The Miracle and the Martyrs

Radiology pioneers in early 20th century Vermont helped establish the new discipline, and sacrificed their own bodies, piece by piece, in the process.
The UVM Medical Alumni Association invites you and your family to plan now to join your classmates for Reunion 2012 — June 8–10, 2012. Come back to Burlington and the UVM campus, your home during medical school. You may have lost contact with your classmates and former teachers, but Reunion will give you the chance to reconnect, rekindle old friendships, check out favorite places, talk with faculty, meet the medical students of today, and experience first-hand the growth and evolution of your medical alma mater.

EVENTS INCLUDE: Medical Education Today Session • Tours of the College, including the new Clinical Simulation Laboratory • Alumni Awards and Reception • Medical Alumni Picnic • Nostalgia Hour • Class Receptions

www.med.uvm.edu/alumni
The Miracle and the Martyrs

The discovery of the X-ray swept across medical science in the late 1890s and early 1900s, promising a new era of diagnosis. Two College of Medicine graduates helped establish the new discipline of radiology, and sacrificed their lives in doing so.

By Sarah Zobel

The Sharper Image

The Microscopy Imaging Center at UVM offers today’s researchers a one-stop place to find an unparalleled collection of innovative technologies to examine the world on an infinitesimally small scale.

By Jenny Blair, M.D.

A Passage in India

An alumnus finds that, even in a world of modern medical marvels, a simple human gesture can be the best and most humane treatment.

By Justin Sanders, M.D.’07

ON THE COVER: A late 1890s cyan print of a glass-plate radiograph of the hands of Walter Dodd, M.D. Dodd, who later earned his medical degree from UVM in 1908, became an expert at the newly discovered X-ray process while working at Massachusetts General Hospital. This X-ray was taken as part of the effort to determine what was causing burning and severe pain in Dodd’s hands. It would later be seen that the culprit was the excessive amount of X-rays to which Dodd subjected his hands and arms.
A medical campus is by its nature a busy place, with hundreds of students pursuing their education, research taking place throughout our laboratories, and important fruits of that research being translated into innovative patient care every day across the academic medical center. With all that activity, it’s not surprising to hear about something new that you’d never before realized was taking place here — vitality is our norm.

But it is unusual to find out about groundbreaking work that, while not hidden, has had far too little light shone upon it for more than a century. Such has been the case with the story of Lawrie Byron Morrison, a 1902 graduate of the College of Medicine, and Walter Dodd of the Class of 1908 who, in an unusual professional partnership, was both Morrison’s student and teacher. As detailed in this issue, these two alumni of the College helped to establish radiology as a specialty in this country, at a terrible price to their own health.

The X-ray was one of earliest examples of a technological breakthrough that revolutionized the practice of medicine in just a few short years. Dodd and Morrison brought that diagnostic tool to rural Vermont almost as quickly as it was available to patients in Boston or New York. Only over time, with the continued introduction of the use of radiation, did the dangers of overexposure become known, and it was on the hands and arms of these early radiologists — limbs that were constantly passing unprotected through the X-ray beam to position patients — that the effects were first seen. What amazes us today is that, even after the potential danger was revealed, these physicians forged ahead.

Today, we have an enormous range of medical imaging and radiological treatment options, and the knowledge to use them safely, thanks in large part to Morrison and Dodd’s original work.

The world has changed immensely in the last century; but in many ways the role of our academic medical center has remained constant. Today, as in the early 20th century, this is the place for Vermonters and others from across the North Country to come when seeking the latest advances in the healing arts. We remain the place in the Green Mountain State pioneering work that improves lives.

Frederick C. Morin III, M.D.
Dean, University of Vermont College of Medicine
Leffler Named Chief Medical Officer at Fletcher Allen Health Care

Stephen Leffler, M.D.’90, professor of surgery at the College of Medicine and most recently medical director of the Emergency Department at Fletcher Allen Health Care, has been named to the position of Chief Medical Officer at Fletcher Allen Health Care.

As CMO, Leffler serves as the senior clinical executive responsible for medical staff affairs, the Jeffords Institute for Quality, medical technology management and medical ethics. As a member of senior management, he participates in strategic decision-making and strategy development for Vermont’s academic medical center. Leffler brings with him 18 years of service to the academic medical center. He will also provide leadership in helping to develop a regional integrated system of care, drawing upon his experience working with other hospitals and physicians in the region.

Leffler has served on numerous clinical committees during his nearly two decades as an Emergency Department physician in Vermont, and has been a key collaborator on significant organizational initiatives, including Fletcher Allen’s regional STEMI project, an innovative program to ensure heart attack victims receive life-saving care as rapidly as possible. He is also past president of the Vermont Chapter of the American College of Emergency Physicians. He received his medical degree from the College in 1990 and completed his residency training in Emergency Medicine at the University of New Mexico.

Wong Heads Leadership Changes at Continuing Medical Education

Cheung Wong, M.D., associate professor of obstetrics, gynecology and reproductive sciences and director of gynecologic oncology, has been appointed associate dean for continuing medical education at the College of Medicine. Wong, who joined UVM/Fletcher Allen in 2000, replaces Jeffrey Klein, M.D., professor of radiology and director of thoracic radiology, who served as associate dean since June 2006.

Board-certified in gynecologic oncology and obstetrics and gynecology, Wong has published more than 20 peer-reviewed articles and serves as a reviewer for the journals Gynecologic Oncology, Cancer, and Obstetrics and Gynecology.

He has earned the national Association of Professors of Gynecology and Obstetrics Excellence in Teaching Award four times in the last nine years.

In another important transition, Director of Continuing Medical Education Linda Saia retired in October after 36 years of service to the College of Medicine, the last 22 of which were spent directing the CME Office. Saia’s tenure saw the CME Office grow from seven postgraduate activities to more than 30 UVM/Fletcher Allen sponsored conferences in recent years. She also guided the office through five successful reaccreditations. Terry Caron, who has been a part of the UVM CME team for twelve years, has assumed the directorship.
Schweitzer Fellows Uphold “Reverence for Life”

Nobel Peace Prize recipient Albert Schweitzer’s “Reverence for Life” philosophy — the impact it made while he was alive and that it continues to make worldwide — is the foundation upon which the Albert Schweitzer Fellowship (ASF) program was built. Among the latest class of New Hampshire–Vermont Schweitzer Fellows are nine College of Medicine students, who have joined approximately 250 other Schweitzer Fellows across the country this year in conceptualizing and carrying out service projects that address the unmet health needs of underserved individuals and communities. The Class of 2014 students and their projects include:

Katherine Anderson, who recently started her second health education class for pregnant and parenting women struggling with mental health or substance abuse issues at Burlington, Vermont’s Lund Family Center.

Elizabeth Blasberg and Mairin Jerome, whose project objective is to locate a more comprehensive medical home for adult refugees in Chittenden County. The students are surveying refugees and various primary care providers in the area to assess current needs, obstacles, and perspectives in order to work with both groups to determine what the medical home should look like and where it should be located.

Peter Cooch and Anastasia Coutinho, who in collaboration with the Community Health Center of Burlington’s Jon Bourgo and Andrea Green, M.D., assistant professor of pediatrics, are developing culturally sensitive lesson plans for several health literacy courses for refugee groups in Burlington. The courses, which will be offered simultaneously and will be led by first-year medical students, are expected to commence in October.

Hannah Foote and George “Bud” Vana are working with the Vermont Department of Health to provide information about childhood immunizations to underserved pregnant women and their partners.

Ashley Miller and Alyson Guillet are targeting Fletcher Allen Health Care volunteers who work with an elderly inpatient population at risk for dementia and are focusing on cognitive stimulation for delirium prevention.

Upon completion of their initial year, the 2011–12 Schweitzer Fellows will become Schweitzer Fellows for Life and join a vibrant network of over 2,000 individuals who are skilled in, and committed to, addressing the health needs of underserved people throughout their careers as professionals. Ninety-nine percent of Fellows for Life say that their ASF experience is integral to sustaining their commitment to serve the underserved. More information can be found at: www.schweitzerfellowship.org/nhvt.
Lucey Receives Institute of Medicine’s 2011 Lienhard Award

The Institute of Medicine presented the 2011 Gustav O. Lienhard Award to Jerold F. Lucey, M.D., professor emeritus of pediatrics, at the organization’s annual meeting in Washington, D.C., on October 17. The award recognizes Lucey’s research and application of medical technologies and procedures to the care of premature infants that have helped save millions of lives. In addition, the award honors Lucey’s role in expanding the global influence and reach of the journal *Pediatrics* as its editor-in-chief, and for establishing the Vermont Oxford Network, an international forum that provides experts with opportunities to collaborate and explore the latest advances in treatments for premature infants.

Mann Named Distinguished Scientist by American Heart Association

Professor of Biochemistry and Medicine Kenneth Mann, Ph.D., was awarded the Distinguished Scientist designation by the American Heart Association (AHA)/American Stroke Association (ASA) during the November 13 opening session of the AHA 2011 Scientific Sessions in Orlando, Fla. The AHA/ASA created the Distinguished Scientist designation in 2003 to honor prominent scientists and clinicians whose significant, original and sustained scientific work has importantly advanced the understanding of cardiovascular diseases and stroke. A longstanding fellow of the AHA, Mann’s groundbreaking blood coagulation research, which has been strongly supported by the National Institutes of Health, the AHA, and the pharmaceutical industry over the past 40 years, has led to more than 500 publications and the issue of 12 patents.

Barton Named Director of Office of Primary Care and AHEC Program

Denis Barton, M.A., M.B.A., has been chosen as the new director of the Office of Primary Care and Area Health Education Centers (AHEC) Program. Barton replaces Elizabeth Cote, who served as director for seven years and recently left to become executive director of the Vermont State Dental Society. Barton, who received a B.A. degree in Sociology from Boston College, M.A. degree from the State University of New York — Albany and an M.B.A. degree in Health Care Management from Boston University, most recently held the position of director of Vermont public policy for the Bi-State Primary Care Association, where he represented Community Health Centers, Area Health Education Centers and Free Clinics in Vermont. He has also served in a variety of positions within Vermont state government including the Department of Health, the Offices of Vermont Health Access, Alcohol and Drug Abuse programs and Rural Health and Primary Care.

Jemison Serves as 2011–12 Chair of AAMC Group on Information Resources

Director of Technology Services Jill Jemison has been named the 2011–12 chair of the Association of American Medical College’s (AAMC) Group on Information Resources (GIR). The GIR promotes excellence in the application and integration of information resources in academic medicine and focuses on research, development, and policy-setting on information resources, informatics, educational technology, infrastructure, standards, and related science and technology. Jemison joined the UVM College of Medicine staff in 2002 and helped launch the College’s COMET system. She also serves as the AAMC GIR Professional Development Subcommittee member. A former chair of the AAMC Education Technology Special Interest Group, she was selected as one of 30 Fellows nationwide to participate in the AAMC GIR Leadership Development Institute in 2006.

Duncan and Green Receive American Academy of Pediatrics Awards

Two University of Vermont College of Medicine pediatrics faculty members were recognized with prestigious awards at the American Academy of Pediatrics’ (AAP) National Conference and Exhibition in Boston, Mass., in October. Paula Duncan, M.D., professor of pediatrics, received the Abraham Jacobi Award. This award, which is presented to a pediatrician who is a member of both the AAP and the American Medical Association, recognizes long-term notable national contributions to pediatrics in teaching, patient care and/or clinical research. Andrea Green, M.D., assistant professor of pediatrics, received the AAP Local Heroes Award from the AAP’s Council on Community Pediatrics.
James and Cohen Named Latest Frymoyer Scholars

Addressing ineffective physician-nurse communication — a problem that has been linked to the occurrence of medical errors in clinical practice — is at the core of an educational program proposal that earned Ted James, M.D., associate professor of surgery and director of the surgery clerkship, and Celia Cohen, R.N., M.S.N., an educator in Central Nursing and Research Education at Fletcher Allen Health Care, a 2011–2012 Frymoyer Scholarship.

James and Cohen’s jointly-developed program aims to prevent patient safety mishaps by teaching and assessing health communication skills, professionalism, and inter-professional communication required to optimize patient care through a series of simulated clinical management scenarios. Their educational intervention relies on “mock pages” — alerts sent to students’ pagers — at the start of each clinical scenario, which will be based on standardized and peer-reviewed clinical cases and will take place in the UVM/Fletcher Allen Clinical Simulation Laboratory. Students will have an opportunity to both practice and receive feedback from faculty on their clinical assessment and communication skills during these scenarios. In addition, debriefing sessions that reinforce communication teaching points will take place following each session.

The Frymoyer Scholars program is an investment in outstanding medical education and promotes teaching that emphasizes the art of patient care. The program is supported by The John and Nan Frymoyer Fund for Medical Education. Frymoyer served as dean of the College of Medicine from 1991 to 1999 and also served as CEO of Fletcher Allen from 1995 to 1997. His late wife, Nan Frymoyer, was a former community health nurse and had a strong interest in patient advocacy.

Alumnus Brings a Surgeon’s Attention to Detail to His First Novel

For the last three decades, Stephen Russell Payne, M.D., has experienced daily life from the vantage point of a surgeon and clinical assistant professor at the College of Medicine: examining and counseling patients, teaching medical students, and using the surgeon’s art to help repair and renew. Now Payne’s other passion — writing about the human condition — which he has long pursued in pieces published in various New England literary journals, is on view in longer and more complex form in his first novel, Cliff Walking, published by Cedar Ledge Publishing.

Payne describes his novel, which portrays the mixture of loss and love that ties together the lives of three desperate people on the Maine coast, as a fictionalization of some of his own observations of the difficult topics of abuse and drug and alcohol addiction. Payne sees Cliff Walking as a love story, one that shows “that the healing power of hope can grow out of feelings of desperation.”

Writing and the practice of medicine have been intertwined in Payne’s life for years. A lifelong writer, he has published fiction, non-fiction and poetry in a number of publications including Vermont Life magazine, the Tufts Review, the Vermont Literary Review, Livin’ the Vermont Way magazine and Route 7 — Vermont Literary Journal.

A fourth-generation Vermonter from the Northeast Kingdom, Payne studied premed and English at Tufts University, and received his Masters in English from Tufts before earning his medical degree from the UVM College of Medicine in 1983. After finishing his surgical training he went into practice at Northwestern Medical Center in St. Albans, Vermont. Payne has been a member of the faculty of the Department of Surgery since 1988. Over the years, he has studied with and/or been mentored by poets X. J. Kennedy, Galway Kinnell, and the late Denise Levertov.
Postdoctoral Fellow Case Publishes Immune System Research in Science

Research coauthored by Laure Case, Ph.D., a postdoctoral fellow in the lab of Professor of Medicine and Pathology Cory Teuscher, Ph.D., and published in the October 14, 2011, issue of Science, sheds new light on the mechanisms that allow an HIV-like retrovirus to avoid the immune system and survive. In addition, this new information has provided valuable insight into autoimmune disease research taking place at UVM. In their Science study, Case and her University of Chicago colleagues focused on an immune evasion strategy used by a retrovirus — a mouse mammary tumor virus or MMTV — that suppresses the body’s innate immune system by exploiting the natural bacteria in the host body’s gut to produce what Case puts in lay terms as a “sort of Harry Potter invisibility cloak” to avoid activating the body’s immune system’s antiviral response. The study also provides insight into processes affecting autoimmune disease prevention — a key area of ongoing research by Teuscher, Case, and their colleague, Professor of Pathology Sally Huber, Ph.D.

Sigmon Study Examines Caffeine Use and Risk of Stimulant Abuse

New findings reported in the November issue of the journal Drug and Alcohol Dependence by Associate Professor of Psychiatry Stacey Sigmon, Ph.D., suggest that high-calorie energy drinks or soda might present more than just obesity risk in consumers. Sigmon’s study found that an individual’s subjective response to caffeine may predict how he or she will respond to other stimulant drugs, possibly reflecting differences in risk for abuse of other more serious drugs of abuse, such as amphetamine and cocaine. “While these data do not mean that every coffee lover is at risk for proceeding to cocaine abuse,” says Sigmon, “this study does show that individuals vary markedly in their subjective and behavioral response to psychomotor stimulants, and those for whom a modest caffeine dose serves as a reinforcer are the same folks who subsequently report more positive subjective effects of d-amphetamine.”

Seagrave Receives HRSA Award for Team-Oriented Patient-Centered Medical Education

An innovative UVM-developed family medicine training curriculum has earned a five-year, $945,000 grant from the Health Resources and Services Administration. Led by Martha Seagrave, PA-C, R.N., assistant professor and director of medical student education in the Department of Family Medicine, the project is designed to inspire and prepare future family physicians to provide patient-centered and team-oriented medical care in rural and underserved communities. The project launched in October. Called TOPMed — Team-Oriented, Patient-centered Medical Education — this new curriculum progressively introduces medical students to the concepts, language, and integration of knowledge, skills and attitudes central to the Patient-Centered Medical Home (PCMH) concept.
The science of becoming a doctor: formidable. A month in and first-year students are deep into human structure and function, understanding gross and microscopic anatomy, the embryological development of each organ system, how they work and interrelate. These are the building blocks of becoming a competent physician. But patients are more than their anatomical parts. How do doctors learn to treat the person?

The College of Medicine is taking a creative approach to helping students hold on to their humanity in a field that will become increasingly technical and competitive. That’s part of the aim of the doctoring skills course, to teach the art of empathy within an inherently, even theatrically unequal dynamic — the white-coat power symbol versus the “crispy paper towels,” as medical professor Alan Rubin, M.D., calls the attire patients are often asked to cover themselves with.

One aspect is learning to observe without interpreting — a challenge, at least at first. This year, inspired by a performance at the Fleming Museum in which student actors wore elaborate commedia dell’arte masks, Rubin initiated a collaboration with Sarah Carleton, associate professor of theatre, to have students perform a series of three skits for the doctoring skills class he co-teaches, asking them after each, “What did you notice? What did you see? What did you hear?”

In this vignette of a blind date, med students noted the backpack used, unconsciously or not, as a barrier between the couple.

The scenes were consciously nonmedical, circumstances new med students might easily relate to — coming home for Thanksgiving the first year of college and interacting with a grandmother, a blind date, a man at an airport bar. “We wanted them to use their own vision and their own language in describing what they saw,” explains Rubin.

After each skit students broke into small groups to talk, then opened a class discussion. They mentioned body language, when the characters looked away, avoiding. The man in the bar, someone noted, was old, at which Rubin shot back, “you’re interpreting.” The man had white hair, wrinkles, walked with a cane. Observations.

That focus on observation was key according to student Andrew Jones. “It took people out of this zone that we often get in that’s focused on medicine and forced them to think about people and interpersonal interaction, humanizing that relationship,” he says. “As medical students we’re inclined to think about getting right answers. If the situation had been (to make) a diagnosis, I guarantee that most of my peers would have been thinking, ‘What’s wrong with this guy? How do we fix him?’ Look at the way he’s sitting, maybe he has back pain.’” Instead we were forced to look at this person, listen to this person and ask, “What are they feeling? What are they thinking?”

The reaction Jones heard outside of class backs that up. He says students enjoyed hearing other people’s observations and interpretations and how they differed from their own. The meaning behind the sound of a sigh or the tilt of a head is not a textbook case. One person, says Jones, felt uncomfortable during the grandmother-granddaughter interaction. Others did not.

The fact that tension was sensed there at all, fairly universal in the class discussions, surprised Carleton because she hadn’t intended that to be part of their relationship. That, she says, is the thing about the mask. “When you hide in a mask, it exposes other aspects of the (actor’s) psyche. It’s the natural power of the mask, and the audience can’t help but respond,” says Carleton.

“I think the masks encouraged people to look at nonverbal communications, to look at body language,” Jones says. “What the mask signified to me was that the face was unimportant in what we were doing. We’re going to look at the rest of their body; we’re going to use those other skills.”
Claire Verschraegen, M.D.

VM: You’ve helped to build a cancer center before. What skills do you bring to Vermont that will help us reach the goal of National Cancer Institute designation for the VCC?

LR: I really think that to be good at this job, you have to listen to everyone, and you have to encourage everyone — for instance, if they have a research idea, to encourage them to go ahead and apply for grants, and not wait for the next funding cycle. I am willing to provide faculty with a respite from their clinical responsibilities in order to help them achieve their research goals. I think people are capable of doing more than they realize if they are encouraged and supported and their efforts are recognized. I’m basically a cheerleader and an orchestra conductor here; I can’t play every instrument, and wouldn’t want to. It’s important to remember that the spirit of an NCI designation is really focusing on how we can improve care for patients — either by preventing the disease, or treating them better, or diagnosing them earlier, or preventing them from having a relapse.

VM: As you look ahead at the coming year, how do you envision what the ultimate structure of the cancer center will look like?

LR: I will designate program leaders. They must have actively funded research — that’s an NCI requirement. The heads of each of the programs will be part of the senior leadership of the cancer center, and will help to make the strategic decisions regarding how to apply for the NCI designation. There will be an internal advisory board and an external advisory board. We already have formed an embryo of an internal advisory board; it can change depending on the way that things are crystallizing. We are going to have to have some shared resources; we already have two or three. I’m looking at more shared resources — genomics, tissue banking, pathology, microscopy, and a clinical trials office. You really follow the NCI guidelines to put the structure in place and then you try to select who fits best in the role that the NCI is asking you to assign.

VM: If you had to identify three simple goals you have as the VCC director and chief of Hematology/Oncology, what are they?

LR: One is to capture data in an electronic fashion so that we can do outcomes research and interrogate the database. This allows us to be sure we ask the right questions and propose research to answer them. Another one is to help build the programs by encouraging people to get more grant funding for supporting those programs. And the third one goes back to what I said about being a cheerleader — pulling people together to support the effort, so that we are successful. I can do a lot, but without the whole it’s never going to work out completely. We have to be one body that wants to come together. Part of this is acting as a teacher. I think teaching the next generation of physicians and scientists so that they can take over would really be one of my concerns — to teach them well, and thereby ensure that our future patients are well served.
Two College of Medicine graduates helped establish the new science of radiology in the early 20th century, and gave their lives in the process.

by Sarah Zobel | photography by Raj Chawla
At a professional meeting of roentgenologists in 1920, a chicken dinner was served. Soon after the plates were set down, it became apparent that few of the attendees were able to enjoy the meal. After years of working with X-rays, so many had lost fingers or hands to radiation-induced damage that almost no one was able to cut the meat by themselves. Among them, perhaps, were some of the men who would forever be known as radiology martyrs.

Two who earned that unfortunate sobriquet had significant ties to the University of Vermont College of Medicine and in their short lives left a definitive mark on the field of radiology: Walter James Dodd, M.D., of the Class of 1908, and Lawrie Byron Morrison, M.D., who graduated in 1902.

On a Friday afternoon in November 1895, German physicist Wilhelm Roentgen was working in his laboratory with a Crookes tube — a glass bulb with the air evacuated from it and two or more electrodes sealed inside — connected to an electrical induction coil. The room was dark and the tube was covered with black paper because Roentgen hoped to measure the rays coming from it. When Roentgen switched on the electrical current, however, this cathode ray tube cast a glow on a screen coated with barium platino-cyanide that lay a few feet away. Through further investigation, Roentgen would determine that a new kind of radiation was emanating from the tube. In addition, he observed that the rays passed through most substances, including soft tissue, but not certain metals and human bones. He termed this radiation “X-rays” because its source was unknown to him. Days later, Roentgen took his first photographic X-ray: his wife’s hand, her wedding band and bones easily discernible. Though she was horrified by
what she saw as a visible reminder of her mortality, others were more appreciative. In a matter of months — before it had been fully tested and understood — the X-ray would become both scientific tool and entertaining curiosity worldwide. To the medical community it seemed a miracle — where definitive internal diagnosis had required risky surgery, a simple machine could now supply the view. For his work, in 1901, Roentgen received the first Nobel prize in physics.

Walter James Dodd, M.D., of the Class of 1908 was sent to Boston from his home in London in 1879 at age ten, soon after his father’s death. Dodd was raised by his sister; when he was old enough to work, she made it clear that she thought it a poor choice for him to follow his plan of going to sea as a coffee and tea merchant. So Dodd’s Sunday school teacher recommended him to her cousin, Harvard University’s President Charles Eliot; Eliot found Dodd a position as assistant janitor in the Boylston Chemical Lab at Harvard, beginning in 1887. In the lab, Dodd was expected to clean, but he asked permission to also be allowed to prepare materials for chemical experiments.

At the same time, Dodd began attending lectures in chemistry and qualitative analysis, and in 1892 he was appointed assistant apothecary at Massachusetts General Hospital (MGH), advancing to the chief’s position within two years. The apothecary’s work required the filling of prescriptions, but he was also the hospital’s official photographer of “interesting” people, whether dead or alive.

In early 1896, reports of Roentgen’s discovery reached MGH, and Dodd immediately set about conducting experiments to produce radiation. Within a few months Dodd constructed a machine that took the first X-ray exposure in an American hospital.

Not long after, by the autumn of 1896, Dodd had begun to suffer the effects of radiation exposure.
Class of 1902 member Lawrie Byron Morrison was born in Barnet, Vermont, in 1875, one of 12 children. His path to medicine was less circuitous than Dodd’s: he graduated from Peacham Academy and went directly to the University of Vermont, where he earned both undergraduate and medical degrees. After training in Philadelphia and Montreal, Morrison returned to the university as instructor in embryology, histology and pathology. In short order, he was appointed medical director and assistant superintendent of the Mary Fletcher Hospital.

Dodd, meanwhile, had been advised by his colleagues at MGH that he would never enjoy the prestige and respect accorded physicians and surgeons unless he, too, had a medical degree. In short order, he enrolled at Harvard Medical School, but left after one year because he was too distracted, constantly sought out for his expertise in radiography. He transferred to UVM, where he hoped he would be far enough removed to be allowed to focus on his studies. Not one to rest, he continued to serve as pharmacist at MGH during that time, even as he was elected president of his medical school class. After graduating, Dodd was formally appointed roentgenologist at MGH, making official what he had been doing for years. He also joined forces with George Holmes, M.D., to establish a private radiology practice on Beacon Street.

At UVM, Dodd had studied under Morrison. Yet the student was also the teacher: during that time, Dodd ignited Morrison’s interest in radiology, and helped him install the first X-ray equipment at Mary Fletcher, where Morrison was then appointed radiologist. After Dodd returned to Boston, he invited his former professor to join him in his practice, and in 1914, Morrison left for Boston. He was one of the few radiology pioneers to enter the field as a physician rather than as a physicist, an engineer, or a photographer.

Dodd is recognized for his importance in the field of early American radiology. Though his name is less familiar, Morrison’s contribution to the emerging field was no less significant. After moving to Boston, he went on to establish radiation centers at several Boston-area hospitals, including New England Deaconess (now Beth Israel Deaconess), New England Baptist, Faulkner, Robert Bent Brigham (now part of Brigham and Women’s), and Corey Hill. He focused his extensive research career on osteocarcinoma, the calcification of vessels in diabetics, and the role of radiology in the diagnosis of colon cancer and hip disease. Perhaps most important, he was the first radiologist to show a hiatal hernia in the esophagus and stomach through use of an X-ray and contrast medium.

As with so many scientific discoveries, the early reaction to the development of X-rays was exaggerated. Physicians, of course, were eager to use them as both diagnostic and treatment tool, but they weren’t the only ones who fell prey to “roentgen mania.” Department stores installed machines to show the bones in customers’ feet, so that employees could be sure new shoes fit properly. Cranial X-rays were suggested as a means to cure criminal behavior, as well as a way to reform drunkards and smokers. Medical schools talked of using X-rays to reflect diagrams directly onto
students’ brains, in the hopes of creating a more lasting impression than traditional methods of learning. One experimenter claimed that he had caused a dog to salivate by projecting an X-ray image of a bone on its brain, and there were rumors of someday using X-ray glasses to see through women’s clothing. But medicine reclaimed X-rays when the novelty abated, particularly when negative side effects began to be routinely reported.

Complications from X-rays were observed from their earliest use — published reports of hair loss after prolonged exposure to X-rays appeared within weeks of Roentgen’s discovery. In 1896, there were nearly two dozen reports of skin damage related to radiology — redness, itching, drying, and blisters on exposed hands, arms, and face. Thomas Edison began experimenting with X-rays shortly after Roentgen’s discovery. Most of Edison’s lab work was actually performed by his assistant, a former lightbulb glassblower named Clarence Dally. Dally became the first American to die of radiation exposure in 1904, a development that shocked Edison into abandoning all X-ray research. Later that year, the first American radiologist died from related causes. The speed with which burns developed into metastatic epidermoid carcinoma startled the medical community.

Because a great deal of the early X-ray equipment — like Dodd’s and Morrison’s — was homemade, the dangers of X-rays were magnified. And even those that were not homemade tended to be unreliable, producing radiation that was intermittently too weak to be effective and then strong enough to irradiate people in nearby rooms.

Physicians worked with a variety of tubes, depending on what they needed for a given patient. Gassy tubes had less penetrating rays, and could be used on less dense parts of the body; to look at the abdomen, however, they needed to use better-evacuated tubes, which produced more energy and emitted powerful rays. These tubes were not enclosed when in use, which exposed both doctor and patient to their rays. The seat-of-the-pants approach to the new technology only added to the risk. One early X-ray therapist said that because dosages were uncertain and results capricious, the best one could do was put a patient on a table under the machine and hope for the best. Patients were often burned from inaccurate doses, and occasionally even electrocuted.
Radiologists were learning as they went, in many cases unaware of the dangers of their procedures. In calibrating the fluoroscope used in daily practice, for example, they would pass their own hands beneath it, in direct exposure to the X-rays. Early fluoroscopes were worn like masks, and rays passing through or around them fell heavily on the user’s face, hands, and upper torso. Sometimes, to calm anxious patients, physicians would personally demonstrate how safe and easy the process was, taking unnecessary X-rays of themselves. Others did the same thing to amuse patients with the novelty of it all. Though there were many who suspected the risks, others operated under a false sense of security, wearing only leather, silk, or rubber surgical gloves as protection. And all kept up the innocent hope that a cure for radiation-related illnesses would soon be discovered.

Dodd suffered his first bout of dermatitis, on his face and hands, in 1896. He reported that the pain was “beyond description”; his skin appeared as though burned. Soon Dodd’s hands became so inflamed that he couldn’t sleep; instead, he covered them with a salve and gauze and walked the floor of the hospital pharmacy all night, hands held above his head. When the inflammation quieted down, after a couple of weeks, he would get back to work — until it recurred. In 1897, he received his first skin graft, but it was unsuccessful, and within five years, cancer had spread through his fingers. He began a series of what would eventually be 50 operations lasting an hour and a half to three hours each. During these procedures, bits of his fingers were removed, one piece at a time. He sometimes went to the operating table not knowing how much of his hands would be left when he woke up. Decisions were made by Dodd and his surgeon about how much to remove from each lesion-ridden hand, based on a given finger’s level of usefulness. Although it was burdened with a cancerous ulcer, Dodd kept his little finger as long as he could so he would have something to press against when using the X-ray equipment.

And still he kept working. In 1915, Dodd volunteered to serve with the Harvard Medical Unit attached to the British Expeditionary Forces in France. He was transported to the train station by ambulance, a wound in his upper arm and chest wall raw from a recent operation. It was reported of Dodd that despite his continued outwardly sunny demeanor, it pained him to go out in public, where people would inevitably stare. He dreaded going to the houses of friends, even, for a meal, since he was certain there would be some mishap with his food. Though he still frequently went to the theater, he would stand in the back, so as to be able to leave without drawing attention. A photograph taken in 1915, before Dodd shipped out from Britain to France, shows him sitting cross-legged, with his hands purposefully hidden behind one knee.

Morrison would suffer the same effects, losing his fingers a knuckle at a time, beginning with his left hand in 1929. In quick succession, his right hand was affected, and by 1931 his entire left arm had been amputated. Like Dodd, Morrison put off as long as possible any amputation that would affect his active practice.
Lawrie Morrison, M.D., left behind an office’s worth of X-ray equipment. His only child, Harvey, also a radiologist, donated it to UVM; there was talk of using it to start a medical museum centered around radiology. When space became tight, Harvey Morrison worked with UVM’s Bradley Soule, M.D., to find room for the equipment at the Franklin County Museum, through the auspices of the St. Albans Historical Society, where it has been housed since 1972. At that dedication ceremony, the younger Morrison stated that it was his hope that the exhibit would be considered a memorial to the pioneers in the field of radiology from all over the world.

In the coming year, Lawrie Morrison’s early twentieth-century roentgenology equipment will have a new home, as it joins other collections of artifacts honoring the early radiological pioneers at the Warren Anatomical Museum at the Countway Library of Medicine at Harvard University. “It’s a large collection, and it’s intact, which is pretty rare,” said Warren curator Dominic Hall, listing some of the many pieces that interested him. Those include a two-screen light box, an examination table, a Snook machine (which generated the high-voltages needed for early tubes), a headpiece that directs the X-ray beam to the jaw, a stereocard collection showing the headpiece in use, and several rare glass-plate X-rays. “With this equipment collection, you have a tangible testimony to Morrison’s contribution to early twentieth-century radiological science, particularly in the New England area. It’s especially important because he didn’t leave an extensive published record, and this affords a wonderful way for him to be remembered.”

John Tampas, M.D., ’54, former chair of radiology at the College of Medicine, has been instrumental in coordinating the donation.

A Record of Research and Sacrifice

Above, a cabinet displays just part of the large Morrison collection during its display at the Franklin County Museum. The Morrison Collection is scheduled to be transferred to the Warren Anatomical Museum in 2012. Below, Morrison’s red goggles, used to enhance the reading of early radiographs, will remain with the small collection of his artifacts remaining at the College of Medicine.
Both men continued to practice medicine until close to their deaths — Dodd’s in 1916 at age 47 and Morrison’s in 1933 at age 58, of generalized pulmonary metastatic disease.

One might wonder why these men continued to expose themselves to radiation, even when there had been concern as far back as 1896 about doing so. In the first few months of roentgenology, reports of alopecia, erythema, and skin lesions had been shared by doctors who implored practitioners to hold off until the action of the X-rays was better understood. But Dodd and Morrison, and many of their colleagues, were willing to suffer the consequences associated with their specialty in the name of science.

“I think that Dodd and Morrison were just too intrigued by the potential of this specialty to worry about it,” said John Tampas, M.D.’54, former chair of radiology at the UVM College of Medicine. “Were they practicing a little self-deception? Probably to a partial degree, yes. There’s no question that these men had an utter disdain for any distraction that took them away from their totally fascinating work.”

One contemporary said that Dodd had won the respect of the entire MGH staff through his “careful, painstaking work and by his ever-willing self-sacrifice.” Some referred to him as a “roentgen saint.” Both Dodd and Morrison were willing models for their patients, many of whom were hesitent to undergo diagnostic or therapeutic X-rays until their doctors showed them how easy and painless it was. At the same time, the two men knowingly served as models for their colleagues in what not to do in working with X-rays, and as a reminder to take all available precautions.

They were far from alone. Roentgenology, it is said, was understood to be a field in which certain individuals were willing to suffer pain and disfigurement. Those so-called X-ray martyrs eventually earned international recognition. In 1936, a monument at Saint Georg Hospital in Hamburg, Germany, was dedicated to them. It is inscribed:

To the roentgenologists and radiologists of all nations — doctors, physicists, chemists, technicians, laboratorians, and nurses — who sacrificed their lives in the struggle against the diseases of mankind. They were heroic pioneers who made possible the successful and safe use of roentgen and radium rays in medicine.

The monument’s vertical stone shape is said to represent an amputated finger; the names of 350 individuals, including 40 Americans, are listed in alphabetical order on its faces, so as to downplay any one person’s importance over another. Walter Dodd’s and Lawrie Morrison’s names are among them.

It wasn’t until 1928 that X-ray safety guidelines would be issued by the International Congress of Radiology (ICR). They specified the amount of lead needed to shield X-ray tubes of varying voltages and even the necessary size, temperature and color scheme for X-ray rooms. But even those guidelines were inadequate, and the justifiable fear of X-ray exposure continued. As he lay dying in 1931, the elderly Thomas Edison provided his doctors with a detailed written list of his symptoms, but the Wizard of Menlo Park, who had watched his assistant die piece-by-piece so many years before, resolutely refused to submit to an X-ray.

By 1934 the ICR was prepared to issue revised guidelines based on decades of research and a better understanding of how even a seemingly small difference in doses could affect radiologists and patients. Those are the direct forebears of the standards that today protect radiologists in their work. In countless ways, two quiet, Vermont-educated doctors played a significant role in their evolution.

The editor wishes to thank John Tampas, M.D.’54 and the Morrison family for their assistance in presenting this story.
Researchers from across the region come to the Microscopy Imaging Center, the only place in Vermont to find a wide collection of leading-edge instruments that open windows on the hidden “nanoworld” around us.

Few mosquitoes meet their end this way: gilded, mounted on a pedestal, and entombed in a vacuum chamber. Michelle von Turkovich, a research technician in the Department of Pathology, has prepared and dried this mosquito, then placed it in a sputter coat machine, which covers every crevice of the creature with a thin layer of gold and silvery-white palladium. After sputter coating, the mosquito looks something like Han Solo in carbonite. She slides fly and pedestal into the cylindrical body of the scanning electron microscope, switches on the vacuum, and takes hold of a dial. That’s when things get wondrous.

“I think of it like landing on the surface of Mars,” she says, twirling the dial. We focus down on the creature, then
zoom in closer. Legs, hairs, a compound eye, all in opaque and ghostly gray. Closer. A carpet of fine hairs pops into view on what had looked like a smooth body. Closer, up to one hair, which reveals a subtle ribbed texture.

The scanning electron microscope (SEM) that von Turkovich pilots is one of ten advanced microscopy systems available to researchers at the UVM Microscopy Imaging Center (MIC), a facility that has benefited from a substantial investment in equipment over the past few years. Headed by Professor of Pathology Douglas J. Taatjes, Ph.D., the MIC is a core facility of the College of Medicine, but it serves science and engineering departments all over the University as well as researchers from Middlebury College and nearby companies such as General Dynamics. “Because the cost of even a single advanced microscope can be prohibitive, they come to use equipment...that may not find its way into a single investigator’s laboratory,” says Taatjes. MIC staff first train researchers on the use of the equipment, which allows them to examine a wide range of experimental objects — everything from live cells to asbestos crystals to shrapnel. In addition to experienced scientists and physicians, some of those researchers are still in high school: participants in the Governor’s Institutes of Vermont collected the mosquitoes that were later sputter-coated and placed in the SEM, and they learned how to use the instrument from von Turkovich. “They left here in awe,” she recalled of the most recent class.

a fleet of scopes

Like the SEM, most of the imaging center’s fleet of microscopes are not the glass-slide-and-coverslip kind familiar to decades of students. The classical light microscope has its limitations, offering at best about a 200-nanometer resolution due to the fundamental properties of visible light. But there are ways around that barrier. For example, instead of visible light, the SEM bounces electrons off the specimen. The center’s transmission electron microscope (TEM) sends electrons straight through a sample, while the atomic force microscope physically probes the specimen to map out its topography. The electric cell-substrate impedance sensing system isn’t a microscope, but it provides submicroscopic information. The system cultures live cells on a slide that contains gold electrodes; these measure changes in a cell’s electrical processes, which allows a researcher to examine their physiology in real time — a little like checking an EKG on a patient in the clinic.

Then there is the confocal laser scanning microscope, which allows researchers to focus on an object at a specific depth, without interference from foreground or background. Like an advanced CT scanner, it “sees”
deep into specimens and captures images of individual planes; researchers can opt to create three-dimensional reconstructions with imaging software. And like a CT scanner, it can examine live tissues and organisms — no slicing or fixation required.

The confocal microscope is central to Professor of Neurology Helene Langevin, M.D.’s research. Langevin studies connective tissue, the substance that fills the spaces between muscles, nerves, and other types of tissue. Connective tissue, which hitherto has been the subject of relatively little research, is difficult to slice into thin sections, as it tends to shear. “The confocal microscope allows you to look at the whole sample without cutting it, and it allows you to take optical sections,” she says; it also enables her to study how live connective tissue reacts over several minutes while being stretched. This is a key component of her research into acupuncture, in which she studies the possible effects caused by stretching of tissue around the needle insertion point. “We couldn’t do this research without the Microscopy Imaging Center,” Langevin says.

Professor of Chemistry Christopher Landry, Ph.D., a specialist in materials chemistry, has relied on the MIC for research into new systems of drug delivery he conducts in
focus

The Microscopy Imaging Center (originally called the Cell Imaging Facility) was established as a core facility in the College of Medicine in 1993. Originally consisting of a transmission electron microscope, a confocal scanning laser microscope, and an image analysis system, the MIC has expanded as a core facility to meet the diverse and expanding needs of the research base at UVM. Although the MIC is located within, and administered by, the College of Medicine, it serves the imaging needs of researchers throughout the University, as well as from outside of the University. The facility relocated to the Health Science Research Facility in the summer of 2001. Concurrent with this move, the facility was renamed the "Microscopy Imaging Center" to more accurately reflect the diverse microscopy-based imaging research carried out there. The MIC currently offers these imaging systems and equipment for research use:

- JEOL 1400 transmission electron microscope
- JEOL 6060 scanning electron
- Olympus BX50 research microscope
- BioRad MRC 1024ES confocal scanning laser microscope system
- Zeiss LSM 510 META confocal scanning laser microscope
- Asylum Research MFP-3D-BIO atomic force microscope station
- CompuCyte Laser Scanning Cytometer
- Arcturus PixCell II Laser Capture Microdissector system
- Olympus IX 70 inverted light microscope
- Applied BioPhysics Electric Cell Substrate Impedance Sensing System
- Caliper LifeSciences IVIS Lumina II Whole Animal In Vivo Imaging System
- Dell Precision T7400 workstation for image analysis and processing
- Dell Optiplex GX260 computer with Universal Imaging MetaMorph image analysis software
- Histology Lab Core

All of the imaging systems are connected to the internet, allowing sharing of images within the facility, as well as transferring digital images off-site. Extensive image processing and analysis software packages located on the various computers housed within the MIC, including the central imaging workstations, can then be utilized for analyzing digital images.

The atomic force microscope was Taatjes’s instrument of choice to study antiphospholipid syndrome (APL), a disease that leads to blood clots and repeated miscarriages. Situated inside a metallic vibration-dampening shield, the microscope nudges its way along the surfaces of specimens, gently tapping them with a probe that can resolve textures some 1000 times smaller than the best light microscope can reveal. Taatjes and his colleagues used it to make images of an important protective protein called annexin, which crystallizes in a two-dimensional pattern like a chain-link fence. They then added the harmful antibodies found in APL and captured images of the antibodies as they disrupted the fence, thus providing the first visual evidence of the destructive interaction they suspect underlies the disease. These interactions could only have been followed with an atomic force microscope, said Taatjes, in part because it allowed them to occur in a live, hydrated state.

a broad focus

Along with basic scientists, clinical and translational researchers also make regular use of the MIC. Several times a week, the Fletcher Allen pathology department sends kidney biopsy specimens to Senior Laboratory Technician Janet Schwarz. She slices each specimen, adds a stain, embeds it in resin, then prepares sections to examine through a transmission electron microscope at magnifications of up to 50,000×. The best images are captured digitally and sent back to the hospital for diagnosis by pathologists; Schwarz and the physicians often go over the cases in person together. Because the MIC handles patients’ specimens, it is licensed by the College of American Pathologists, whose strict standards are listed in a dozen thick ring binders that line a shelf in the lab. Taatjes and his colleagues carry those standards over to research applications as well; their thorough record-keeping, he says, has impressed many a visiting researcher.
core facilities at UVM

In order to conduct today’s molecular cellular research, biomedical scientists require access to a range of state-of-the-art equipment, including high-powered microscopes, scanners, technology for measuring the DNA in cells and the mass of chemicals in a laboratory sample. Called cores, these facilities are available to all members of the research community.

Tim Hunter manages two cores at the University of Vermont — the Vermont Cancer Center (VCC) DNA Analysis Facility and the UVM Microarray Facility (Hunter is also the assistant director of the Translational Technologies Unit of the Vermont Center for Clinical & Translational Science). UVM has been a regional leader in core facilities development and administration, including hosting the Northeast Regional Life Sciences Core Directors (NERLSCD) in Burlington, which brought nearly 150 scientists from 60 institutions across North America to the UVM campus.

UVM Core Facilities Are:

- **Bioinformatics Core** — builds biomedical research capacity throughout the state by promoting faculty and student research at Baccalaureate Partner Institutions
- **Biosstatistical Bioinformatics Facility** — provides support covering biostatistics, statistical genetics, and epidemiology for biomedical and health-related research
- **Cryoelectron Microscopy Facility** — research focuses on the three-dimensional structure determination of macromolecular assemblies using electron microscopy
- **Flow Cytometry Facility** — a resource for high speed analysis and sorting of cells
- **Laboratory for Clinical Biochemistry Research** — integrates epidemiology, biochemistry, and molecular biology to help assess cardiovascular risk factors
- **Mass Spectrometry** — measures stable isotopically labeled compounds to study metabolism in humans
- **Microscopy Imaging Center** — imaging in the biomedical and materials sciences from tissues and surfaces to molecules
- **MRI Center for Biomedical Imaging** — a research-only facility that specializes in functional and static brain imaging
- **Neuroscience COBRE Core** — includes imaging and Physiology, Cellular/Molecular, and Translational Cores
- **Vermont Cancer Center Core** — includes a DNA Analysis Facility, Flow Cytometry Facility, and X-Ray Crystallography
- **UVM Microarray Facility** — Comprehensive support for assessing the expression of genes in DNA and RNA
- **Facilities for Transgenic Mice and Animal Care Management**

The MIC makes it a point to connect with the community. Schwarz leads Project MICRO events, in which she visits local middle schools to give many children their first look through a microscope (profiled in “You’re Never Too Young to Learn” in the Winter 2011 issue of Vermont Medicine). Some of the high school juniors who use the SEM during Governor’s Institutes are so entranced by its possibilities that they return to use the instrument for projects during their senior year. In partnership with the Vermont Health Department, the MIC has also signed on as a satellite lab in case a bioterrorist attack overwhelms government facilities; one of its technicians trained at the Centers for Disease Control and Prevention in Atlanta to learn to spot pathogens like smallpox and anthrax. “We’re there in the background, just in case,” says Taatjes.

two decades of service

Taatjes has run the MIC from its inception in 1993. Before college, he said, he liked science, but had no particular interest in microscopes. That changed in an instant after his undergraduate advisor invited him to do a project on an electron microscope. As Taatjes looked at the fantastically detailed images of cell structures for the first time, he recalls, “I knew then and there, “This is what I’m going to do.””

After earning his Ph.D. from the University of Basel in Switzerland, Taatjes joined the UVM faculty in 1987, and was recruited to run the pathology department’s single-transmission electron microscope. Several years later, then-Associate Dean of Research John Evans, Ph.D., and Chair of Pathology Edwin Bovill, M.D., decided to centralize the university’s microscopy resources, so they bought a new electron microscope and made it the heart of a new facility. A confocal microscope arrived soon after, the first of many grant-funded acquisitions over the years. Thanks to shared instrumentation grants from the National Institutes of Health (NIH) — which go to fund equipment for at least three NIH-funded researchers who will share it — and funding from other sources, the MIC’s instruments now comprise a formidable lineup.

Landry recalls asking to visit the Cell Imaging Center during his 1996 job interview. (The Cell Imaging Center is the MIC’s former name; it was changed in 2001 because so many researchers were using it to study other objects.) Now, as a frequent search chair for new faculty members, Landry always arranges for candidates to tour the MIC. “In one way or another, most of the new chemists that we’re hiring in our department will be making some use of the imaging facility,” he said. “It’s rapidly becoming an important tool for departments outside medicine.”
Taatjes hopes soon to bring a groundbreaking new instrument to the MIC. The super resolution microscope is a light microscope that breaks the 200-nanometer limit, one which was thought for at least a century to be unbreakable. (200 nanometers is about 1/500th the width of a human hair.) The super-resolution microscope resolves objects ten times smaller than that without resorting to the fixing and staining that higher-resolution electron microscopes require. “What you’re seeing [with electron microscopes] is a snapshot of what the cell was doing when you dumped the fixative on it,” said Taatjes. With super resolution microscopy, by contrast, researchers can watch live cells in action at nearly the same scale. That’s thrilling, in part because so many cell organelles are smaller than 200 nanometers. “[We can] begin to look at dynamic interactions between molecules and cells,” said Taatjes. “Super resolution is really a revolution right now in cell biology, and we want to get this technology on campus.” Researchers are eagerly anticipating its arrival. During a recent seminar to discuss the super-resolution microscope, Taatjes recalled, the room was “unbelievably packed.... People were sitting in the aisles.”

If the grant he is writing is successful, the super resolution microscope will become the MIC’s eleventh microscopy-based imaging system, giving researchers the freedom to design entirely new experiments. “When I interview potential faculty members,” Taatjes said, “one of the things that I always hear is ‘Wow, you’ve got basically everything I need.’ ...We’re pretty unique, I think.”
A patient lies in a clinic in Trivandrum, Kerala, India.
It’s cooler this morning,” I said to Seema, as we left the hospital grounds en route to our home visits.

It was a bright and bustling morning in Trivandrum, the capital of India’s southwesternmost state, Kerala. A third-year resident in family medicine, I had come here to work with the staff of an Indian nonprofit devoted to advancing palliative care services across India. Seema was a young, newly qualified junior doctor who had only recently joined the organization. We were traveling with five others — our driver, two nurses and two nursing trainees — into the mountains east of Trivandrum for the day.

“We don’t really speak about the weather like you do,” Seema gently chided. “In the West you spend lots of time talking about the weather.” As I silently ceded her point, she consoled me: “I think you have more variety to your weather. Here it is only hot, very hot, or cold and rainy. Most people carry an umbrella because it’s useful in any of those cases.”

I counted the passing umbrellas as our van carried us into the foothills on our way to Palode, a village where we would hold a small outpatient clinic before making home visits.

After the clinic session, Seema looked tired. I asked what she was thinking.

“Sometimes I feel frustrated that we can’t do more for our patients,” she said. “Doesn’t this frustrate you?”

Of course, I thought. It frustrates all of us.

A bit tentatively, I asked, “Have you heard, Seema, about the idea of bearing witness?” She shook her head.

“It’s the idea that just being present with someone can be healing,” I went on. “In the Bronx, where I work, lots of our patients suffer from sicknesses and social ills that we can’t do much about. Sometimes, just being there is doing something; sometimes it’s the best we can offer.” Perhaps this notion was merely a salve for my feelings of helplessness. Still, I hoped that it was true. Seema’s answer was silence — whether thoughtful or skeptical, I couldn’t tell.

After lunch, we were joined by a beautiful ten-year-old girl named Paadini. A member of her school’s health club, she aspired to be a doctor and sometimes accompanied the palliative-care team on home visits.

As we drove deeper into the mountains, Paadini sang quietly to herself, and Seema told me about the patient we were going to see. Diagnosed at forty-eight with breast cancer, she’d had a left radical mastectomy and multiple rounds of chemotherapy and radiation therapy. The treatment had been unsuccessful, likely because of her late diagnosis — common in a country where most people don’t have access to primary care or the money to pay for it.

The woman’s alcoholic husband had left her years before, but had returned home a month or so back, Seema said. “He had nowhere else to go, and she could not, as his
wife, turn him away.” He’d recently been found lying dead in the road. The woman’s son worked nearby, but was rarely home; a few months back, her daughter had fled with a boy. The patient, bed-bound and fed twice daily by a seventeen-year-old neighbor, was essentially alone.

The road’s jagged asphalt gave way to red dust. We passed government-owned bamboo and acacia farms, abandoned bus shelters and a painted cement statue of Shiva — the giver and taker of life — with his blue skin, dreadlocks, and trident. Crossing over a fast-flowing river, we reached the patient’s small village and stopped to buy biscuits and bananas to bring the patient.

We parked the van and descended into a shallow valley of rice paddies and palms. Led by Paadini in her pink dress, we walked single-file through the lush, green landscape to the sound of a gently trickling stream and goats bleating in the distance. Around us, white cranes swooped into placid ponds filled with blooming lotus flowers.

As we scrambled up a steep rise to a small, dark, mud-brick home, an eager puppy on a chain barked piercingly, announcing our arrival.

Our patient lay in the open front porch, naked except for a stained white sari blouse and the bright pink blankets that covered her. Eyes closed, she moaned quietly, grimacing between shallow, rasping breaths. Her head, covered with short wisps of hair, lay awkwardly on the pillow. Her cheekbones jutted over sunken cheeks, her lips were dry and cracked, her exposed arms were wasted. On a bench a package of steroids, unused since the team’s visit a week back, sat next to a tin of watery rice porridge — her unfinished breakfast.

Hoping to relieve her pain and breathlessness, I asked Seema, “Can we give her morphine?”

“No,” Seema answered. “None of her family are here. If we give her morphine and then something happens, her family will say that she was fine when they last saw her and blame us for making her worse. Our hands are tied.” I suppressed a flash of anger. *There must be something we can do.*

We crushed the steroid pills into the rice milk, and the nurse spooned it into her mouth. We tried and failed to take her blood pressure; her weak, thready pulse told us that it was very low.

As a team member called the woman’s son on a mobile phone, we sat on a mat next to the woman’s bed. Looking around, she locked her eyes onto mine, then reached for my hand.

I clasped her hand in mine, and we sat for several minutes, looking at each other. As I had many times in my brief medical career, I moved past my own discomfort by *acting* as I thought a good doctor would. And though I wouldn’t generally use these words, I think that I prayed for her. I also wondered how she understood this strange situation, and wondered who was comforting who more.

“She doesn’t know us, but she knows that we’re here to help her,” Seema said.

An idea occurred to me. Turning, I caught Paadini’s eye. “She’s very sick, Paadini,” I said gently. “Maybe it would make her feel better if you could sing her a song.” But Paadini shrank back shyly.

The son arrived, doe-eyed and bewildered. Seema explained that his mother was very close to death; that she needed to be cleaned and to have someone stay with her. The son promised to take care of these things.

Bending down, I took the woman’s hand again and smiled. Then Seema did the same.

Our earlier conversation came back to me. *Our presence may be the best thing we have to offer.*

We left and walked back through the forest.

I thought about how much suffering the woman had endured. I hoped that our presence had meant something to her. Quietly, I wished that her pain would go, that her breathlessness would cease, that she would die peacefully and soon.

Epilogue: The following week, I learned that the woman had died within an hour of our visit.

Justin Sanders, M.D.’07

Justin Sanders, M.D.’07 is a Family Medicine resident at Montefiore Medical Center in New York City. After graduation from the College, he won a Fulbright Scholarship to study palliative care in Great Britain. This essay originally appeared in *Pulse* online magazine.
In 1905, when the College of Medicine completed its third home at the corner of Prospect and Pearl streets in Burlington, the main lecture room was named Hall A. For the next 63 years, students such as the members of the Class of 1955 (shown above listening to the legendary Prof. Ellsworth Amidon, M.D. ’32) spent much of their time in the hall. Today’s students take in lectures in the Sullivan Classroom or in the recently renovated Carpenter Auditorium, but the College’s educational mission of inspiring a lifetime of learning in the service of the patient remains the same. The Hall A magazine section is a meeting place in print for all former students of the College of Medicine.
On the morning of the second Monday in August, I stood with several of my colleagues from the faculty and administration of the College of Medicine in the front of the Sullivan Classroom and watched the 114 members of the Class of 2015 take their seats for their introduction to the science and art that will be the focus of the rest of their lives. It was an exciting morning — you could feel in the air the sense of excitement, anticipation, and, perhaps, the little bit of apprehension that is appropriate to feel at one of life’s major turning points.

I was glad that I was able to take my turn at the podium and personally welcome the incoming class on behalf of all the members of the Medical Alumni Association. I was joined by other alumni and, throughout the morning, I could not help but think of my own first day in the orange seats of Hall A on the second floor of Given, and the rooms full of students from the last 30, 40, and 50 years who have all taken seats for their first lecture, and gone on to a lifetime of serving patients. That’s a major part of what I try to impress upon students — that they are a part of something much, much larger than themselves. And believe me, they get it: that’s why they’re here.

But in order to keep the chain of dedicated professionals unbroken, in a time of record student debt, we as alumni have to keep in mind this special place that helped launch us on our careers, and help grow scholarship support for today’s students. In this way, we can continue to recruit the best students and produce graduates who consistently go on to the best residency programs in the nation and feel free to practice the kind of medicine that best suits them. As fall blends into winter and end-of-year philanthropy is on our minds, I urge you to remember your medical alma mater, and realize that you can still have a vital and positive effect on today’s work at the College.

Finally, I’d like to remind you of several opportunities to personally connect with the College in the coming months. You’ll see several College of Medicine receptions across the country listed in the “Upcoming Events” column on page 29, including one next May at our new clinical training site in Danbury, Conn. These receptions are open to all alumni, no matter what your specialty, and I urge you to come by, say hello, and learn more about what’s going on at your school.
M.D. Class Notes

If you have news to share, please contact your class agent or the Development & Alumni Relations office at medalumni.relations@uvm.edu or (802) 656-4014. If your email address has changed, please send it to medalumni.relations@uvm.edu.

1943
Francis Arnold Caccavo
(M.D. Dec. 1943)
51 Thibault Parkway
Burlington, VT 05401
(802) 862-3841
dracac@verizon.net

Carleton R. Haines
(M.D. Dec. 1943)
88 Mountain View Road
Williston, VT 05495
(802) 878-3115

Harry M. Rowe
(M.D. March 1943)
65 Main Street
P.O. Box 755
Wells River, VT 05081
(802) 757-2325
rowe1912@charter.net

1944
Wilton W. Covey
357 Weybridge Street
Middlebury, VT 05753
(802) 388-1555

1945
Robert E. O’Brien
414 Thayer Beach Road
Colchester, VT 05446
(802) 862-0394
drreobrien@aol.com

H. Gordon Page
9 East Terrace
South Burlington, VT 05403
(802) 864-7086

1946

Please email medalumni.relations@uvm.edu if you’d like to serve as 1946 class agent.

1947

Please email medalumni.relations@uvm.edu if you’d like to serve as 1947 class agent.

1948
S. James Baum
1790 Fairfield Beach Road
Fairfield, CT 06430
(203) 255-1013
baum@optonline.net

1949
Joseph C. Foley
32 Fairmount Street
Burlington, VT 05401
(802) 862-0040
jcfoley@adelphia.net
Edward S. Sherwood
24 Worthley Road
Topsham, VT 05076
(802) 439-5816
lois@vermontel.net

1950
Simon Dorfman
8256 Nice Way
Sarasota, FL 34238
(941) 926-8126

1951
Edward W. Jenkins
7460 South Pittsburgh Ave.
Tulsa, OK 74136
(918) 492-7960
DrEWJmd@aol.com

1952

REUNION ’12

Arthur Kunin
226 Windmill Bay Road
Shelburne, VT 05482
(802) 985-5410
akunin@uvm.edu

Arthur Perelman
165 Woodland Ave.
Summit, NJ 07901
(908) 277-6454
ajperelman@verizon.net

REUNION ’12

Please email medalumni.relations@uvm.edu if you’d like to serve as 1952 class agent.

Upcoming Events

January 27, 2012
3:00–4:30 pm
Class of 2014 Foundations Celebration
UVM Campus — Hoehl Gallery

February 17, 2012
2:30 pm
White Coat Ceremony
Ira Allen Chapel

March 15, 2012
Match Day Eve, 4th Year Dinner
Sheraton Hotel & Conference Center

March 16, 2012
Noon
Match Day
UVM Campus — Hoehl Gallery

April 20, 2012
6:30–8:00 pm
UVM Medical Alumni Association & Northern New England States reception during the American College of Physicians conference
New Orleans Marriott

May 4, 2012
6:00–7:30 pm
Medical Alumni Reception
Hosted by MAA President James C. Hebert, MD ’77
Ethan Allen Hotel, Danbury, Conn.

May 5, 2012
Spring Alumni Executive Committee meeting
Ethan Allen Hotel, Danbury, Conn.

May 20, 2012
2:00 pm
Graduation
Ira Allen Chapel

FOR UPDATES ON EVENTS SEE:
www.med.uvm.edu/alumni
<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953</td>
<td>Richard N. Fabricius</td>
<td>17 Fairview Road Old Bennington, VT 05201 (802) 442-4224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1954</td>
<td>John E. Mazuzan Jr.</td>
<td>366 South Cove Road Burlington, VT 05401 (802) 864-5039 mazuzan@burlontelecom.net</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>Marshall G. London</td>
<td>102 Summit Street Burlington, VT 05401 (802) 864-4927 marshall19554sussanne@gmail.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td>Ira H. Gessner</td>
<td>1306 Northwest 31st Street Gainesville, FL 32605 (352) 378-1820 gessnh@peds.ufl.edu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1957</td>
<td>Larry Coletti</td>
<td>34 Gulliver Circle Norwich, CT 06360 (860) 887-1450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958</td>
<td>Peter Ames Goodhue</td>
<td>Stamford Gynecology, P.C. 70 Mill River Street Stamford, CT 06902 (203) 359-3340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1959</td>
<td>Jay E. Selcow</td>
<td>27 Reservoir Road Bloomfield, CT 06002 (860) 243-1359 jeselcow@comcast.net</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td>Marvin A. Nierenberg</td>
<td>15 West 81st Street New York, NY 10024 (212) 874-6484 mnierenbergmd1@verizon.net</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1961</td>
<td>Melvin H. Wolk</td>
<td>Clinton Street P.O. Box 772 Waverly, PA 18471 (570) 563-2215 melliemar@aol.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1962</td>
<td>Wilfred L. Fortin</td>
<td>17 Chapman Street Nashua, NH 03060 (603) 882-6202 willy410@aol.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1963</td>
<td>Ruth Andrea Seeler</td>
<td>2431 North Orchard Chicago, IL 60614 (773) 472-3432 seeler@uic.edu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1964</td>
<td>John J. Murray</td>
<td>P.O. Box 607 Colchester, VT 05446 (802) 865-9390 jackjmurray@aol.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965</td>
<td>H. Alan Walker</td>
<td>229 Champlain Drive Plattsburgh, NY 12901 (518) 561-8991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>Melvin H. Wolk</td>
<td>Clinton Street P.O. Box 772 Waverly, PA 18471 (570) 563-2215 melliemar@aol.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967</td>
<td>Robert George Sellig</td>
<td>31 Overlook Drive Queensbury, NY 12804 (518) 793-7914 rsellig@aol.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>G. Millard Simmons</td>
<td>3163 Grass Marsh Drive Mount Pleasant, SC 29466 miro@comcast.net</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td>Nelson H. Sturgis</td>
<td>“Still working 36 hours per week at Sumter Family Health Center in South Carolina. My wife is working part time as a hospitalist at Tuomey Hospital. I have four grandchildren. Probably will cut back or retire next year.”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td>Marvin A. Nierenberg</td>
<td>15 West 81st Street New York, NY 10024 (212) 874-6484 mnierenbergmd1@verizon.net</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1961</td>
<td>Wilfred L. Fortin</td>
<td>17 Chapman Street Nashua, NH 03060 (603) 882-6202 willy410@aol.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1962</td>
<td>Ruth Andrea Seeler</td>
<td>2431 North Orchard Chicago, IL 60614 (773) 472-3432 seeler@uic.edu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1963</td>
<td>John J. Murray</td>
<td>P.O. Box 607 Colchester, VT 05446 (802) 865-9390 jackjmurray@aol.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1964</td>
<td>H. Alan Walker</td>
<td>229 Champlain Drive Plattsburgh, NY 12901 (518) 561-8991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965</td>
<td>Anthony P. Belmont</td>
<td>211 Youngs Point Road Wiscasset, ME 04578 (207) 882-6228 apb8229@pol.net</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>Robert George Sellig</td>
<td>31 Overlook Drive Queensbury, NY 12804 (518) 793-7914 rsellig@aol.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967</td>
<td>G. Millard Simmons</td>
<td>3163 Grass Marsh Drive Mount Pleasant, SC 29466 miro@comcast.net</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>Nelson H. Sturgis</td>
<td>“Still working 36 hours per week at Sumter Family Health Center in South Carolina. My wife is working part time as a hospitalist at Tuomey Hospital. I have four grandchildren. Probably will cut back or retire next year.”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Second-year medical students who benefit from the Larner Scholars program gathered together in the Hoehl Gallery in early November to say thanks to the man whose generosity and spirit of giving back helps them pursue their medical education.

Development News

Krakoff Professorship Established
Claire Verschraegen, M.D., interim director of the Vermont Cancer Center (VCC) and professor and chief of hematology/oncology at the College of Medicine, has been named the Irwin H. Krakoff, M.D., Endowed Green & Gold Professor at the VCC. The appointment was announced at a reception held at UVM’s Davis Center on November 14, 2011.

Named in honor of Irwin H. Krakoff, M.D., the founding director of the VCC, this endowment was established in 2006 through a lead gift from the Lake Champlain Cancer Research Organization and the generous support of Krakoff’s family members, friends, colleagues, and former trainees around the nation. The fund’s aim is to support an outstanding UVM faculty member who is affiliated with the VCC and conducts cancer research. The Krakoff Professor is appointed for a term of five years.

Dr. Krakoff launched his research career at the two institutions that became Memorial Sloan-Kettering Cancer Center, where he served as a research fellow and subsequently became chief of medical oncology and chief of chemotherapy. He was a pioneer in the field of chemotherapy. He came to New England and Vermont as the VCC’s first director in 1976, and served in this capacity until 1983. He later became the head of the division of medicine at M.D. Anderson Cancer Center at the University of Texas, retiring in 1993.

Verschraegen, who joined UVM and the VCC in June 2011, is a board-certified oncologist who specializes in rare cancers and the study of new anticancer drugs and treatments for solid tumors.

Larner Scholars Say “Thank You”
Established in 1985 by Helen and Robert Larner, M.D., a 1942 University of Vermont College of Medicine alumnus, the Larner Endowment Fund has provided financial support to over 1000 UVM medical students for more than a quarter of a century.

In setting up the Fund, the Larners were guided by a small set of very clear goals. They wanted to provide significant support for financially needy and superior students at the UVM College of Medicine, help as many medical students as possible, and create a culture of “giving back” that would continue to develop the Fund as its recipients and others moved on into their professional life.

Today, the Larner Fund is fulfilling its mission with yet another generation of students engaged in earning their medical degree at the UVM College of Medicine. The Larners have consistently made regular additions to the fund and, true to original expectations, many of those former low-cost loan recipients have returned the favor by giving back to the Fund with their own generous donations.

“My hope is that the Larner Fund will inspire its beneficiaries to think about giving back, if only in modest ways, even before they graduate,” said Dr. Larner, who will celebrate his 94th birthday in January at his home in California. In early November, a group of medical students — all Larner Fund scholars — posed for a special photo, which they sent to Dr. Larner to thank him for his generosity, along with personal notes and video recordings of individual messages of thanks.

Korsons Fund Green and Gold Professorship
The achievements of a lifetime of service and scholarship are recognized by a new professorship at the College of Medicine Department of Pathology and Laboratory Medicine — the Roy Korsons Fund Green And Gold Professor. The Korsons both grew up in the Philadelphia area and met when they were students at the University of Pennsylvania. They have been married for more than 65 years.

After service in the U.S. Army during World War II, Roy Korson earned his M.D. from Jefferson College of Medicine in Philadelphia. After internship, a cancer research fellowship, and a research year at Columbia University, Dr. Korson joined the UVM faculty in 1949. Outside of his additional military service in the Korean War, he has been an important part of the UVM medical community ever since. He held the Ernest Hiram Buttes Professorship in Pathology from 1984 to 1989, and has been an emeritus professor of pathology since 1992.

The Korsons’ gift that establishes the professorship is given by them in the hopes that students will be inspired to “work to their fullest potential to make a true difference.”

See the 3 Questions interview with Dr. Verschraegen on page 9.
1970
Raymond Joseph Anton
1521 General Knox Road
Russell, MA 01071
(413) 568-8659
ray@rayanton.com
John F. Beamis, Jr.
1288 Kapiolani, Apt. 1605
Honolulu, HI 96814
Philip Buttavoli is working on the third edition of his book, Minor Emergencies, which will be available in electronic form. This book had its genesis in the emergency department at MCHV, when Phil realized the need for a compendium of treatments for the more everyday cases seen in the E.D. Minor Emergencies is published by Mosby and can easily be found on Amazon and other online book sites.

1971
Wayne E. Pasanen
117 Osgood Street
North Andover, MA 01845
(978) 681-9393
wpasanen@lowelgeneral.org

1972
F. Farrell Collins Jr.
205 Page Road
Pinehurst, NC 28374
(910) 295-2429
If you’d like to help plan for our 40th reunion, please email medalumni.relations@uvm.edu.

1973
James M. Betts
715 Harbor Road
Alameda, CA 94502
(510) 523-1920
jbetts@mail.cho.org
Philip L. Cohen
483 Lakewood Drive
Winter Park, FL 32789
(407) 628-0221
plcret@aol.com
Richard Feins is a thoracic surgeon at University of North Carolina at Chapel Hill. He writes: “Cell and I will celebrate 40 years of marriage next year. We have two boys, one is a third-year GS resident in Boston, the other is a Navy helicopter pilot.”

1974
Douglas M. Eddy
5 Tanbark Road
Windham, NH 03087
(603) 434-2164
dhkaeddy@att.net
Cajsa Schumacher
78 Euclid Avenue
Albany, NY 12203
cajascha@yahoo.com

1975
Ellen Andrews
195 Midland Road
Pinehurst, NC 28374
(910) 295-6464
elland@mindspring.com

1976
Don P. Chan
Cardiac Associates of New Hampshire
Suite 103
246 Pleasant Street
Concord, NH 03301
(603) 224-6070
dpcn@aol.com

1977
James C. Hebert
583 Stockbridge Road
Charlotte, VT 05445
james.hebert@vtmednet.org
Mark A. Popovsky
22 Nauset Road
Sharon, MA 02067
(781) 784-8824
mpopovsky@haemonetics.com

1978
Paul McLane Costello
Essex Pediatrics, Ltd.
89 Main Street
Essex Junction, VT 05452
(802) 879-6556
pmcost@aol.com

1979
Sarah Ann McCarty
smccarty@aucmed.edu
Dennis Plante
dennis.plante@vtmednet.org

1980
Richard Nicholas Hubbell
80 Summit Street
Burlington, VT 05401
(802) 862-5551
rich.hubbell@vtmednet.org

1981
Bruce Leavitt
312 Four Sisters Road
South Burlington, VT 05403
bjleavitt@comcast.net
Betsy Sussman
325 Dorset Heights
South Burlington, VT 05403
betsysussman@hotmail.com

Alumna Receives Teaching Award and Assumes Presidency of ASDP
Jennifer Madison McNiff, M.D.’86 received the Walter R. Nickel Award for Excellence in Teaching of Dermatopathology from the American Society of Dermatopathology (ASDP) at the society’s annual meeting in Seattle on October 20, 2011. At the annual meeting, McNiff also assumed the presidency of the ASDP, the national organization that has represented dermatopathologists since 1962. McNiff had served as the ASDP president-elect since 2010, and has previously served on the organization’s board of directors and ethics and nominating committees.

The Walter R. Nickel Award for Excellence in Teaching of Dermatopathology is awarded annually by the ASDP to honor an individual who has made significant contributions in dermatopathology education. In 1992 McNiff joined the faculty of Yale University School of Medicine, where she has been a professor of dermatopathology and pathology since 2006.

If you'd like to help plan for our 40th reunion, please email medalumni.relations@uvm.edu.
Louis Polish
11 Vale Drive
South Burlington, VT 05403
louis.polish@vtmednet.org

1982
REUNION ’12

Diane Rippa
drppa82@gmail.com

David M. Maccini is “Working only
weekends and loving semi-retirement!
Looking forward to returning in May for
my son’s graduation with class of 2012!”

Diane M. Georgeson
2 Ravine Parkway
Oneonta, NY 13820
(607) 433-1620
dgeorgeson@stny.rr.com

Anne Marie Massucco
15 Cedar Ledge Road
West Hartford, CT 06107
(860) 521-6120
anniemass@comcast.net

Michael Narkewicz reports: “We are
doing well in Colorado. Ran into Lynn
Luginbuhl and Morris Earle at our 25th
reunion of graduation from Pediatric
Residency this summer. I have taken a
new challenge as associate dean of clinical
affairs for child health at University of
Colorado School of Medicine. Kids are
great. Dana is great!”

1983

1984

Richard C. Shumway
34 Coventry Lane
Avon, CT 06001
(860) 673-6629
rshumway@stfranciscare.org

Claire Levesque writes: ”I am now a
full time medical director at Tufts Health
Plan, a health insurance company based in
Watertown, Mass. We’ll soon be touring
colleges with our daughter, who hopes to
major in art or dance (talents that she did
not inherit from her mother!).”

1985

Vito Imbasciani
vito.uromd@gmail.com
Suzy Frisch
sgfrisch@aol.com

1986

Darrell Edward White
29123 Lincoln Road
Bay Village, OH 44140
(440) 892-4681
darrellwhite@mac.com

Khin Khin Gyi writes: “Came to our
class reunion in June, saw the new
buildings and had a great time seeing my
classmates. Darrell, Chris, Brad, Steve,
Bill, Jim, Jaime, Mario and Noah along
with V.J. The sophomore med student did
a tremendous job walking us through the
new curriculum too! Very reassuring.”

1987

R E U N I O N ’ 1 2

J. Michael Jaeger
Grove Road
Charlottesville, VA 22901
all5jaegers@earthlink.net

Jeffrey Rosenblatt
11 McQuillans Hill Drive
Gorham, ME 04038
jeffrey_rosenblatt@yahoo.com

Helene Goldsman
105 Pamunkey Turn
Yorktown, VA 23693
goldsmanh@aol.com

1988

H. James Wallace III
416 Martel Lane
St. George, VT 05495
(802) 872-8533
james.wallace@vtmednet.org

Lawrence I. Wolk
5724 South Nome Street
Greenwood Village, CO 80111
(303) 771-1289
larry@correctioncare.com

Anyone who was a
student at the
College of Medicine
during the 1970s
and 80s probably
had daily contact
with Student Affairs
Office staff member
Bea Buechler, who
died this August at Burlington’s Starr Farm
Nursing Center of Alzheimer’s disease. Bea
spent her entire working life at educational
institutions, and nearly 20 years helping
students at the College of Medicine before
her retirement in 1990.

Continuing Medical Education
2012 Conference Schedule

Eastern Winter
Dermatology
January 13–16
Stowe, Vt.

Emergency Medicine
Update
Jan. 29–Feb. 1
Stowe, Vt.

Current Concepts
in Surgery
Jan. 30–Feb. 1
Stowe, Vt.

Hospital Medicine
Feb. 10–11
Stowe, Vt.

Perspectives in
Anesthesia
March 7–11
Stowe, Vt.

Blueprint for Health
April 10
Burlington, Vt.

Northeastern G/U
Symposium
April 13–14
Burlington, Vt.

Vermont Geriatrics
April 17
Burlington, Vt.

Women’s Health
May 9–11
Burlington, Vt.

Family Medicine
Review
June 5–8
Burlington, Vt.

Vermont Pediatric
Seminar
June 14–17
Manchester, Vt.

F O R I N F O R M A T I O N C O N T A C T :
University of Vermont
Continuing Medical Education
128 Lakeside Avenue Suite 100
Burlington, VT 05405
(802) 656-2292
http://cme.uvm.edu

College of Medicine alumni receive a special 10% discount
on all UVM Continuing Medical Education conferences.
1989

Peter M. Nalin
13216 Griffin Run
Carmel, IN 46033
(317) 962-6656
pnalin@mac.com

1990

Barbara Angelika Dill
120 Hazel Court
Norwood, NJ 07648
(201) 767-3778
dillsmiths@optonline.net

1991

John Dewey
15 Eagle Street
Cooperstown, NY 13326
johnnewman@hotmail.com

1992

Mark Eliot Pasanen
1234 Spear Street
South Burlington, VT 05403
(802) 865-3281
mark.pasanen@vtmednet.org

Shirlene Jay writes that she is “Enjoying life in Southern California. I am in solo practice in dermatology and running around with our three girls Megan (age 10), Kayla (age 7) and Addison (age 3). Please let us know if you are in town!”

1993

Joanne Taplin Romeyn
22 Patterson Lane
Durham, CT 06422
(860) 349-6941

Brad Watson
rbradwatson@yahoo.com

Veronica Rooks reports that she is “On active duty in the U.S. Army as a pediatric radiologist/trauma radiologist in Iraq. Family thriving with Bob and three wonderful girls. Living in Hawaii. Aloha! Call 808-383-8604 if you want to come lecture or visit.”

1994

Holliday Kane Rayfield
P.O. Box 819
Waitsfield, VT 05673
(802) 496-5667
rayfieldvt@yahoo.com

1995

Allyson Miller Bolduc
252 Autumn Hill Road
South Burlington, VT 05403
(802) 863-4902
allyson.bolduc@vtmednet.org

Deborah Hicks Abell writes: “I’m a happy part-time pediatrician in private practice in Rochester, N.Y. Kim (’96) works for the University of Rochester at an inpatient family medicine office. Our two boys are half-grown. Hope everyone is well!”

1996

Anne Marie Valente
66 Winchester St., Apt. 503
Brookline, MA 02446
annevalente@cardio.chboston.org

1997

Patricia Ann King
832 South Prospect Street
Burlington, VT 05401
(802) 862-7705
patricia.king@vtmednet.org

Mark Vining writes: “I’m sorry I missed reunion and Table 15. Thanks to YouTube, I got to check it out! I’m now in my eleventh year at UMass and just became residency director for the Pediatric Program. Lucas (11) and Adam (4) are great.”
Physicians for the Long Haul

There are more than 4000 alumni of the College of Medicine spread out all over the world, but two of the oldest graduates of Vermont’s medical school still live within an afternoon’s drive of the campus, still connected on a daily basis with their Vermont neighbors — many of whom they helped deliver into this world!

Roger Mann, M.D.’39 lives in his hometown of Waterville, Vt., where he began practicing shortly after receiving his medical degree (he later completed a residency in pathology). Dr. Mann has been married for 72 years to Muriel Shrader Mann, and they still live in the Waterville home in which they raised six children. He celebrated his 100th birthday this fall.

Burlington Free Press writer Sally Pollak took note of Dr. Mann’s milestone in an October issue of the paper, and wrote about how the doctor “brought groceries for malnourished patients, founded a hospital in Jeffersonville, and once came to the aid of a kid whose scalp was pulled off his face and over his head in a tractor accident.”

“I never was very lazy,” Mann noted dryly. He continued in active practice till the age of 80.

Also this fall, Harry Rowe, M.D.’43 celebrated his 99th birthday at his home in Wells River, Vt. As detailed in a spring 2008 profile in Vermont Medicine, Dr. Rowe practiced out of an office in the back of his home from soon after he settled in Wells River just after returning for service in World War II, till formally retiring from practice in 2006. To this day, patients continue to be cared for at his address by the physicians who took over the practice.

Like Roger Mann, Dr. Rowe was more than just a physician to the patients he served. He also was passionately interested in improving the educational prospects of children in the Wells River area (1,200 of whom he helped deliver during his years of practice) and was an active school board member for more than six decades, and led a 20-year effort to form the Blue Mountain Union School District. All of his efforts were conducted in partnership with his beloved wife, Mary, to whom he was married for 62 years before her death in 2002.

Rowe recounted many of his experiences in a 2010 book, The Grass Grew Greener. In it he told of being kicked in the head by a horse and left near death on at the age of nine on his family’s Peacham farm. The incident left him with a deep groove on his head, and a deeper appreciation for the effect of the healing arts. Throughout more than six decades of practice, Dr. Rowe has always followed the formula he set down in a letter to his wife near the end of his war service. “Money is secondary,” he wrote. “And service and life with you and my family are primary.”

“Money is secondary...And service and life with you and my family are primary.”

—Harry Rowe, M.D.’43
(in a letter to his wife)
<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Address/Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>Halleh Akbarnia</td>
<td>2011 Prairie Street, Glenview, IL 60025</td>
</tr>
<tr>
<td></td>
<td>(847) 998-0507 hakbarnia@gmail.com</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>Everett Jonathan Lamm</td>
<td>11 Autumn Lane, Stratham, NH 03885</td>
</tr>
<tr>
<td></td>
<td>(603) 929-7555 ejlamm6@comcast.net</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deanne Dixon Haag</td>
<td>4215 Pond Road, Sheldon, VT 05483</td>
</tr>
<tr>
<td></td>
<td>(802) 524-7528</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Jay Edmond Allard</td>
<td>USNH Yokosuka</td>
</tr>
<tr>
<td></td>
<td>PSC 475 Box 1757</td>
<td>FPO, AP 96350</td>
</tr>
<tr>
<td></td>
<td>jeallard@pol.net</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Michael Jim Lee</td>
<td>71 Essex Lane, Irvine, CA 92620</td>
</tr>
<tr>
<td></td>
<td>michael_j_lee1681@yahoo.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naomi R. Leeds</td>
<td>305 Third St. #204, Cambridge, MA 02142</td>
</tr>
<tr>
<td></td>
<td>nleeds@partners.org</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Ladan Farhoomand</td>
<td>1481 Regatta Road, Carlisle, CA 92009</td>
</tr>
<tr>
<td></td>
<td>(626) 201-1998 ladanmd@gmail.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Joel W. Keenan</td>
<td>Greenwich Hospital</td>
</tr>
<tr>
<td></td>
<td>Five Perryridge Road</td>
<td>Greenwich, CT 06830</td>
</tr>
<tr>
<td></td>
<td>joelkeenan@hotmail.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JoAn Louise Monaco</td>
<td>1034 Fifth Avenue, New York, NY 10028</td>
</tr>
<tr>
<td></td>
<td>(212) 988-7788</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Jonathan Vinh Mai</td>
<td>15 Meadow Lane, Danville, PA 17821</td>
</tr>
<tr>
<td></td>
<td>(570) 275-4681</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jonathan.mai@wellmont.org</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kerry Lee Landry</td>
<td>(919) 732-9876</td>
</tr>
<tr>
<td></td>
<td>klandry@developingmindsnc.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mary O’Leary Ready</td>
<td>readcamp@gmail.com</td>
</tr>
<tr>
<td></td>
<td>Maureen C. Sarle</td>
<td>maureensarle@yahoo.com</td>
</tr>
</tbody>
</table>

Thuan T. Nguyen reports: “I am currently living in the greater Phoenix area, working for several emergency departments in the valley. I am also the medical director for EMS Services of two cities. My wife Sarah Moesker and I have two boys—Reece, who turns three this year, and Davis, who is a bubbly one-year-old. Hope to see folks at Reunion!”

<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Address/Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>Omar Khan</td>
<td>33 Clearwater Circle, Shelburne, VT 05482</td>
</tr>
<tr>
<td></td>
<td>(802) 985-1131 omarkhan@vtmednet.org</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scott Goodrich</td>
<td>309 Barben Avenue, Watertown, NY 13601</td>
</tr>
<tr>
<td></td>
<td>scott.goodrich1@yahoo.com</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Jillian S. Sullivan</td>
<td>jiliangeider@hotmail.com</td>
</tr>
<tr>
<td></td>
<td>Steven D. Lefebvre</td>
<td>fabulous5lefebvre@hotmail.com</td>
</tr>
<tr>
<td>2005</td>
<td>Julie A. Alosi</td>
<td>julie.alosi@vtmednet.org</td>
</tr>
<tr>
<td></td>
<td>Richard J. Parent</td>
<td>richparent@gmail.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remembering a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Courageous Caregiver</td>
</tr>
</tbody>
</table>
| | | **Darren Bean, M.D.’99** died in May of 2008 in a tragic Medevac helicopter crash in Wisconsin, where he was a University of Wisconsin emergency medicine physician and a Level 1 Cardiac co-director, as well as serving as the Madison Fire Department medical director (all activities cited in his posthumous 2009 MAA Recent Alumni Award). This summer, a room in Utah’s Park City Medical Center (Park City was Darren’s hometown) was dedicated in his honor. Seen at left are Darren’s children, Parker and Caitlyn, as well as his mother, Danielle (at center) and (at right) Sloane Reed Johnson, an E.D. nurse and close family friend.**
AEC Hosts Students and Friends

The Medical Alumni Executive Committee held its fall meeting at the College of Medicine on October 21, 2011, the same weekend as the College’s Family Day. The committee gathered with MAA Scholars and legacy students and fellow alumni in the Hoehl Gallery to celebrate the beginning of another academic year at Vermont’s medical school. (At top) John Tampas, M.D.’54 enjoys a conversation; (above) Jan Gallant, M.D.’85 and MAA President James Hebert, M.D.’77 look over the program.
Obituaries

Alfred J. Swyer, M.D.’44
Dr. Swyer died on October 11, 2011. He was 92. He was known to his patients, friends, and colleagues as a brilliant and energetic physician with a tremendous fund of knowledge and a prodigious memory — a man who was dedicated to his profession, who truly enjoyed providing compassionate care for thousands of patients during his more-than-70-year career. During his career he co-authored over twenty-five peer-reviewed articles. He remained fascinated with the rapidly advancing field of radiology until the very end of his tenure as an assistant professor in the Department of Radiology at the Mount Sinai School of Medicine. Even in his last months, he was working in the department daily to supervise residents and to assist members of the faculty with literature searches for their presentations and research projects. Dr. Swyer received his A.B. from Union College in Schenectady, N.Y., in 1941 before coming to the College of Medicine. He had an incredibly diversified and comprehensive residency training experience from 1945–1952 in anesthesiology, pathology (including neoplastic diseases), diagnostic radiology and therapeutic radiology. He was certified by the American Board of Radiology in 1952 and by the American Board of Nuclear Medicine in 1976. From 1955 to 1957, Dr. Swyer was on active duty at the Naval Hospital in St. Albans, N.Y., where he practiced radiology. He began his naval service as a Lt. Commander and finished his service as a Commander.

John C. Robinson, M.D.’45
Dr. Robinson died August 31, 2011, at Hartford Hospital in Connecticut. He was 90. A native of Springfield, Mass., Dr. Robinson was vice president and chief medical director at the Travelers Insurance Company in Hartford for more than 30 years. He served with the U.S. Army during World War II. He was also a member of the U.S. Power Squadron, an organization that focuses on maritime safety.

Roderick J. Humphreys, M.D.’48
Dr. Humphreys died at his Columbia, S.C., home on August 26, 2011, after a long illness. He was born on December 17, 1922, in Bennington, Vermont, and attended Bennington public schools before earning B.S. and M.D. degrees from UVM. He completed residencies at the Mary Fletcher Hospital in Burlington, and the University of Texas — Medical Branch. Dr. Humphreys performed medical research at the University of Texas, Galveston, and the Oak Ridge Institute of Nuclear Studies, publishing several articles in scientific journals. He twice served his country as a physician in the United States Air Force. From 1952 to 1954, he served in Texas, Minnesota and Massachusetts and from 1974 to 1979 he served as a Colonel stationed in California and North Carolina. He practiced in Bennington, Vt., from 1954 to 1974. From 1979 until his retirement in 1990, Dr. Humphreys served veterans at the Dorn VA Hospital in Columbia.

Jack Carlton White, M.D.’52
Dr. White died July 1, 2011, at his home in West Chester, Pa., after a long illness. He was 83. After earning his undergraduate and medical degrees at UVM, he completed internship and residency in general surgery at Abington Memorial Hospital in Pennsylvania. He served in the U.S. Navy as the ship doctor aboard the U.S.S. Yellowstone from 1954 to 1956. He returned to his hometown of West Chester in 1960 to start his general surgical practice at the Memorial Hospital, then moved to a hospital to Paoli, Pa., in 1969 and served as chief of surgery for more than 15 years. He then became active in practice management and medical affairs with Main Line Health, and founded the Wound Healing Clinic at Paoli Hospital. In his retirement, he volunteered at the medical library named after his father at Paoli Hospital, and at Community Volunteers in Medicine. He was also a lifetime benefactor of West Chester University, beginning with his employment as a team physician and the infirmary. He also dedicated himself to breast cancer research at the university and was named adjunct professor in biology.

Ernest Herreid, M.D.’55
Dr. Herreid died September 13, 2011. A decorated World War II veteran, he served with the 102nd Ozark Division of the U.S. Army, and earned a Purple Heart. After receiving his medical degree from the College of Medicine, he performed his residency at Jackson Memorial Hospital in 1955. He then practiced medicine in

Sumner J. Yaffe, M.D.’54
Dr. Yaffe died at the age of 88 in his home in Los Angeles on August 10, 2011. An internationally recognized researcher and advocate, he is considered the “Father of Pediatric Pharmacology.” He graduated from Boston Latin School and Harvard University — with an interruption during World War II to serve in the U.S. Army. He received his B.A. in chemistry, an M.A. in pharmacology at Harvard, and finally his M.D. from the University of Vermont. He returned to Harvard to complete his pediatric training at Children’s Hospital in Boston. After a Fulbright Scholarship at St. Mary’s Hospital in London, and a fellowship in metabolism at Harvard, he joined the faculty at Stanford University as director of the Clinical Research Center for Premature Infants. In 1963, he moved to SUNY Buffalo as professor of pediatrics and adjunct professor of biochemical pharmacology. In 1975, he moved to the Children’s Hospital of Philadelphia to establish the first Division of Pediatric Clinical Pharmacology. During his distinguished academic career, he published more than 300 scientific articles and books. In 1980, Dr. Yaffe took the position as director of the Center for Research for Mothers and Children at the National Institute of Child Health and Human Development. During his 20 years at NICHD, he pursued an agenda for increased research in diseases of childhood. He fostered the development of research networks, including a neonatal and fetal/maternal medicine network; and, most crucial to pediatric and developmental pharmacology, the Pediatric Pharmacology Research Units. The Pediatric Pharmacy Advocacy Group named its lifetime achievement award in pediatric pharmacology and therapeutics after Dr. Yaffe.
Robert Livingston, M.D.’60

Dr. Livingston died at his West Hartford, Conn., home on September 15, 2011. He was 78. Born in Hartford, Conn., he studied at Trinity College before earning his medical degree from the College of Medicine. He practiced radiology in southern New Hampshire until his move to Montana in 1973.

Richard Walter Foley, M.D.’75

Dr. Foley died on August 22, 2011 in Portsmouth, Virginia, after a prolonged illness. He was appointed to the U.S. Naval Academy Class of 1964 from the State of New Hampshire. Upon graduation, he completed the Nuclear Power training curriculum and reported aboard the U.S.S. Skipjack in October 1966. He qualified for service on submarines and made three special operations deployments north of the Arctic Circle before leaving active duty in December, 1969. After graduating from the College of Medicine in 1975, Dr. Foley resumed his naval career and completed his internship and residency at Naval Medical Center in Portsmouth, Virginia. After general surgery training, he was ordered to surgical subspecialty training at National Naval Medical Center, Bethesda, Maryland. Returning to Portsmouth in September 1982, he served continuously as chief of the Thoracic Surgery Division until retiring in 2004. He taught in the American College of Surgeons Advanced Trauma Life Support program for 28 years, receiving the ATLS 100 pin in December 2010.

Clifford Baxter Smith, M.D.’76

Dr. Smith died July 8, 2011, at Rutland (Vt.) Regional Medical Center, following a long illness. He was 62. A native of Fair Haven, Vt., he played high school football for the Fair Haven Slaters. After medical school he served in the U.S. Army for five years. After his service, he and his family returned home and he practiced internal medicine for 20 years in Rutland. In 1985 he raised more than $35,000 for medical supplies and traveled to Sudan to volunteer as a physician helping Ethiopian refugees.

Gino A. Dente, M.D.’41

Dr. Dente died on Aug. 14, 2011, at his home in South Burlington, Vt. Born in Barre on April 12, 1917, his early childhood years revolved around his family and working in their Italian grocery store. He was educated in Barre schools and graduated from Spaulding High School in 1935, as president of his senior class. After graduating from the College of Medicine in 1941, Dr. Dente interned at Memorial Hospital in Pawtucket, R.I. and Green Point Hospital in Brooklyn, N.Y. He served in the South Pacific, with the 24th Medical Battalion, and saw combat in Dutch New Guinea, Leyte, Mindoro, and Mindanao. He was awarded the Combat Medical Badge Bronze Arrow Head for Landings and the Military Bronze Star. Additionally, he also received Unit Presidential Citation and Southwest Pacific Campaign ribbons. After the war, he briefly served at the VA Hospital in White River Junction as chief of the Outpatient Department. He was then offered a two-year residency fellowship in anesthesiology at the Bishop DeGoesbriand Hospital in Burlington. He practiced at the Mary Fletcher, DeGoesbriand, and Fanny Allen Hospitals and at Middlebury’s Porter Hospital from 1948–1950. He was a member of Anesthesia Associates of Burlington and a Diplomat of the American Board of Anesthesiology in 1953. He became a clinical professor of surgery at the College of Medicine in 1979. Dr. Dente was a member of the AMA, the American Society of Anesthesia, the UVM Wilbur Society and a life member of the Vermont Medical Society. After more than 40 years of practice, he retired in 1987. For his enduring loyalty and dedication to the College of Medicine he was awarded the A. Bradley Soule Award in 2004.

We also note the passing of Avron H. Maser, M.D.’52, on October 5, 2011, and that of Milton R. Kaufman, M.D.’48, who died on August 10, 2011.
First-year medical student Steele Taylor introduces a new friend to his parents during a Family Day 2011 anatomy lab tour.
A Dream Pursued...

Third-year medical student Gwen Fitz-Gerald’s connections to the University of Vermont run deep — besides the seven years she has spent on campus, her siblings, father, grandparents, and great-grandfather have all called UVM their alma mater.

Even deeper than her connection to UVM is Gwen’s commitment to a career in medicine, which started when she was just a child watching “Dr. Quinn, Medicine Woman” on television, and continued through getting her Emergency Medicine Technician license while in high school, and earning her undergraduate degree in sociology, with a concentration in medicine and health care.

In addition to the support of her family and friends, Gwen is helped in the attainment of her medical education by generous scholarship philanthropy — Gwen is the recipient of the John Mazuzan, M.D.’54 Scholarship, which was established to honor the former chair of the Department of Anesthesiology by his friend, James Andrew.

“The cost of higher education continues to rise, and having scholarships available, through the generosity of the Burlington and UVM community, means so much to me,” says Gwen. “I am honored to be a beneficiary of the community’s support and encouragement.”

For more information about how you can support the College of Medicine and its students, please contact the Medical Development and Alumni Relations Office.

University of Vermont College of Medicine
Medical Development & Alumni Relations Office
(802) 656-4014 | medical.giving@uvm.edu
www.med.uvm.edu/giving