Revolutionary War surgeons, more often than not, were self-proclaimed "doctors" trained under the time-honored but inconsistent apprenticeship method. They were assisted in their treatments by a "surgeon's mate." The mate was usually an industrious soldier with a steady hand, a calm stomach, and an interest in medicine. John Pomeroy of Middleboro, Massachusetts, was one such soldier turned mate. He had left the family farm at age 15 in 1779 to join the 9th Massachusetts Regiment. Within three months, he had become the regiment's mate beneath surgeon John Thomas. Pomeroy resumed farming following his military service, but devoted all of his spare time to the acquisition of knowledge. In 1784, he apprenticed himself to one of Thomas' surgical colleagues from the Siege of Boston, James Bradish of Cummington, Massachusetts.

After completing his apprenticeship in 1787, Pomeroy moved to the recently chartered town of Cambridge, Vermont. There he started what soon became a large and lucrative practice. But the remote setting presented many logistical challenges. During one spring thaw, Pomeroy was summoned to help with a difficult pregnancy. The patient lived deep in the woods near a stream, three miles from her nearest neighbor. By the time Pomeroy reached the brook, it had risen so high that his horse could barely cross it. The patient's house, in the meantime, had been engulfed by the torrent and was filling with water. With the help of the woman's husband and a nurse already on the scene, the industrious physician built a temporary shelter on higher ground where he conducted the delivery.

Although Cambridge was no smaller than any other Vermont town of the time, relative isolation and poor soil limited its potential for future growth. Perhaps sensing this, Pomeroy decided it was time to make another move. He relocated to Burlington, a town of 332 residents, in 1792. Access by stagecoach was limited and the arrival of the railroad was still 56 years away! But as a lumber port on the Lake Champlain inland waterway, the city soon benefited from increased trade and travel. Pomeroy’s business immediately flourished. In 1797 he built the town’s first brick house on Water Street.
Pomeroy Helps Establish UVM and Becomes Its Second Faculty Member

Burlington was in need of both a minister and a church when, in 1799, the Unitarian church in nearby Vergennes relieved its pastor, the Reverend Daniel Clarke Sanders, of his duties. Upon hearing the news, Pomeroy and an associate rode south and persuaded the reverend to come to town. The two agreed to pay his wages for the next year. They also suggested that he take an academic appointment at the new school.

Although Sanders, a Harvard graduate, started preaching in the county courthouse the next year, his real interest lay in the establishment of the University. Excerpts from the letter of resignation to the state to study with him. "University degrees were not necessary for the practice of medicine and were indeed the bane of his scholarly approach and teaching excellence. His constitution and great energy of character." The following illustrative:

A System of Surgery

Pomeroy returning from a patient in Westford who had fallen from her horse and fractured badly both the tibia and fibula … it is in both compound and comminuted, and several weeks have passed. Dr. Pomeroy says he shall amputate the leg tomorrow or the next day.

Wednesday, November 8, 1815

Dr. Pomeroy returned from a patient in Westford who had fallen from her horse and fractured badly both the tibia and fibula. He was elected its president and sole professor within months of its history. Meanwhile, Pomeroy helped conduct a public campaign that raised $2,300 for the purchase of building materials, books, and other supplies. In addition, he supported an endowment to cover the president's salary for the next three years.

Pomeroy was conducting classes of a sort at the same time. Having been in practice for more than a dozen years, he had started teaching pupils the basics of medical and surgical care. Some stayed only a few days or weeks, but others completed months of training. Pomeroy took pleasure in his lessons and in the satisfaction he derived from his efforts. "His actions were not undertaken for financial gain, as "it was considered extravagant of the part of the students to pay and undignified of the part of the professors to receive." Pomeroy's next step was to bring some legitimacy to his medical instruction. He approached the University's board of trustees in 1804 and presented his case. His argument must have been persuasive, since the trustees unanimously voted to make Pomeroy the school's second faculty member.

The Journal of Erastus Root

One of Pomeroy's students during the fall of 1815 was Erastus Root. He had obtained his bachelor's degree from UVM in 1811 and apprenticed with Willard Arms of Brattleboro. He returned several years later to study with Pomeroy on Arms' recommendation. Root kept a detailed diary from October 10, 1815 to February 10, 1816. Comprehending the gravity of the situation and in opposition to violent resistance on the part of friends of the patient, he performed laryngotomy, inserting a quill into the opening, through which the patient peacefully breathed and life was restored. It was the first operation of this nature he had ever seen and had the patient died, Lynch law would doubtless have been employed to prevent in the future surgical interference in such cases.

Thursday, October 19, 1815

Mr. Atkins, who had been the subject of a very dangerous thighbone by Dr. Pomeroy. The subject was a boy about 12 years of age who had fallen from a horse and fractured his thigh. It was very erroneously reduced according to Benjamin Bell's principles.

Five splints and the nine tailed bandage were used.

Wednesday, November 8, 1815

Dr. Pomeroy returned from a patient in Westford who had fallen from her horse and fractured badly both the tibia and fibula. The medical students with Dr. Pomeroy started by 6 o'clock...our journey [one way] was 18 miles...though we had paid a dollar each, we had to walk half the way...we did not arrive until 2 o'clock.

All things were ready for the operation in a few minutes. Dr. Pomeroy then performed it in less than three minutes. The limb was off, and nearly dressed in five minutes more. We returned to Burlington the same evening. We arrived about half past eleven.

William Beaumont — Vermont's First Famous Research Surgeon

In 1811, Truman Powell, UVM's first medical graduate, moved thirty miles north to take a job with Benjamin Chandler of St. Albans. A distinguished physician in his own right, Chandler had been the recipient of the University of Vermont's second honorary M.D. in 1810.

Powell arrived to find an apprentice in his new partner's office with a small laceration in the stomach, through which food was escaping at the time. Powell was shocked to see the stomach, through which food was escaping at the time. It was during this time that Little came up with his first major breakthrough — the invention of the plaster-of-Paris splint still in use today.

Thursday, October 19, 1815

Mr. Atkins, who had been the subject of a very dangerous thighbone by Dr. Pomeroy. The subject was a boy about 12 years of age who

Among the innovations of Benjamin Little, M.D., who taught both in Vermont and New York during the 1870s and 1880s, is the plaster-of-Paris splint still in use today.

Standing well over six feet tall and weighing at least 250 pounds, he made major contributions to both UVM and the practice of surgery. Born in Brooklyn, New York, on February 19, 1836, he became a bookseller at age twenty, but was fired after spending too much time reading the store's medical books. Interested in learning anatomy, he purchased a palest's skull from a gravedigger for twenty-five cents. Upon unpacking the package, however, he found that it contained a decomposing head. Horrified, he threw the entire lot into the East River and chose another course of study.

Little attended the Columbia College of Physicians and Surgeons, graduating in 1860. He became a junior assistant surgeon at the New York Hospital the same year. Little was Surgeon-in-Chief to New York City's 14,000-bed Park's Barracks Hospital during the Civil War, even though he did not serve in the military.

Wednesday, November 8, 1815

Dr. Pomeroy returned from a patient in Westford who had fallen from her horse and fractured badly both the tibia and fibula...it is in both compound and comminuted, and several weeks have passed. Dr. Pomeroy says he shall amputate the leg tomorrow or the next day.

Friday, November 10, 1815

The medical students with Dr. Pomeroy started by 6 o'clock...our journey [one way] was 18 miles...though we had paid a dollar each, we had to walk half the way...we did not arrive until 2 o'clock.

All things were ready for the operation in a few minutes. Dr. Pomeroy then performed it in less than three minutes. The limb was off, and nearly dressed in five minutes more. We returned to Burlington the same evening. We arrived about half past eleven.

James L. Little, the Big Surgeon

James Lawrence Little, the College's professor of surgery from 1875 to 1885, was a giant in both size and vision. Standing well over six feet tall and weighing at least 250 pounds, he made major contributions to both UVM and the practice of surgery. Born in Brooklyn, New York, on February 19, 1836, he became a bookseller at age twenty, but was fired after spending too much time reading the store's medical books. Interested in learning anatomy, he purchased a palest's skull from a gravedigger for twenty-five cents. Upon unpacking the package, however, he found that it contained a decomposing head. Horrified, he threw the entire lot into the East River and chose another course of study.

Little attended the Columbia College of Physicians and Surgeons, graduating in 1860. He became a junior assistant surgeon at the New York Hospital the same year. Little was Surgeon-in-Chief to New York City's 14,000-bed Park's Barracks Hospital during the Civil War, even though he did not serve in the military.

It was during this time that Little came up with his first major breakthrough — the invention of the plaster-of-Paris splint still in use today.
of Paris splint. Beforehand, splints had been made from a troublesome starchy material. Although plaster of Paris had been used as a surgical dressing without success, Little was able to adapt the compound to orthopaedic practice. He devised an ingredient mixture and application method that provided an immoveable yet porous splint that would conform to any shape desired. His basic technique is still used today.

...Little yearned to raise the number of UVM lectures delivered by specialist. Using his personal connections, he recruited speakers from New York in the fields of ophthalmology, otology, and urology, among others. He also convinced his colleagues to give clinical instruction in each of these subjects.

Little was the first surgeon to place a suprapubic catheter for the relief of urinary retention. An early adapter, he was also among the first users of the newly invented laryngoscope and ophthalmoscope during the 1860s. His interests in these instruments led to his next major surgical legacy. In 1879, during the middle of his tenure at UVM, he published the first succinct description of the location in which the majority of all nosebleeds originate. Recognition of this discovery in the United States, ironically, has since fallen to a German laryngologist who reported similar findings in 1884. Thus, the region still known as Little’s area in Great Britain is called Kesselbach’s plexus in the United States.

John Brooks Wheeler Becomes Professor of Surgery UVM’s trustees rearranged the College of Medicine’s entire faculty in July of 1900. Former assistant John Brooks Wheeler took Abel Mix Phelps’ place as professor of surgery. Another native Vermonter, he was born in Stowe on August 13, 1853. He was the son of a prominent lawyer and the grandson of the University’s former president. Wheeler made the most of his background by pursuing an extensive education. He graduated from UVM in 1875 and the next two years, he studied under some of the most important physicians and surgeons of the era. He learned the principles of surgery from Bernhard von Langenbeck in Berlin. Wheeler was the grandson of Scottish surgeon Benjamin Bell whose text was used by John Pomeroy at the start of his Burlington teaching saga.

Wheeler’s greatest exposure to literature occurred in Austria and Germany (rather than in Lister’s home of Scotland) due to widespread European acceptance of antisepsis.

At the completion of his studies, Wheeler was as well trained as any of UVM’s previous professors of surgery. Unlike his predecessors, though, he decided to return to Vermont rather than settle in a large metropolitan city. In the fall of 1881, he opened an office on Main Street in Burlington. Within two years, he was an instructor at the College and an attending surgeon at the Mary Fletcher Hospital. Despite lecturing before classes of more than 200 students a year, Wheeler did not enjoy the substantial salary of a full professor. In order to make ends meet, he initially practiced both general medicine and surgery since his patients were poor and surgical cases were few.

Even though Mary Fletcher’s hospital had been open for several years, operations were still carried out in patient’s homes. Wheeler recalled, “There was a feeling that nobody but paupers were treated at hospitals.” The populace was “filled with the idea that hospitals existed for the sole purpose of ‘experimenting on people.’” As a result of this mindset, Wheeler was often obliged to travel up to thirty miles or more by horseback, carriage, or even sleigh to make a “house” call.

The general public had about as much regard for physicians’ advice during this time as they had for hospitals. An incident involving one of Wheeler’s first patients (an elderly woman with burns over her lower abdomen and thighs from an overturned lantern) was typical. Wheeler applied gauze soaked with linseed oil and lime water to the burned skin, covered it with a thick layer of cotton, and then changed the entire dressing every day for the next ten days. Just as the surface began to heal, the patient’s sister informed him that his services were no longer needed. She felt that the “young doctor” had done his best, but that it was time to switch to a better remedy — a hen manure poultice. Appalled, Wheeler pleaded his case to no avail. “In about a week more this treatment by fertilizer bore the fruit which I had expected, in the shape of a funeral.”

Wheeler continued his association with the Department of Surgery for decades afterward, till his death in 1942. Later that year A.G. Mackay became the chair.

Julius Jacobson Brings Surgical Research to UVM Upon completing his fellowship in 1959, Julius Jacobson was recruited by A.G. Mackay to start a research program at UVM. He accepted the offer, and was soon appointed Associate Professor of Surgery and Director of Surgical Research. Not bad for someone only a few months out of training! He was generously funded by the College of Medicine, the Department of Surgery’s clinicians, and the United States Public Health Service, which “was pouring money in to upgrade the smaller schools.”

Jacobson drew upon his interest in thoracic surgery and his prior experience with the operating microscope. The Department of Pharmacology asked him to help with a study that involved denervation of the canine carotid artery. “It became clear that the only sure way to achieve this was to divide and reanastomose the artery.” After working on the 3 mm arteries, however, “It became obvious, that the problem was the eye not being able to see well enough to guide the hand properly.” Experimentation with magnifying loops was undertaken in short order. “Suddenly the epiphany occurred,” Wheeler wrote, “of threading a needle into an ear, nose, and throat operating room at Presbyterian Hospital and peering through the microscope during a stapes mobilization.” The rest unfolded as follows:

“I immediately went to the Mary Fletcher Hospital to borrow an operating microscope. The resistance to moving an expensive piece of equipment and contaminating it in the animal laboratory was monumental, even as it might be today. However, that same day we did the first canine carotid anastomosis with the microscope.”

Jacobson was given a wing in the basement of the new Medical Alumni Building. It contained an office for himself, an office for a fellow, an office with several divided carousels for students, and three rooms that could function as animal laboratory operating rooms. There was enough cage space for 160 dogs, a luxury unheard of today. Jacobson hired Clement Comeau, a Mary Fletcher O.R. assistant, and Rodney Larrow, who had been working for a local veterinarian, as his laboratory technicians. He recruited Ernesto L. Suarez, a gifted young physician from Argentina, to be a researcher. Suarez, like Jacobson before him, eventually developed superb skills operating under the microscope.

During the summer months, medical students were paid $500 apiece to work in the new lab. The 1960 crew included two students from UVM, Robert Guiduli (who later became a South Burlington-based ophthalmologist) and Charles Petman; and one from the University of Rochester, myself [David B. Pilcher], thanks to my family’s connection to the University of Rochester, myself [David B. Pilcher], thanks to my family’s connection to the University of Rochester. To my family’s connection to the University of Rochester.

Jacobson hired Clement Comeau, a Mary Fletcher O.R. assistant, and Rodney Larrow, who had been working for a local veterinarian, as his laboratory technicians. He recruited Ernesto L. Suarez, a gifted young physician from Argentina, to be a researcher. Suarez, like Jacobson before him, eventually developed superb skills operating under the microscope.

During the summer months, medical students were paid $500 apiece to work in the new lab. The 1960 crew included two students from UVM, Robert Guiduli (who later became a South Burlington-based ophthalmologist) and Charles Petman; and one from the University of Rochester, myself [David B. Pilcher], thanks to my family’s connection to the University of Rochester. Suarez, like Jacobson before him, eventually developed superb skills operating under the microscope.

During the summer months, medical students were paid $500 apiece to work in the new lab. The 1960 crew included two students from UVM, Robert Guiduli (who later became a South Burlington-based ophthalmologist) and Charles Petman; and one from the University of Rochester, myself [David B. Pilcher], thanks to my family’s connection to the University of Rochester. Suarez, like Jacobson before him, eventually developed superb skills operating under the microscope.

During the summer months, medical students were paid $500 apiece to work in the new lab. The 1960 crew included two students from UVM, Robert Guiduli (who later became a South Burlington-based ophthalmologist) and Charles Petman; and one from the University of Rochester, myself [David B. Pilcher], thanks to my family’s connection to the University of Rochester. Suarez, like Jacobson before him, eventually developed superb skills operating under the microscope.

During the summer months, medical students were paid $500 apiece to work in the new lab. The 1960 crew included two students from UVM, Robert Guiduli (who later became a South Burlington-based ophthalmologist) and Charles Petman; and one from the University of Rochester, myself [David B. Pilcher], thanks to my family’s connection to the University of Rochester. Suarez, like Jacobson before him, eventually developed superb skills operating under the microscope.

During the summer months, medical students were paid $500 apiece to work in the new lab. The 1960 crew included two students from UVM, Robert Guiduli (who later became a South Burlington-based ophthalmologist) and Charles Petman; and one from the University of Rochester, myself [David B. Pilcher], thanks to my family’s connection to the University of Rochester. Suarez, like Jacobson before him, eventually developed superb skills operating under the microscope.