so φk = φ∗k and `k = `∗k. The offset actuation is added on top of the resting length to
give the current length of the kth voxel (D, I). These example voxel-level changes occur across ontogenetic time (t),
independently in each of the 48 voxels, and together interact with the environment to generate robot-level velocity (E, J).
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Developmental windows

The amount of development in a particular voxel can range from zero (in the case that
starting and final values are equal) to 1.5 cm for the morphology (which ranges from
0.25 cm to 1.75 cm) and π for the controller (which ranges from −π/2 to π/2). The
morphological development window, WL, is the sum of the absolute difference of
starting and final resting lengths across the robot’s 48 voxels, divided by the total
amount of possible morphological development.

WL =
1

48(1.5)

48∑
k=1

|`∗k − `k| (6)

The controller development window, WΦ, is the sum of the absolute difference of
starting and final phase offsets across the robot’s 48 voxels, divided by the total amount
of possible controller development.

WΦ =
1

48π

48∑
k=1

|φ∗k − φk| (7)

Statistical analysis

We use the Mann-Whitney U test (also referred to as the Wilcoxon rank-sum test) to
assess statistical significance.

Source code

• https://github.com/skriegman/how-devo-can-guide-evo contains the source
code necessary for reproducing the results reported in this paper.

• https://github.com/skriegman/evosoro is a more general repository to fork
which provides additional examples in different environments and with various
evolutionary tool sets.

Supporting information

S1 Video. https://youtu.be/nWbpegOCeQY A brief overview of the results
reported in this paper.

S1 Fig. Mutation rate sweep. A hyperparameter sweep to assess the generality of
our results.

S2 Fig. Mutational impact. Expected genotypic impact of mutations in terms of
the proportion of voxels modified.

S1 Appendix. Embodiment. We outline conditions under which differential
canalization may occur in non-embodied agents.

S2 Appendix. Mutational impact. Exact derivation of expected genotypic
impact of mutations in terms of the proportion of voxels and parameters modified.
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Appendix

Embodiment

We consider an agent to be embodied if its output affects its input. This relationship
between an agent and its environment may be modeled as a partially observable Markov
decision process (POMDP), where:

• S is a set of states,

• A is a set of actions, and

• T is a set of state transition probabilities.

At each time period, the environment is in some state s ∈ S. The agent takes an
action a ∈ A, which causes the environment to transition to state s′ with probability
T (s′ | s, a). A control policy π specifies the action a = π(b) a robot will take next given
its current belief b about the new state of the environment. Usually, the goal is to find,
given T , the optimal policy π∗ which yields the highest overall performance.

The morphology of an agent can be considered as part of T since it mediates the
transition between s and s′, yet it is not part of π. By changing morphology we were
able to modify a subset of T in such a way that facilitated the search for π∗. This might
also be possible in disembodied agents if other dimensions of T can be changed by some
search process such as to facilitate the search for π∗.

Mutations

Mutations are applied by first choosing what material properties (i.e. voxel-level
parameters such as resting length and phase offset) to mutate, and then choosing,
separately for each property, which voxels to modify them in. For each of the n material
properties, we select it with independent probability p = 1/n. If none are selected, we
randomly choose one. This occurs with probability (1− p)n.

Hence the number of selected material properties for mutation is a random variable
S which follows a binomial distribution truncated on S ≥ 1 such that the entire
untruncated probability mass at S = 0 is placed on top of S = 1.

Pr(S = s | n) =


0 for s = 0

np(1− p)n−1 + (1− p)n for s = 1(
n

s

)
ps(1− p)n−s for s > 1

(8)

The expected number of selected material properties is then

E(S) = np(1− p)n−1 + (1− p)n +

n∑
s=2

s

(
n

s

)
ps(1− p)n−s (9)

= (1− p)n +

n∑
s=1

s

(
n

s

)
ps(1− p)n−s (10)

= (1− p)n + np (11)

= (1− p)n + 1 (12)
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The selected material property of each voxel is mutated independently with
probability λ, and thus the expected number of genotype elements mutated given K
total voxels is

δgene = λK · E(S) (13)

Diving by the length of the genome, nK, the expected proportion of genotype elements
mutated is

πgene = λ/n · E(S) (14)

Note that bilaterally symmetrical properties have the same expected values since they
are half the size but a mutation effects two voxels.

We have K = 48 total voxels, and n = {2, 4} material properties for our two main
experimental treatments {Evo, Evo-Devo}, respectively:

n = 2 n = 4
δgene 60λ 63.8175λ
πgene 0.625λ 0.3291λ

The expected number of voxels mutated is lower than the average number of genotype
elements mutated because there can be overlap/redundancies among the voxels selected
between the material properties. To calculate the average number of voxels mutated we
need to consider a hierarchy of binomial distributions.

The number of material properties mutated within the kth voxel given S selected,
M |S, follows binom(S, λ) ∀ k.

Pr(M = m | S, λ) =
(
S

m

)
λm(1− λ)S−m (15)

For convenience, let’s denote the probability that at least one mutation occurs to the
kth voxel as θ.

θ = Pr(M > 0 | S, λ) = 1− (1− λ)S (16)

Then the number of voxels mutated, V , across a total of K voxels and S selected
material properties, follows binom(K, θ).

Pr(V = v | S,K, λ, n) =
(
K

v

)
θv(1− θ)K−v (17)

And the expected number of voxels mutated (out of K total) is

δvox = E(V | K,λ, n) (18)

= ES [EV (V | S,K, λ, n)] (19)

= ES [Kθ | S,K, λ, n] (20)

= K
{
1− ES

[
(1− λ)S | λ, n

]}
(21)

= K

{
1−

[
(1− λ)(1− p)n +

n∑
s=1

(1− λ)s
(
n

s

)
ps(1− p)n−s

]}
(22)

= K

{
1− (1− p)n

[(
λp− 1

p− 1

)n
− λ
]}

(23)

There is an extremely tight bound on the proportion of voxels mutated,
πvox = δvox/K, for any n > 1 (S2 Fig). Thus, mutations in Evo (n = 2) and Evo-Devo
(n = 4) have practically the same genotypic impact in terms of the number of voxels
modified.
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S1 Fig. Mutation rate sweep. Median fitness (with 95% bootstrapped confidence intervals) under various mutation
rates, λ, a hyperparameter defined in S2 Appendix which affects the probability a voxel is mutated. In the main
experiment of this paper, the mutation rate is evolved for each voxel independently, and is constantly changing. In this
mutation rate sweep, λ is held uniform across all voxels. The fastest walking and rolling behaviors are produced with the
lowest mutation rate we tested (λ = 1/48), although higher mutation rates facilitate the discovery of rolling which is
much faster than walking. Without development, the search space has a single spike of high fitness corresponding to this
rolling behavior. One can not do better than random search in such a space. When λ = 1, optimizing Evo morphologies
is random search, and this is the only mutation rate at which Evo does not require significantly more generations to find
the faster design type, compared to Evo-Devo. This can be observed in for λ ∈ {1/6, 1/3, 1/2, 2/3, 1}, when the slopes
of the median fitness curves increase dramatically at some generation.
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S2 Fig. Mutational impact. The expected proportion of voxels modified, πvox, where n is the number of material
properties per voxel (voxel-level parameters such as `k and φk) and λ is the mutation rate (the probability of mutating a
voxel for a selected material property). A derivation is provided in S2 Appendix. In this paper, we have treatments Evo,
with n = 2, and Evo-Devo, with n = 4. There is an extremely tight bound on the proportion of voxels mutated for any
n > 1. At λ = 1 every voxel must be mutated while at λ = 0 there can be no voxels mutated. The arch between these
two points is limited by the possibility of overlap (selecting the same voxel more than once).
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