The word “sepsis” is derived from the ancient Greek word for rotten flesh and putrefaction. Sepsis refers to the systemic inflammatory response following microbial infection. Although the clinical criteria that defines sepsis remain controversial, sepsis may best be defined as the “systemic response to infection with the presence of some degree of organ dysfunction.” Sepsis is among the most common reasons for admission to ICUs throughout the world. An epidemiologic study in European ICUs demonstrated an incidence of 37% for sepsis and 30% for severe sepsis. Although the exact incidence of sepsis in the United States is unclear, the annualized incidence has been reported to have increased by 8.7% to 13% over the past 30 years. The aging of the population in developed countries is believed to be largely responsible for the increasing incidence of sepsis. Epidemiologic data from 2004 to 2009 demonstrated a decrease in in-hospital mortality from 35% to 26%. This study estimated that there were 229,044 deaths from severe sepsis in 2009, which would place severe sepsis as the third most common cause of death in the United States, after heart disease and malignant neoplasms. The 1-year all-cause mortality of patients treated for severe sepsis and septic shock may be as high as 44%. In addition, some data suggest that patients who have had a septic episode are at an increased risk of death for up to 5 years following the acute event.

Sepsis is an exceedingly complex condition. Exposure of human macrophages to bacterial antigens has been demonstrated to result in a significant change in the expression of over 950 genes. These include genes for proinflammatory and antiinflammatory cytokines, chemokines, adhesion molecules, transcription factors, enzymes, clotting factors, stress proteins, and anti-apoptotic molecules. These gene products alter the
function of every cell and tissue in the body. Furthermore, these mediators interact in complex positive and negative feedback loops and result in epigenetic modifications that further alter the expression of this network of mediators. The early phase of sepsis is generally believed to result from the uncontrolled production of proinflammatory mediators, the so-called “cytokine storm.” However, some data suggest that both a proinflammatory and an opposing antiinflammatory response occur concurrently in patients with sepsis. In general, following a variable time course, patients transition from a predominantly proinflammatory to an antiinflammatory immunosuppressive state.

The pathogenetic mechanism and physiologic changes associated with sepsis are exceedingly complex, but our understanding of this topic is evolving rapidly; the reader is referred to excellent reviews on this topic. The major pathophysiologic changes in patients with severe sepsis and septic shock include vasoplegic shock (distributive shock), myocardial depression, altered microvascular flow, and a diffuse endothelial injury. Vasoplegic shock due to the failure of the vascular smooth muscle to constrict, results in arterial and venodilatation. Venodilatation decreases venous return and compounds the intravascular volume deficit caused by the vascular leak. This review focuses on those interventions that are currently believed to improve the outcome of patients with severe sepsis. Experimental immunomodulating interventions, including the use of novel molecules and antibodies, extracorporeal blood purification, or approaches to “seal” the leaky endothelium, are not discussed.

The early management of patients with sepsis centers on the administration of antibiotics, IV fluids, and vasoactive agents, followed by source control. Unfortunately, there is no high-quality evidence (from one or more randomized controlled trials) demonstrating that any of these interventions alters outcome. However, it is likely that the early detection of sepsis with the timely administration of appropriate antibiotics is the single most important factor in reducing morbidity and mortality from sepsis. It has become increasingly apparent that in many patients there is a long delay in both the recognition of sepsis and the initiation of appropriate therapy. This has been demonstrated to translate into an increased incidence of progressive organ failure and a higher mortality. Physicians, therefore, need to have a high index of suspicion for the presence of sepsis. The clinical features that should heighten the index of suspicion for the diagnosis of sepsis are listed in Table 1.

Antibiotic Therapy

Empirical IV antibiotic therapy should be started as soon as possible and within the first hour of recognition of severe sepsis, after appropriate cultures have been obtained. In a retrospective analysis of 2,600 patients, Kumar and colleagues demonstrated that the risk of dying increased progressively with an increase in the time to receipt of the first dose of antibiotic from the onset of sepsis-induced hypotension. Furthermore, there was a 5% to 15% decrease in survival with every hour of delay over the first 6 h. The choice of antibiotics is largely determined by the source or focus of infection, the patient’s immunologic status, whether the infection is nosocomial or community acquired, and knowledge of the local microbiology and sensitivity patterns. Initial empirical antinfecive therapy should include one or more drugs act against the likely pathogens and that penetrate into the presumed source of sepsis. Because the identity of the infecting pathogen(s) and its sensitivity pattern(s) are unknown at the time of initiation of antibiotics, the initial regimen in patients with severe sepsis and septic shock should include two or more antibiotics or an extended spectrum β-lactam antibiotic with the aim of treating all realistically possible microbial causes. A number of studies have demonstrated that appropriate initial antimicrobial therapy, defined as the use of at least one antibiotic active in vitro against the causative bacteria, reduced mortality when compared with the inappropriate therapy other patients received.

Once a pathogen is isolated, monotherapy is adequate for most infections; this strategy of initiating broad-spectrum cover with two or more antibiotics, and then narrowing the spectrum to a single agent when a pathogen is identified, is known as "antimicrobial

Table 1—Clinical Features That Should Alert the Physician to the Diagnosis of Severe Sepsis

<table>
<thead>
<tr>
<th>Clinical Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate > 120/min</td>
</tr>
<tr>
<td>Systolic BP < 90 mm Hg</td>
</tr>
<tr>
<td>Respiratory rate > 20/min</td>
</tr>
<tr>
<td>Temperature > 38.5° or < 36° C</td>
</tr>
<tr>
<td>Confusion</td>
</tr>
<tr>
<td>Lactate > 2 mmol/L</td>
</tr>
<tr>
<td>Procalcitonin > 0.5 ng/mL</td>
</tr>
<tr>
<td>WBC count > 12,000 or < 4,000 cells/µL</td>
</tr>
<tr>
<td>Band count > 5%</td>
</tr>
<tr>
<td>Lymphocytopenia < 0.5 × 10³ µL</td>
</tr>
<tr>
<td>Thrombocytopenia < 150 × 10³ µL</td>
</tr>
<tr>
<td>Oliguria</td>
</tr>
<tr>
<td>Chills and rigors</td>
</tr>
</tbody>
</table>

Downloaded From: http://journal.publications.chestnet.org/ by Eastern Virginia Medical School, Alexander Levitov on 06/04/2014
de-escalation." The indications for continuation of double-antimicrobial therapy include enterococcal infections and severe intraabdominal infections. In addition, double antimicrobial therapy (third-generation cephalosporin and macrolide) is recommended for patients with severe community-acquired pneumonia and those with pneumococcal bacteremia. To rapidly achieve adequate blood and tissue concentrations, antibiotics should be given via IV, at least initially. Dosing regimens should take into account whether the antibiotic "kills" by time-dependent kinetics (eg, β-lactam antibiotics, vancomycin) or by concentration-dependent kinetics (eg, aminoglycosides). The clinical effectiveness of β-lactam antibiotics and vancomycin is optimal when the concentration of the antimicrobial agent in the serum exceeds the minimum inhibitory concentration of the infecting organism for at least 40% of the dosing interval. In addition, antibiotic dosing should take into account the patient’s hepatic and renal function.

Fluid Therapy

Beyond the early administration of antibiotics, aggressive "supportive measures" may be harmful and the "less is more" paradigm appears applicable for the management of patients with severe sepsis. In these highly vulnerable patients, more intensive treatment may promote the chance of unwanted adverse effects and, hence, iatrogenic injury. Current teaching suggests that aggressive fluid resuscitation is the best initial approach for the cardiovascular instability of sepsis. Consequently, large volumes of fluid (5-10 L) are often infused in the early stages of sepsis. There is, however, no human data that substantial (>30 mL/kg) fluid resuscitation reliably improves BP or end-organ perfusion.

From a pathophysiologic point of view, large-volume fluid resuscitation in patients with sepsis is illogical and may worsen the hemodynamic derangements of sepsis. In patients with septic shock who are fluid responders (an increase in cardiac output with fluid boluses), vasodilatation with a fall in systemic vascular resistance has been observed. A similar finding has been noted in an experimental sepsis model. Hence, although the cardiac output increases, vasodilatation occurs and the BP may remain unchanged. Increased shear stress increases the expression of nitric oxide synthetase with increased release of nitric oxide. In addition, increased cardiac filling pressures increase the release of natriuretic peptides, which act synergistically with nitric oxide, causing cyclic guanosine monophosphate-mediated vasodilatation. Endotoxin enhances this vasodilatory response. As cardiac filling pressures increase, extravascular lung water (EVLW) and tissue edema increase.

Furthermore, increased cardiac filling pressures consequent to large-volume resuscitation increase the release of natriuretic peptides. Natriuretic peptides cleave membrane-bound proteoglycans and glycoproteins (most notably syndecan-1 and hyaluronic acid) off the endothelial glycocalyx. The endothelial glycocalyx plays a major role in regulating endothelial permeability, and damage to the glycocalyx plays a major role in increasing tissue edema. Because of the endothelial injury, capillary leak, and increased hydrostatic pressures, <5% of infused crystalloid remains intravascular within 3 h after infusion, resulting in an increase in EVLW and further tissue edema. Increased EVLW has been demonstrated to be a strong independent predictor of death. In patients with pneumonia, large-volume fluid resuscitation may result in severe pulmonary edema. Myocardial edema due to excess fluid administration compounds the myocardial dysfunction. Evidence of the harmful effects of aggressive fluid resuscitation on the outcome of sepsis is supported by experimental studies as well as by data accumulated from clinical trials. Multiple clinical studies have demonstrated an independent association between an increasingly positive fluid balance and increased mortality in patient with sepsis.

In a recent study, Micek and colleagues demonstrated that a greater positive fluid balance and a higher central venous pressure (CVP) at both 12 h and 4 days were independent predictors of death. In this study, aggressive fluid loading was associated with a significantly increased risk of death. Furthermore, there was no subgroup of patients that benefitted from aggressive fluid resuscitation. This study is frequently dismissed with the argument that it cannot be extrapolated to adult patients. In contemporary sepsis studies, between 1.5 and 4.0 L of fluid were given in the first 24 h. This compares to 4.9 ± 2.9 and 13.4 ± 6.3 L at 6 and 72 h, respectively, in the intervention arm of the Early Goal Directed Therapy (EGDT) study. In the Australasian Resuscitation of Sepsis Evaluation (ARISE) study, which used the same entry criteria as the EGDT study, 2.2 ± 1.9 L of fluid were given in the first 6 h.
The hospital mortality was 23% in the ARISE study compared with 30% in the intervention arm of the EGDT study. In the VASTT, optimal survival occurred with a positive fluid balance of approximately 3 L at 12 h.46 In some patients, hypotension and tachycardia do resolve with limited fluid resuscitation. However, fluids alone will not reverse the hemodynamic instability of patients with more severe sepsis; in these patients, fluids alone are likely to exacerbate the vasodilatory shock and increase the capillary leak and tissue edema. Based on these data, I suggest limiting the initial fluid resuscitation to approximately 20 to 30 mL/kg. Furthermore, I recommend this fluid be given as 500-mL fluid challenges. It is important to emphasize that this conservative approach to fluid management in patients with sepsis is based on indirect evidence and not on a randomized controlled trial specifically designed to answer this question. Furthermore, this recommendation differs somewhat from that of the most recent Surviving Sepsis Campaign guidelines, which suggest “a minimum fluid challenge of 30 ml/kg” and that “greater amounts of fluid may be needed in some patients (Grade 1C).”65

The optimal time to start a vasopressor agent in patients with sepsis has not been well studied. However, after receiving 20 to 30 mL/kg of crystalloid, it seems unlikely that additional fluid boluses will increase the mean arterial pressure (MAP) in patients who remain hypotensive.39,40 I would, therefore, recommend the initiation of a vasopressor agent (norepinephrine) in patients who remain hypotensive (MAP < 65 mm Hg) after receiving 20 to 30 mL/kg of crystalloid solution. Additional fluid boluses (500 mL) may be given once the “target” norepinephrine dose is achieved (about 0.1-0.2 μg/kg/min), and this should be based on a dynamic assessment of volume responsiveness and ventricular function (Fig 1). I suggest using the passive leg-raising maneuver coupled with minimally invasive cardiac output monitoring to assess volume responsiveness.96,97 Calibrated pulse contour analysis, bioreactance, the ultrasonic cardiac output monitor (USCOM), carotid Doppler flow, Doppler echocardiography, or esophageal Doppler techniques can be used to dynamically follow the cardiac output in real time.68-72 Bioreactance, USCOM, and carotid Doppler flow are truly noninvasive and are suitable for guiding fluid resuscitation in the ED.72,77 In cases of life-threatening hypotension (diastolic BP < 40 mm Hg), treatment with vasopressors should be started concurrently with fluid administration.78

Recent data suggest that the choice of resuscitation fluid may have an effect on outcome. Balanced salt solutions (Lactated Ringers solution, Hartmann’s solution, Plasmalyte 148) are the preferred resuscitation fluids. Normal saline (0.9% NaCl) is associated with an increased risk of renal dysfunction,79 a hyper-chloremic metabolic acidosis, and an increased risk of death.90-92 Similarly, hydroxyethyl starch solutions are associated with an increased risk of renal failure and death and are considered contraindicated in patients with sepsis.93,94 Albumin has a number of theoretical benefits in patients with sepsis, including its antioxidant and antiinflammatory effects as well as its ability to stabilize the endothelial glyocalyx.85,86 However, the use of albumin in patients with sepsis is controversial. The multicenter randomized Albumin Italian Outcome Sepsis Study (ALBIOS) demonstrated that a 25% albumin infusion decreased the mortality of patients with septic shock (and a serum albumin of <3g/dL) once hemodynamic stability had been achieved.87 The use of albumin is patients with sepsis is supported by the Saline vs Albumin Fluid Evaluation (SAFE) study, as well as by a metaanalysis on this topic.88-90 Because a 25% albumin infusion may restore the damaged endothelial glyocalyx, this would appear to be a reasonable intervention in patients with severe septic shock.85,86

Vasopressors and Inotropic Agents

A low MAP is a reliable predictor for the development of organ dysfunction. When the MAP falls below an organ’s autoregulatory threshold, organ blood flow decreases in an almost linear fashion.91 Because the autoregulatory ranges of the heart, brain, and kidney are > 60 mm Hg,91 a MAP below this level will likely result in organ ischemia. An analysis of a large ICU database demonstrated that the risk of kidney injury and death increased sharply as the MAP fell below 60 mm Hg.92 Varpula and colleagues93 studied the hemodynamic variables associated with mortality in patients with septic shock. These researchers calculated the area under the curve (AUC) of various MAP thresholds over a 48-h time period. The highest AUC values were found for a MAP < 65 mm Hg (AUC, 0.83; 95% CI, 0.772-0.934). Because of the shift in the autoregulatory range (to the right) in patients with chronic hypertension, a higher MAP may be required in these patients.

The Assessment of Two Levels of Arterial Pressure on Survival in Patients With Septic Shock (SEPSISPAM) is a multicenter, randomized controlled trial completed in France.94 In this study, patients with septic shock were randomized to achieve a target MAP of 65 to 70 or 50 to 85 mm Hg. The primary outcome was 28-day mortality. Secondary outcomes included 90-day mortality and organ failures. A priori, a secondary analysis was planned in patients with and without a history of hypertension. Overall, there was no difference in either primary or secondary end point between the two treatment groups. However the incidence of organ failures (particularly renal dysfunction) was
higher in the subgroup of patients with chronic hypertension in the lower MAP group. Furthermore, much like the Varpula study, the time below 65 mm Hg (but not 80 mm Hg) threshold was an independent predictor of death. Based on these data, I suggest targeting an initial MAP of 65 mm Hg in patients with septic shock. In those patients with a history of chronic hypertension, I would suggest targeting a slightly higher MAP (75-80 mm Hg).

In patients with sepsis, norepinephrine increases BP as well as cardiac output and renal, splanchic, cerebral, and microvascular blood flow, while minimally increasing heart rate.

Although not widely appreciated, norepinephrine causes α adrenergic receptor-mediated vasoconstriction; this increases the mean systemic pressure with a significant increase in venous return and cardiac preload. The early use of norepinephrine reverses the hemodynamic abnormalities of severe vasodilatory shock. Abid and colleagues demonstrated that the early use of norepinephrine in patients with septic shock was a strong predictor of survival. In situations in which norepinephrine is not available, epinephrine is a suitable alternative agent. In patients with septic shock, dopamine is associated with an increased mortality when compared with norepinephrine, and is best avoided. Similarly, phenylephrine is not recommended, because in experimental models it decreases cardiac output as well as renal and splanchic blood flow. Furthermore, phenylephrine has not been well studied in patients with sepsis.

In patients who remain hypotensive or have evidence of inadequate organ perfusion despite fluid optimization and an adequate dose of norepinephrine (approximately 0.1-0.2 μg/kg/min), I recommend further hemodynamic assessment to exclude ventricular dysfunction. Global biventricular dysfunction has
been reported in up to 60% of patients with septic shock.105,106 Ventricular function is best assessed by bedside echocardiography and confirmed by minimally invasive cardiac output monitoring. Dobutamine at a starting dose of 2.5 \(\mu \mathrm{g} / \mathrm{kg} / \mathrm{min} \) is recommended in patients with significant ventricular dysfunction (milrinone is an alternative agent).106 The dose of dobutamine should be titrated to the hemodynamic response as determined by minimally invasive cardiac output monitoring.108,110 This recommendation is in keeping with the updated Surviving Sepsis Campaign guidelines, which suggest “a trial of dobutamine infusion up to 20 micrograms/kg/min be administered or added to vasopressor (if in use) in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion, despite achieving adequate intravascular volume and adequate MAP (grade IC).”65 These recommendations, however, differ from the EGDT study protocol, which suggests the use of an inotropic agent based on the CVP (\(>8-12 \text{ mm Hg} \)) and a central venous oxygen saturation (Scv\(_o_2\)) of < 70% (without an evaluation of ventricular function or cardiac output).64 Bouferrache and colleagues111 demonstrated a poor agreement in the use of inotropic agents when treatment was guided by early transesophageal echocardiography as compared with the EGDT study protocol in patients presenting with septic shock.

The Surviving Sepsis Campaign guidelines suggest that “vasopressin 0.03 units/min can be added to norepinephrine with the intent of either raising MAP or decreasing norepinephrine dosage (ungraded).”65 Vasopressin reverses the “relative vasopressin deficiency” seen in patients with septic shock and increases adrenergic sensitivity.20,112 Terlipressin is an alternative agent should vasopressin not be available (terlipressin is not Food and Drug Administration-approved in the United States).113,114 Vasopressin may be effective in raising BP in patients with refractory hypotension; however, the optimal time to initiate this drug is not clear. The VASST randomized patients with septic shock to norepinephrine alone or norepinephrine plus vasopressin at 0.03 units/min.115 By intention-to-treat analysis there was no difference in outcome between the groups. However, an a priori-defined subgroup analysis demonstrated that survival among patients receiving \(< 0.2 \mu \mathrm{g} / \mathrm{kg} / \mathrm{min} \) norepinephrine at the time of randomization was better with the addition of vasopressin than that of those receiving norepinephrine at a dose \(>0.2 \mu \mathrm{g} / \mathrm{kg} / \mathrm{min} \). Therefore, suggest the addition of vasopressin at a dose of norepinephrine between 0.1 and 0.2 \(\mu \mathrm{g} / \mathrm{kg} / \mathrm{min} \). Thereafter the dose of norepinephrine should be titrated to achieve a MAP of at least 65 mm Hg. It is important to emphasize that vasopressin is administered as a fixed dose of 0.03 units/min and should not be uptitrated. An outline of this treatment algorithm for the hemodynamic stabilization of patients with septic shock is provided in Fig 1.

Although this algorithm/protocol has not been tested in a randomized controlled trial, it is very similar to the Bathurst-USCOM hemodynamic (BUSH) protocol developed by Smith and colleagues.116 Using data from the Australian and New Zealand Intensive Care Society (ANZICS) Center for Outcomes and Resource Evaluation (CORE) database, these researchers demonstrated a 94% reduction in mortality from septic shock with the introduction of the BUSH protocol.116 Patients treated with the BUSH protocol received significantly less fluid in the first 24 and 48 h, whereas a greater percentage received norepinephrine within the first 24 h as compared with the control group. It is important, however, to emphasize that “patients are not airplanes and doctors are not pilots”; each patient is unique, with a unique response to invading pathogens and a unique response to treatment. Therefore, these algorithms must be adapted dynamically to each patient as his/her clinical course evolves.

Resuscitation End Points

A large number of hemodynamic, perfusion, oxygenation, and echocardiographic targets have been proposed as resuscitation goals in patients with severe sepsis and septic shock.65,111,118 Most of these targets, however, are controversial and are not supported by outcome data. The Surviving Sepsis Campaign guidelines recommend a CVP of 8 to 12 mm Hg (12-15 mm Hg if mechanically ventilated), an Scv\(_o_2\) > 70%, and a urine output > 0.5 mL/kg/h as targets for resuscitation.65 It has been well established that there is no relationship between the CVP and intravascular volume and no relationship between the CVP and fluid responsiveness.109,120 Consequently, I believe that the CVP should not be used to guide fluid therapy.65

The use of Scv\(_o_2\) to guide the resuscitation of patients who are septic is equally problematic. Patients who are septic usually have a normal or increased Scv\(_o_2\) caused by reduced oxygen extraction.121,122 Indeed, in the recent review article by Angus and van der Poll,4 a Scv\(_o_2\) > 70% was considered a diagnostic criterion for severe sepsis. In a large, multicenter, goal-directed study conducted by Pope and colleagues,123 a high (> 90%) but not a low (< 70%) initial Scv\(_o_2\) was an independent predictor of death. Furthermore, in a paper by Nee and River,124 which reviewed the outcome of patients enrolled in the Surviving Sepsis Campaign database, they conclude that the “attainment of a CVP of >8 mm Hg and Scv\(_o_2\) of >70% did not influence survival in patients with septic shock.”124 Although urine output may be a valuable marker of
renal perfusion in hypovolemic states, this clinical sign becomes problematic in sepsis-associated acute kidney injury; experimental models show that oliguria occurs in the presence of marked global renal hyperemia.125-127 Titration of fluids to urine output may, therefore, result in fluid overload. Three large, international, multicenter, randomized trials (ProCESS, ARISE, and ProMISe) are investigating the role of the CVP and ScvO\textsubscript{2} as targets for therapy in patients with severe sepsis and septic shock.128 It is hoped that the outcome of these trials will resolve this ongoing controversy.129 In addition, two trials are evaluating the role of noninvasive hemodynamic monitors in guiding fluid resuscitation in the early stages of septic shock.36,77

The Surviving Sepsis Campaign guidelines recommend “targeting resuscitation to normalize lactate in patients with elevated lactate levels as a marker of tissue hypoperfusion.”65 This recommendation is based on the notion that an elevated lactate is a consequence of tissue hypoxia and inadequate oxygen delivery,4 and is “supported” by two studies that used lactate clearance as the target of resuscitation.130,131 However, the concept that sepsis is associated with tissue hypoxia is unproven and likely incorrect, as argued by Hotchkiss and Karl.132 >20 years ago. Multiple studies have demonstrated that the increased blood lactate concentration in sepsis is not caused by tissue hypoxia but is rather produced aerobically as part of the metabolic stress response.133-136 Increasing oxygen delivery in these patients does not increase oxygen consumption.135-137 Previous studies have demonstrated that targeting supramaximal oxygen delivery does not improve outcome and may be harmful.138,139 Morelli and colleagues140 demonstrated that in the setting of septic shock, an infusion of a short-acting B-blocker reduced cardiac output and oxygen delivery; paradoxically, this intervention reduced blood lactate levels and improved patient survival as compared with the control group.

These data would suggest that achieving a MAP of at least 65 mm Hg should be the primary target in the resuscitation of patients with septic shock. Furthermore, although attempts to achieve a supranormal cardiac index may be potentially harmful, I would suggest targeting a normal cardiac index (>2.5 L/min/m2).138 Although a falling arterial lactate concentration is a sign that the patient is responding to therapy (attenuation of the stress response), titrating therapy to a lactate concentration is devoid of scientific evidence.135,136 Additional end points of resuscitation remain unproven at this time.

Blood Transfusion

The 2012 Surviving Sepsis Campaign guidelines state that “during the first 6 hours of resuscitation, if ScvO\textsubscript{2} is less than 70%...then dobutamine infusion...or transfusion of packed red blood cells to achieve a hematocrit of greater than or equal to 30% in attempts to achieve the ScvO\textsubscript{2} goal are options.”65 In patients who are septic, RBC transfusions do not acutely increase tissue oxygen uptake; paradoxically, they have been demonstrated to impair microcapillary flow and tissue oxygenation.137 In addition, the release of cell-free hemoglobin from banked blood may be particularly deleterious in patients who are septic.141,142 One study demonstrated that “transfusion of PRBCs was associated with worsened clinical outcomes in patients with septic shock treated with EGDT.”143 Blood transfusions are associated with an increased risk of secondary infections, multiorgan dysfunction syndrome, and death and should be considered only in patients with a hemoglobin <7 g/dL.144,145

Corticosteroids

The use of low-dose corticosteroids in patients with severe sepsis remains controversial.146 It has been proposed that inadequate cellular glucocorticoid activity (critical illness-related corticosteroid insufficiency) due to either adrenal suppression or glucocorticoid tissue resistance results in an exaggerated and protracted proinflammatory response.147 In addition to down-regulating the proinflammatory response, corticosteroids may have additional beneficial effects, including increasing adrenergic responsiveness48 and preserving the endothelial glycocalyx.149 Because corticosteroids enhance local immune defenses but reduce global nuclear factor κB expression and cause a predominant TH2 immunosuppressive state, steroids are likely to be beneficial early in the course of the disease but are likely to compound the immunosuppression when given later in the course of sepsis. The time-dependent initiation of the use of corticosteroids has not been taken into consideration in those studies (and meta-analyses) which have analyzed the benefits/risk of steroids in sepsis. Park and colleagues,150 in a retrospective analysis of 178 patients with septic shock, found that corticosteroids were only of benefit if given within 6 h after the onset of septic shock-related hypotension. In the Corticosteroid Therapy of Septic Shock Study (CORTICUS), the initial time frame for the initiation of corticosteroids was 24 h, which was then increased to 72 h.151 It is also important to recognize that in the CORTICUS, >60% of the patients were surgical patients. It has now been well established that surgery induces an immunosuppressive TH2 state and that this occurs within hours of surgery.152 Postsurgical patients who develop sepsis remain in a predominant TH2 state.152 It would, therefore, appear counterproductive to give postsurgical patients who are septic corticosteroids because this
is only likely to compound the immunosuppressive state and increase the risk of secondary infections (as was demonstrated in the CORTICUS).

Although the mortality benefit of corticosteroids in septic shock is controversial, low-dose hydrocortisone has been demonstrated to significantly reduce vasopressor dependency, with a favorable side-effect profile. Furthermore, the combination of low-dose corticosteroids and vaspressin has been associated with decreased mortality and organ dysfunction in patients with septic shock. Based on these data, I would suggest treatment with hydrocortisone concomitant with the initiation of vaspressin for the management of severe vasodilatory septic shock; however, this approach has not been tested prospectively. Two large randomized controlled trials are currently underway, and it is hoped that they will resolve this ongoing controversy about the use of corticosteroids in septic shock.

SOURCE CONTROL

It has been known for centuries that, unless the source of the infection is controlled, the patient cannot be cured of his/her infective process and death will eventually ensue. It is important that specific diagnoses of infection that require emergent source control be made in a timely manner (e.g., necrotizing soft tissue infection, peritonitis, cholangitis, intestinal infarction) and surgical consultation be obtained immediately. When source control in a patient who is severely septic is required, the effective intervention associated with the least physiologic insult should be used (e.g., percutaneous rather than surgical drainage of an abscess). If intravascular access devices are a possible source of severe sepsis or septic shock, they should be removed promptly after other vascular access has been established.

CONCLUSIONS

Despite initial enthusiasm about “disease-modifying agents,” the early administration of appropriate antibiotics and early hemodynamic resuscitation remain the cornerstone of the management of patients with sepsis. I believe that the first step in the resuscitation of a patient with septic shock is to achieve a MAP of at least 75 mm Hg with the use of vasoactive agents and small volumes of balanced fluid. A simultaneous goal would be to ensure adequate flow (cardiac output) as determined by echocardiography and minimally invasive cardiac output monitoring, supported by an integrated assessment, which includes physical examination, biochemical measurements, and the monitoring of the patient’s clinical response to therapy.

ACKNOWLEDGMENTS

Financial/nonfinancial disclosures: The author has reported to CHEST the following conflicts: In the last 3 years Dr Marik has received an honorarium from Pulsion Medical, manufacturer of the PiCCO hemodynamic device, for a lecture delivered at an International Critical Care Symposium and an honorarium from Cheetah Medical, manufacturer of the XiCOM hemodynamic device, for a lecture delivered at medical grand rounds.

Other contributions: The author thanks Rinaldo Bellomo, MD, Michael Hooper, MD, and Mark Flemmer, MD, for their thoughtful review of this manuscript.

REFERENCES

72. Bark DP, Persson J, Grändé PO. Importance of the infusion rate for the plasma expanding effect of 5% albumin, 6% HES 130/0.4, 4% gelatin, and 0.9% NaCl in the septic rat. *Crit Care Med.* 2013;41(3):587-596.

