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Transportation Modeling Framework
for a Small Metropolitan Area
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Thispaper describestheimplementation of aland useand transportation
modeling framework developed for Chittenden County, Vermont, to
test for differencesin modeled output when employing a dynamically
linked travel demand model (TDM ) ver susan assumption of staticregional
accessibilitiesover time. With the use of theland use model UrbanSim,
two versionsof a40-year simulation for thecounty, onewithaTDM and
one without, were compared. In the first version, UrbanSim was inte-
grated with the TransCAD four-step TDM; thisallowed regional acces-
sibilitiesto berecalculated at regularly scheduled intervals. I n the second
version, TransCAD was used to computeyear 2000 accessibilities; these
valueswereheld constant for theduration of themodel run. Theresults
indicated somesignificant differencesin themodeled outputs. In partic-
ular, although centrally located traffic analysiszones(TAZs) reveal rel-
atively little difference between the two models, the differential within
peripheral TAZs is both more pronounced and more heter ogeneous.
The pattern displayed suggeststhat some peripheral TAZshave higher
modeled development with a TDM because the TDM accounts for the
increased proximity of destinations, thereby making them amenableto
development. M eanwhile, some peripheral TAZs have lower modeled
development with a TDM because they already have good accessibility
(e.g., access via I nterstate), but the model without the TDM does not
account for increased congestion.

Although there are strong interdependencies between land use and
transportation, land use planning and transportation planning have
traditionally been compartmentalized and separated into different
agencies, such that planning for one frequently did not adequately
address the other (1, 2). These interdependencies, and the need to
plan for them in an integrated fashion, have increasingly been rec-
ognized by many researchers (2—6) aswell asby FHWA (7). Infact,
under the Intermodal Surface Transportation Efficiency Act of 1991
and to alesser extent the Transportation Equity Act for the 21st Cen-
tury of 1997, state or regional transportation agencies have been
encouraged to model the effect of transportation infrastructureinvest-
ment on land use patterns, and to consider the consistency of trans-
portation plans and programs with provisions of land use plans.
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Other federal programs have attempted to encourage integrated land
use and transportation modeling, including the Travel Model Improve-
ment Program (1992) and the Transportation and Community and Sys-
tem Preservation Pilot program (1999). In response to this need, there
has been increasing interest in and focus on the use of simulation
modelsthat dynamically integrate land use and transportation (8).

Land use simulation model s attempt to predict the future densi-
ties, types, and distributions of urbanization patterns for aregion.
Miller (8) suggests four components as critical to the integration
of land use and transportation models: land devel opment, location
choicefor households and employers, travel and trip-making behav-
ior, and auto ownership. He also suggests four core drivers that
should be accounted for in modeling urban systems: demographic
change, regional economic evolution (industry type, size, distribu-
tion), government policies (zoning, taxation, etc.), and all modes
of the transportation system.

UrbanSim (9-11) is aland use model under development at the
University of Washington's Department of Urban Design and Planning.
A recent review of land use modelsfound UrbanSim to be one of the
best because of its ability to be integrated with a number of different
proprietary and open-source transportation models (12), aswell asits
ability to perform scenario analysis to address long-range planning
issues. UrbanSim simulates land use change for a designated area by
spatially alocating household and employment locations based on
externally derived forecasts of population and employment growth. It
operatesin aniterativefashion, in which supply—demand imbal ances
are addressed incrementally over multiple time steps. The model is
composed of asuite of submodelsthat simulate economic and demo-
graphic transitions, household and employment location and mobil-
ity, land rent and real estate development (location, size, and type),
and accessibility of households to community services and cultural
amenities (Figure 1). Becauseit isdynamic, UrbanSim can take fac-
tors as endogenous that other model s take as exogenous, such asthe
location of development that occurs after the base year and changes
in the price of land and buildings. Exogenous inputs to the model
include macroeconomic indicators of employment conditionsand real
estate transactions, outputs from an independent travel demand model
(TDM), and user-specified conditions such as land use policies or
scheduled events (typically large-scale devel opment events).

Generally, the transportation model isrun for theinitial time step
to establish baseline accessihilities and then at auser-specified inter-
val thereafter to update those accessibilitiesin response to changing
land use and congestion factors. Because the timing and | ocation of
development eventsdepend in part on measures of bility, updat-
ing these values in the model database makes the interaction of land
use and transportation dynamic. The land use change model compo-
nentsare run on an annual time step simulating partial equilibration as



84

Database I
v

Model -
Coordinator

Output/

A

1
Scenario .
Data Totals |
[
|

FIGURE 1 UrbanSim model architecture.

actorsadjust to therate of change of fluxeswithin the economic sys-
tem or the housing market. Additionally, because each model com-
ponent isbased on astatistically estimated equation, the sel ection of
explanatory variables can beinfluenced by the availability of specific
data sets and tail ored to represent unique or distinctive local features
that influence transportation and development decisions.

RESEARCH OBJECTIVES

The primary objective of thisinvestigation is to test the effects of
including versus excluding an endogenous TDM as one component
of a combined land use-transportation modeling framework. The
intent is to examine whether the added complexity of endogenous
bility modeling significantly affects predicted |and use change.
That is, do indicators of predicted land use change differ depending
on whether accessibilities are updated to reflect changing land use?
Thisquestion isimportant for several research and policy based rea-
sons. From aresearch standpoint, the authors areinterested in under-
standing and quantifying uncertainty propagation over the course of
amodel run. To do this, the results of hundreds of model runs are
needed. Considering that approximately 70% of afull model run con-
sists of the TDM, there is the potential to save a significant amount
of time generating a sufficient set of outputs. Also considered isthe
impact on municipalitiesor regionsthat are not large enough to war-
rant the creation of a metropolitan planning organization, yet still
face many of the growing pains of larger communities and metro-
politan areas. If aTDM isnot necessary to produce accurate land use
change projections, there is the potential to save (already limited)
staff time and taxpayer financing for more pressing needs. Addition-
ally, if theresults are indeed shown to be different, they would lead
researchers to question the location, timing, and extent of devel op-
ment generated by modeling land use only. Such a question may be
critical for understanding long-term environmental impacts from
land use change, especially asthey relate to the relationships among
land conversion (from nonurban to urban uses) and changesin land
cover, water quality, and habitat fragmentation.

As popul ation and employment grow, the amount of total travel
should also grow. However, what isless clear iswhether that growth
in demand for road space would actually increase travel timeto the
extent that resulting land use patterns would be affected. If land
use change causes significant congestion, it is expected that future
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land use devel opment would be responsive by locating in areas with
lower congestion, better overall accessibility, or both. If the results
of the two models displayed relatively little difference, this result
would suggest that the added cost, overhead, and complexity of
dynamically integrating the travel model (or considering the effects
of congestion at all) does not cause the system to reach any critical
thresholds that would in turn affect development patterns. Such a
case would suggest that for aregional system with characteristics
similar to Chittenden County, the effort and expenses of consider-
ing regional accessibilities as endogenous may not be necessary to
predict land use.

STUDY SITE

Chittenden County, Vermont (Figure 2), was selected as the study
sitefor thisresearch for several reasons. First, asametropolitan area
of relatively low population (146,671 according to the 2000 U.S.
census of the population), the geography of the county (covering a
total area of 540 mi?) is extremely tractable from a modeling stand-
point. Second, the county isrelatively isolated (3 h from the nearest
major American city), which meansthat it can be modeled asaclosed
economic system, a frequently held but often violated assumption
of land use modeling. Third, the county isan excellent placeto study
patterns of urbanization because it has diverse possible future tra-
jectories because of the large, relatively undeveloped (but actively
developing) areas surrounding the metropolitan area of Burlington
(Vermont’ slargest city), acontinued transition away from manufac-
turing toward a service-oriented economy, and a populace that is
highly dependent on automobiles for transportation. Additionally,
the Chittenden County Metropolitan Planning Organization (CCMPO)
has collaborated with a consultant for several years to develop and
implement aTDM for Chittenden County using TransCAD. Finaly,
members of the research team have recently been awarded one of two
U.S. Department of Transportation (USDOT) grants to implement
the TRANSIM S model and dynamically link it to UrbanSim.

DATA DEVELOPMENT

Spatial data processing and analysis were performed using ESRI’s
ArcGIS 9.2, and tabular data were processed and assembled using
Microsoft Access. The compiled base year data set was passed to
MySQL for running the model. Custom software tools (e.g., SQL
scripts, ArcGIS Model Builder models) have been developed to
facilitate datatransfer among the different platformsto improvethe
work flow and ensure consistency in data handling. The data devel-
opment stage for the Chittenden County model was complicated by
two primary factors: (a) land use decisions are made at the town
level in Vermont, and as aresult, amagjority of the parcel-level data
sets for the model come from the 17 individual towns within the
county, oftentimesin different formats representing variable levels
of completeness, and (b) a majority of the essential data was stored
as paper records.

In casesin which datado not exist, the gaps werefilled by imput-
ing values based on adjacent (or nearby) observations. For example,
one essential piece of data required by the model is the year that
structureswere built. Of the 17 townsin Chittenden County, lessthan
five had this information stored digitally. Several of the remaining
towns (that contain ahigh proportion of the county’ stotal population
and employment) stored their property records in paper files, and



Voigt, Troy, Miles, and Reiss

85

(b)

FIGURE 2 Study site: (a) Chittenden County, highlighted in white; (b) 350 traffic analysis zones;

and (c) major roads and town boundaries.

these datawere converted to digital format by manually entering the
recordsinto adatabase. This process was inherently inefficient and
time-consuming, and led to numerous datagapsfor which it was not
possibleto link paper recordsto digital parcel data. To rectify these
gaps in the data, a model of structure age was estimated using an
ordinary kriging technique availablewithin ArcGIS Spatial Analyst.
Zonal statistics were run for the parcels with null year built values
to calculate an estimated year built, and these data will stand as a
placeholder for parcel swithout actual datauntil town databases have
been updated (preferably to adigital format). A similar process was
followed to prepare land and improvement value data.

The centerpiece of the UrbanSim model is the grid cells database
table. Theregion of interest is partitioned into adiscrete set of cellsof
user-specified size. For the Chittenden County model, a cell size of
150 m x 150 m was employed, a resolution used in other UrbanSim
applications in the past (13). At that resolution, there are approxi-
mately 64,000 grid cells spanning the entire region. Data are
aggregated to the grid cell level and stored in atable that features a
set of attributesthat defineits spatial |ocation and proximity to ameni-
ties (e.g., shopping, parks, and the like), proximity to nondesirable
features (e.g., wastetransfer stations, heavy manufacturing, polluted
waterways), presence and areal extent of biophysical features (e.g.,
percent wetlands, slope, and the like), development and infrastruc-
turecharacteristics(e.g., land price, housing units, percent roads, sewer
boundary), and policy constraints (e.g., zoning). Table 1 provides

a partial list of data parameters included in the model, including
their respective data sources.

Although much of the data are aggregated to the grid cell level,
individual households function as the decision makers (e.g., agents)
whose actions have a direct effect on the landscape. UrbanSim v2.8
was used to generate a synthetic population for the region of interest
based on socioeconomic characteristics as reported in the U.S. cen-
sus. Synthesized characteristics include the age of the head of the
household, household income, size of household, number of cars, and
number of workers. Household synthesisfor the 1990 popul ation has
been completed, and diagnostic assessments have been performed to
ensure the overall characteristics of the actual population have been
preserved in the process. UrbanSim does not feature a population
model, and instead relies on externally derived control totals for
both population and employment. Control totals developed for the
Chittenden County Regional Planning Commission (CCRPC) andthe
CCMPO long-range planning process were used for this model.

After the data collection and processing phase, individual sub-
models (e.g., land price model; residential, commercial, industrial
location choice models; devel oper location choice model) were esti-
mated using UrbanSim v4.0. The price of land was modeled using
multiple linear regression (hedonic analysis), whereas the suite of
location choice model swere estimated using multinomial logit mod-
els. UrbanSim v4.0 includesthe necessary statistical toolsto estimate
thedifferent regression equation types. The set of estimated equations
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TABLE 1 Partial List of Data Parameters Used in Chittenden County UrbanSim Model

Data Category Data Set Name Data Source

Economic Land and improvement value Grand list from individual town assessor’s office
Year built for al structuresin the county Individual town clerk’s office
Employment (size, sector, location) Vermont Secretary of State and Claritas®
Residential units CCRPC®

Biophysical Topography, soils, wetlands, water Vermont Center for Geographic Information
Land cover University of Vermont—Spatial AnalysisLab

Infrastructure Roads Geographic Data Technology?®
Transit Chittenden County Transit Authority

Planning and zoning ~ Zoning Information drawn from individual town plans

Conserved land

Household characteristics
Forecast

Demographics

University of Vermont—Spatial AnalysisLab

U.S. Census: SF1, SF3, 5% public use microdata samples
CCRPC’/CCMPO®

“Denotes proprietary data sets.
PChittenden County Regional Planning Commission (CCRPC).

“Chittenden Country Metropolitan Planning Organization (CCMPO).

(for each of the submodels) was stored in a database (including
model parameters and their corresponding statistical metrics), and
model selection was based on Akaike's information criterion, a sta-
tistical measure that trades off the complexity of the estimated model
against how well the model fits the data.

With the land price model, data are summarized at the grid cell
level for avariety of attributes (e.g., commercial square feet, hous-
ing units, percent water, distance to Interstate 89, and the like), and
the value of agrid cell isregressed against a subset of these charac-
teristics. This set of estimated coefficientsisthen used to predict the
land value of the grid cell for subsequent years. Table 2 displaysthe
covariates used in the land price model, including location effects,
policy parameters (e.g., conserved land, within sewer district bound-
aries), and neighborhood characteristics (e.g., number of households,
improvement value). The travel time to the central business district
(CBD) covariate (highlighted in bold text in the table) representsthe
influence of the transport model on the modeled price of land.

The location choice model algorithms are analogous for house-
holds and employers. These models predict the probability that ajob
or household will be located in a specific grid cell using a multino-
mial logit specification. The models can be generalized for an entire
population or stratified by employment sector or household type
(e.g., age of head of household, household income, household size).
In the current implementation of the Chittenden County model,
household |ocation choiceis represented with asingle model for all

household types, whereas nonresidential location choiceisbased on
separate models for commercial and industrial development.

The household location choice generates a set of agents for each
time step to represent households moving within the region (based
on observed rates of household relocation) aswell as new households
moving to the area (based on county-level household control totals).
The model generates a selection set of aternative locations to con-
sider, and then“ chooses” alocation fromthelist of alternatives based
on the appropriate multinomial logit equation (e.g., household loca-
tion choice model, commercial employment |ocation choice model).
Sel ected spaces become unavailable to the remaining households
in the queue, and the submodel iterates until all agents are placed
or thereis no remaining vacant space. Table 3 includes the model
parameters for the household location choice model. The home
accessto population covariate represents the influence of the TDM
on household location choices. In general, this parameter indi-
cates that, all else being equal, households prefer to locate away
from other households (and the results of the with-TDM run bear
this out).

The red estate development model simulates the construction of
new devel opment or theintensification of existing development. The
model isestimated using observations of prior development patterns
through areview of construction permitsand year built data. Thefour
years prior to the base year (1986-1989) were examined to ensure
an adequate sampl e of both residential and nonresidential develop-

TABLE 2 Land Price Model Specification with Parameter Estimates

Coefficient Name Definition Estimate t-Statistic Standard Error
Constant 11.16889954 158.3269958 0.070543297
ART Distance to nearest arterial street 0.424149007 43.89479828 0.00966285
LNIMP LN grid cell improvement value 0.057201002 41.71829987 0.00137112
ELEV Elevation —-0.000367311 —-30.9116993 1.18826E-05
IND_WIWLK % industrial w/in walking distance 1.04801E-07 8.793669701 1.19177E-08
INSEWER Iswithin sewer district 0.819761992 57.44810104 0.0142696
IS_CONSL Is conserved land —-0.227327004 —16.22290039 0.0140127
LN_HOUSEHOLDS LN grid cell # of households 0.162177995 20.76499939 0.00781016
TT_CBD Travel timeto CBD —-0.0187907 —29.9715004 0.000626952
YRBLT Y ear built 5.41195E-05 10.17240047 5.32023E-06
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TABLE 3 Household Location Choice Model Specification with Parameter Estimates

Coefficient Name Definition Estimate t-Statistic Standard Error

AVE_INC Averageincome in the grid cell 1.19E-05 17.2403 6.88E-07

BUILD_AGE Average age of improvementsin the grid cell —0.001493 -3.8204 0.00039086

COST_INC_RAT Average cost of improvement to average income ratio —0.345484 —9.32952 0.0370312

DEV_TYPE M1 Is zoned mixed use development 0.223611 4.69345 0.0476433

IS NEAR_ART_300 Iswithin 300 m of arterial street 27211 8.52261 0.31928

IS NEAR_HIGHWAY Iswithin 1500 m of the Interstate —0.453467 —2.49592 0.181683

LN_COMSF WWD LN of commercial square feet w/in walking distance 0.0359928 7.33788 0.00490506

LN_HOME_ACC_POP LN home access to popul ation by auto -3.88147 —4.20383 0.923318

LN_HOUSEHOLDS LN number of householdsin grid cell —0.386432 —20.0571 0.0192665

LN_RVAL_PER_RUNIT LN average value of residential land per residential unit w/in walking —0.348223 -11.6168 0.0299759

distance

%_LOW_INC_WWD_ % low income households w/in walking distance if high income —0.0451663 —-19.3233 0.0023374
IF_HIGH_INC household

% LOW_INC WWD _ % low income households w/in walking distanceif low income household 0.0543723 19.3845 0.00280494
IF_LOW_INC

VAC_RES UNITS # of vacant residentia units —0.682592 —-63.5107 0.0107477

ment events. Supply shortagestrigger additional development in sub-
sequent years, whereas surpluses cause the pace of development to
slow. All new development is subject to zoning constraints based on
user-specified decisionrules(e.g., dengity, required stresmside buffer,
and thelike).

To simulateland useinteractionswith the transportation network,
the CCMPO’sTDM waslinked to UrbanSim. Thetravel model was
developed using TransCAD v4.9 (Caliper Corporation), a trans-
portation planning software package, based on a geographic infor-
mation system, that follows the typical four-step process for travel
demand modeling, including trip generation, trip distribution, mode
split, and traffic assignment. Thetravel model isbased on household
travel diaries collected for CCMPO. Traffic assignment is based on
an equilibrium model that employs an iterative procedure to reach
convergence. The model was calibrated against observed am. and
p.m. peak conditions (14). A Python script was written to pass data
between UrbanSim and TransCAD in three steps: (a) export land
use, number of households, and number of jobs for each trip gener-
ator type (low, medium low, medium high, high, school, and hotel
or motel) from UrbanSim to TransCAD; (b) run thetravel model; and
(c) export travel model results (e.g., accessibilities) from TransCAD
to the UrbanSim data cache. Once the land use data are exported,
TransCAD isinvoked and passed the traffic analysis zone (TAZ)-
scale aggregates of households and jobs, by generator type, for the
current simulation year of the land use model. TransCAD then gen-
erates a TAZ-scale origin—destination matrix of logsum accessibil-
ities for each travel mode simulated (transit, auto, walk or bike) as
well as a composite measure of all modes. These data are written
into the UrbanSim data cache for the current ssmulation year, and
the measures of accessibility are used in subsequent model stepsfor
location choice decisions.

For the purposes of this research, the integrated model was run
using UrbanSim v4.0 for the period 1990 to 2030. The land use
model ran on an annual time step, whereasthe travel model wasrun
on 5-year intervals (beginning in 1990). In the case wherethetravel
model wasnot linked to the simulation, accessibilitieswere estimated
for thebaseyear using thetravel model, and these accessibilitieswere
assumed constant for the duration of the model run.

RESULTS

To compare the results of the model runs with and without the
endogenous TDM, anumber of outputs are presented. All of themod-
eled outputs are aggregated to the TAZ scale. First, histograms were
plotted comparing total commercial square feet for each model for
the year 2030 and total residential units for each model for 2030
(Figure 3). Intermsof total commercia squarefeet, the extremelow
(0 commercia square feet) and the high end (greater than 500,000
commercial square feet), are relatively consistent between the two
models. There were three TAZs with 0 commercial square feet in
the base year data set, and both model runs conclude with 0 com-
mercial squarefeet inthe samethree TAZs. Consistency onthehigh
end is not surprising because of the limited number of large-scale
projectsthat occur within the county. The middle of thedistribution,
however, is quite muddled. One possible explanation for thisis the
lack of large-scale commercial development in the county. Big-box
commercial centersaregenerally located in aselect few placeswithin
the county and land userestrictions prohibit their placement in many
others. Asaresult thereisatendency to develop more small locations
as opposed to afew large ones. For the casesin which the frequency
of observation was greater for the without-TDM run, the addi-
tional TAZswere almost exclusively located in close proximity to
Burlington (theregional CBD). Thissuggeststhat thelack of conges-
tion in the without-TDM model did not discourage development
withinthese TAZsasitislikely to have donefor thewith-TDM case.
Of note in the residential units histogram is the disparity in fre-
quency at the low end of the scale and the relative equality at the
upper end of the scale. The simulation with the TDM appears to
distribute residential development over agreater number of TAZs.
Histograms were also plotted to show the change in commercial
square feet and residential units over time (Figure 4 and Figure 5,
respectively). Three time periods are included: 1990, 2010, and
2030. The center plot of both Figures 4 and 5 represents the differ-
ence between thetwo model runs (without —with TDM) for 2010 and
2030, and visually suggests that there are significant differencesin
both the number of residential unitsand amount of commercia square
footage per TAZ when broken down by bins. When the commercial
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FIGURE 3 Comparison of modeled results for the year 2030 for simulations run with and without TDM:
(a) difference in total commercial square feet at the TAZ scale and (b) difference in modeled outputs for

the total number of residential units.

data results are compared, it appears that congestion effects (in the
with-TDM model) deter development beyond 300,000 ft2 The res-
idential data show that the with-TDM model had many more TAZs
with no or low levels of residential units (<10) than the without-
TDM model, and fewer TAZs with high numbers of residential
units, suggesting aless dense residential configuration.

Varianceratio testswere performed to determine whether the stan-
dard deviations for residential units per TAZ in 2030 were equal for
thetwo model configurations. The sametest was performed for com-
mercial square footage. Significant differences were found between
the with- and without-TDM implementations in the variance of pre-
dicted total residential unitsbut not for total commercia squarefeet.
Results are provided in Table 4 and Table 5. These same tests were
performed for the year 2010 (detailed results are not presented here)
and neither test resulted in significant differences. Linear regressions
were also run (detailed results are not presented here) between com-
mercial square footage in 2030 under the with-TDM model versus
the same variable from thewithout-TDM model. Consistent with the
variance tests, the R-squared for the commercial square foot vari-
ableswasvery high, at 0.98, while the R-squared for total residential
units was lower, at 0.83.

Toexaminethe spatia patterns of land use change over the 40-year
simulation period tabular data were joined to a geographic data
set that defines the TAZ boundariesto create choropleth difference
maps of the modeled outcomes (Figure 6). The difference between
the two model runs was displayed as a percentage of the with-TDM
run. These maps show that differences tend to be small in the more

central areas around Burlington (near the black dot on the map) and
adjacent to Interstate 89 (not shown), whereas there is heterogene-
ity in the more peripheral areas. Thisis particularly the case for the
difference in predicted values for residential units. Negative values
(whiteto light gray) indicate that more devel opment occurred when
the TDM wasrun, whereas positive val ues (black) denote more devel -
opment occurring when the travel model isnot run. Unlikethe pre-
dicted values for number of residential unitsin a TAZ, there does
not appear to be a discernable pattern in the difference between the
predicted commercial square feet.

DISCUSSION OF RESULTS

Theseresultsindicate that running aland use model with an endoge-
nous TDM vyields different results from running the model based on
a static set of regional accessibilities. Further, the results from the
with-TDM versuswithout-TDM model suggest that there are differ-
ent distributions of development countsat the TAZ level for residen-
tial development. Themapsin Figure 6 suggest that although centrally
located TAZs tend to see relatively little differences, the big differ-
ences occur in the more distant or peripheral TAZs. Why then do
some of these more peripheral TAZs see apositive differential while
others seeanegative one? Theanswer probably hasto do with the dif-
ferent processes that are modeled by the TDM: accessibility to activ-
ities and congestion. The pattern displayed suggests some peripheral
TAZs (such as those in the east of the county) have higher modeled
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FIGURE 4 Distribution of commercial square feet by TAZ showing differences over time for simulations
(a8) without TDM and (c) with TDM; (b) histogram shows the difference (without TDM minus with TDM)

between two model runs.

development withaTDM becausethe TDM accountsfor theincreased
proximity of destinations (and theresulting increasein overall acces-
sibility), thereby making these locations more amenable to new
development. Meanwhile, some peripheral TAZs (such as those in
the north of the county) have lower modeled development with a
TDM because they aready have good accessibility (thered TAZsin
the north are located on either side of an Interstate) and were viable
development locations based on theinitial accessibility valuesin the
without-TDM simulation. Additionally, because the without-TDM
simulation has no way to account for increased congestion, these
locations continue to look good for development throughout the
entire simulation, and therefore accumul ate significant excess devel -
opment when compared to the with-TDM simulation. The model
behavior in the without-TDM simulation defies conventional logic
that congestion effectively decreases accessibility, thereby reducing
development.

CONCLUSIONS

An integrated land use and transportation modeling system was
implemented for Chittenden County to test the model outputs for
differences based on simulations run with and without a dynami-

caly linked TDM. Statistical testsindicate that the simulationsyield
different distributions of residential development over the 40-year
simulation period. Thisresult was not the case for total commercial
square feet, however. A visual inspection of the spatial distribu-
tions of devel opment suggests amore compact pattern of develop-
ment is produced when running the model without the TDM. One
logical next step will be to prepare a complete set of 2000-era
datato perform model validation, and improve the understanding
of whether modeling land use change in arelatively small metro
area benefits from the inclusion of an aggregate-scale TDM. It
might prove also interesting to include additional transportation
related covariates within the different submodels to see if results
are affected for asimilar set of hypothesistestsfrom an alternative
model configuration.
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FIGURE 5 Residential units aggregated to the TAZ level showing differences over time for simulations
(g) without TDM and (c) with TDM; (b) histogram shows the difference (without TDM minus with TDM) between

two model runs.

TABLE 4 Variance Ratio Test Comparing Total Residential Units at TAZ Scale

Variable Observations Mean Std. Err. SD 95% Conf. Interval

No TDM 333 258.5706 18.05551 329.4821 223.0529 294.0882
With TDM 333 258.5706 22.53505 411.2261 214.2411 302.9001
Combined 666 258.5706 14.4272 372.3223 230.2422 286.8989

NoTE: Ratio = sd(res1029)/sd(res1034); f = 0.6420; H,; ratio = 1; degrees of freedom = 332, 332; H,: ratio< 1;

Ha: ratio !=1; H,: ratio > 1; Pr(F < f) = 0.0000; 2* Pr(F < f) = 0.0001; Pr(F > f) = 1.0000.

TABLE 5 Variance Ratio Test Comparing Total Commercial Square Footage at TAZ Scale

Variable Observations Mean Std. Err. SD 95% Confidence Interval
No TDM 333 155,097.7 15,324.13 279,639.2 124,953.1to 185,242.3
With TDM 333 155,256.1 14,988.89 273,521.6 125,770.9to 184,741.3
Combined 666 155,176.9 10,709.87 276,389.3 134,147.7 to 176,206.1

NoTE: Ratio = sd(comm21029)/sd(comm1034); f = 1.0452; H,: ratio = 1; degrees of freedom = 332, 332;
H.: ratio< 1; Hy: ratio != 1; H: ratio > 1; Pr(F < f) = 0.6564; 2*Pr(F > f) = 0.6872; Pr(F > f) = 0.3436.
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FIGURE 6 Percent difference in (a) predicted commercial square feet and (b) predicted residential units at the

TAZ geography.
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