Photo Credits

Scanning electron micrograph of a mouse bronchial epithelial cell. Image courtesy of Michele von Turkovich, UVM Microscopy Imaging Center.
Confocal immunofluorescence image of a section through mouse aorta. Macrophages are stained green, actin red, and DNA blue. Image courtesy of Marilyn Wadsworth, UVM Microscopy Imaging Center; sample provided by Dr. Burt Sobel, Department of Medicine.
A canine kidney cell infected with Cryptosporidium parvum.  Confocal microscopy was used to visualize the parasite (green), and both the parasite and host cell nuclei (blue).  Image by Kovi Bessoff, MD, Ph.D. student rotating in the Huston lab.
Crystals of Methanocaldococcus janischii 8-oxoguanine DNA glycosylase. Image by Fred Faucher, postdoc in the Doublié lab. See Faucher F., et al. (2009) Structure 17:703-12.
Thymine glycol base pairs with adenine and maintains the same minor groove interactions as a canonical Watson Crick base pair. Image by Pierre Aller, postdoc in the Doublié lab. See Aller P. et al., (2007) PNAS 104:814-818.
A beta hairpin loop affects the switching of the primer strand from the polymerase to the exonuclease active site of RB9 DNA polymerase. Image by Pierre Aller & Matt Hogg, postdocs in the Doublié & Wallace labs. See Hogg M., Aller P., et al. (2007) J. Biol. Chem. 282:1432-1444.
Diffraction pattern of CFIm25, a pre-mRNA 3’-end processing factor. Image by Qin Yang, graduate student in the Doublié lab.
Enzymes of the base excision repair pathway repair oxidative DNA damage.

Image by Fred Faucher, postdoc in the Wallace lab.

A human fibroblast cell infected with Toxoplasma gondii. Fluorescence microscopy was used to visualize the nuclei of the parasites and host cells (blue), the parasite plasma membrane (red), and the parasite dense granules (light green).  Image by Mike Wichroski, graduate student in the Ward lab.
The position of a DNA lesion in chromatin DNA can affect the ability of a DNA glycosylase to excise the damaged base. Image by Ian Odell, graduate student in the Pederson lab.
A thymine glycol-adenine base pair captured in the active site of a replicative DNA polymerase. Image by Pierre Aller, postdoc in the Doublié lab. See Aller P. et al., (2007) PNAS 104:814-818.
Rat cerebral artery visualized by immunofluorecence miscrocopy using an antibody against the protein PGP 9.5. Image courtesy of Nicole Bishop, UVM Microscopy Imaging Center; sample provided by Dr. Marilyn Cipolla, Departments of Neurology and Pharmacology.
Scanning electron micrograph of Streptococci. Image courtesy of Michele von Turkovich, UVM Microscopy Imaging Center; sample provided by Dr. Grace Spatafora (Middlebury College).
Crystal structure of Methanocaldococcus janischii 8-oxoguanine DNA glycosylase in complex with 8-oxoG. Image by Fred Faucher, postdoc in Doublié lab.
  • What our students have to say...

    I joined the microbiology program as a first year student because I loved immunology and wanted to avoid ecology courses. It was the best decision I ever made. The courses in MMG progress naturally; you start out memorizing the basic material and later use that knowledge and the scientific literature to formulate answers to questions currently being asked in research labs around the world. No matter what jobs I take on over the course of my life, having confidence in my ability to think critically and answer complicated scientific questions will be key. The MMG program also allows so many opportunities to develop teaching skills and technical bench skills. Through the laboratory-heavy coursework, we become very comfortable with both basic microbiology techniques and more advanced techniques that other students won't learn until graduate school or the workforce. The advising in the MMG program is absolutely top-notch as well, and the students in the program are a tight-knit group. I have had an absolutely fantastic four years with this program and can't sing its praises highly enough!

    Katie (Double major in Microbiology & Molecular Genetics), graduated 2016