
Other federal programs have attempted to encourage integrated land
use and transportation modeling, including the Travel Model Improve-
ment Program (1992) and the Transportation and Community and Sys-
tem Preservation Pilot program (1999). In response to this need, there
has been increasing interest in and focus on the use of simulation
models that dynamically integrate land use and transportation (8).

Land use simulation models attempt to predict the future densi-
ties, types, and distributions of urbanization patterns for a region.
Miller (8) suggests four components as critical to the integration
of land use and transportation models: land development, location
choice for households and employers, travel and trip-making behav-
ior, and auto ownership. He also suggests four core drivers that
should be accounted for in modeling urban systems: demographic
change, regional economic evolution (industry type, size, distribu-
tion), government policies (zoning, taxation, etc.), and all modes
of the transportation system.

UrbanSim (9–11) is a land use model under development at the
University of Washington’s Department of Urban Design and Planning.
A recent review of land use models found UrbanSim to be one of the
best because of its ability to be integrated with a number of different
proprietary and open-source transportation models (12), as well as its
ability to perform scenario analysis to address long-range planning
issues. UrbanSim simulates land use change for a designated area by
spatially allocating household and employment locations based on
externally derived forecasts of population and employment growth. It
operates in an iterative fashion, in which supply–demand imbalances
are addressed incrementally over multiple time steps. The model is
composed of a suite of submodels that simulate economic and demo-
graphic transitions, household and employment location and mobil-
ity, land rent and real estate development (location, size, and type),
and accessibility of households to community services and cultural
amenities (Figure 1). Because it is dynamic, UrbanSim can take fac-
tors as endogenous that other models take as exogenous, such as the
location of development that occurs after the base year and changes
in the price of land and buildings. Exogenous inputs to the model
include macroeconomic indicators of employment conditions and real
estate transactions, outputs from an independent travel demand model
(TDM), and user-specified conditions such as land use policies or
scheduled events (typically large-scale development events).

Generally, the transportation model is run for the initial time step
to establish baseline accessibilities and then at a user-specified inter-
val thereafter to update those accessibilities in response to changing
land use and congestion factors. Because the timing and location of
development events depend in part on measures of accessibility, updat-
ing these values in the model database makes the interaction of land
use and transportation dynamic. The land use change model compo-
nents are run on an annual time step simulating partial equilibration as
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This paper describes the implementation of a land use and transportation
modeling framework developed for Chittenden County, Vermont, to
test for differences in modeled output when employing a dynamically
linked travel demand model (TDM) versus an assumption of static regional
accessibilities over time. With the use of the land use model UrbanSim,
two versions of a 40-year simulation for the county, one with a TDM and
one without, were compared. In the first version, UrbanSim was inte-
grated with the TransCAD four-step TDM; this allowed regional acces-
sibilities to be recalculated at regularly scheduled intervals. In the second
version, TransCAD was used to compute year 2000 accessibilities; these
values were held constant for the duration of the model run. The results
indicated some significant differences in the modeled outputs. In partic-
ular, although centrally located traffic analysis zones (TAZs) reveal rel-
atively little difference between the two models, the differential within
peripheral TAZs is both more pronounced and more heterogeneous.
The pattern displayed suggests that some peripheral TAZs have higher
modeled development with a TDM because the TDM accounts for the
increased proximity of destinations, thereby making them amenable to
development. Meanwhile, some peripheral TAZs have lower modeled
development with a TDM because they already have good accessibility
(e.g., access via Interstate), but the model without the TDM does not
account for increased congestion.

Although there are strong interdependencies between land use and
transportation, land use planning and transportation planning have
traditionally been compartmentalized and separated into different
agencies, such that planning for one frequently did not adequately
address the other (1, 2). These interdependencies, and the need to
plan for them in an integrated fashion, have increasingly been rec-
ognized by many researchers (2–6) as well as by FHWA (7). In fact,
under the Intermodal Surface Transportation Efficiency Act of 1991
and to a lesser extent the Transportation Equity Act for the 21st Cen-
tury of 1997, state or regional transportation agencies have been
encouraged to model the effect of transportation infrastructure invest-
ment on land use patterns, and to consider the consistency of trans-
portation plans and programs with provisions of land use plans.
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actors adjust to the rate of change of fluxes within the economic sys-
tem or the housing market. Additionally, because each model com-
ponent is based on a statistically estimated equation, the selection of
explanatory variables can be influenced by the availability of specific
data sets and tailored to represent unique or distinctive local features
that influence transportation and development decisions.

RESEARCH OBJECTIVES

The primary objective of this investigation is to test the effects of
including versus excluding an endogenous TDM as one component
of a combined land use–transportation modeling framework. The
intent is to examine whether the added complexity of endogenous
accessibility modeling significantly affects predicted land use change.
That is, do indicators of predicted land use change differ depending
on whether accessibilities are updated to reflect changing land use?
This question is important for several research and policy based rea-
sons. From a research standpoint, the authors are interested in under-
standing and quantifying uncertainty propagation over the course of
a model run. To do this, the results of hundreds of model runs are
needed. Considering that approximately 70% of a full model run con-
sists of the TDM, there is the potential to save a significant amount
of time generating a sufficient set of outputs. Also considered is the
impact on municipalities or regions that are not large enough to war-
rant the creation of a metropolitan planning organization, yet still
face many of the growing pains of larger communities and metro-
politan areas. If a TDM is not necessary to produce accurate land use
change projections, there is the potential to save (already limited)
staff time and taxpayer financing for more pressing needs. Addition-
ally, if the results are indeed shown to be different, they would lead
researchers to question the location, timing, and extent of develop-
ment generated by modeling land use only. Such a question may be
critical for understanding long-term environmental impacts from
land use change, especially as they relate to the relationships among
land conversion (from nonurban to urban uses) and changes in land
cover, water quality, and habitat fragmentation.

As population and employment grow, the amount of total travel
should also grow. However, what is less clear is whether that growth
in demand for road space would actually increase travel time to the
extent that resulting land use patterns would be affected. If land
use change causes significant congestion, it is expected that future
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land use development would be responsive by locating in areas with
lower congestion, better overall accessibility, or both. If the results
of the two models displayed relatively little difference, this result
would suggest that the added cost, overhead, and complexity of
dynamically integrating the travel model (or considering the effects
of congestion at all) does not cause the system to reach any critical
thresholds that would in turn affect development patterns. Such a
case would suggest that for a regional system with characteristics
similar to Chittenden County, the effort and expenses of consider-
ing regional accessibilities as endogenous may not be necessary to
predict land use.

STUDY SITE

Chittenden County, Vermont (Figure 2), was selected as the study
site for this research for several reasons. First, as a metropolitan area
of relatively low population (146,671 according to the 2000 U.S.
census of the population), the geography of the county (covering a
total area of 540 mi2) is extremely tractable from a modeling stand-
point. Second, the county is relatively isolated (3 h from the nearest
major American city), which means that it can be modeled as a closed
economic system, a frequently held but often violated assumption
of land use modeling. Third, the county is an excellent place to study
patterns of urbanization because it has diverse possible future tra-
jectories because of the large, relatively undeveloped (but actively
developing) areas surrounding the metropolitan area of Burlington
(Vermont’s largest city), a continued transition away from manufac-
turing toward a service-oriented economy, and a populace that is
highly dependent on automobiles for transportation. Additionally,
the Chittenden County Metropolitan Planning Organization (CCMPO)
has collaborated with a consultant for several years to develop and
implement a TDM for Chittenden County using TransCAD. Finally,
members of the research team have recently been awarded one of two
U.S. Department of Transportation (USDOT) grants to implement
the TRANSIMS model and dynamically link it to UrbanSim.

DATA DEVELOPMENT

Spatial data processing and analysis were performed using ESRI’s
ArcGIS 9.2, and tabular data were processed and assembled using
Microsoft Access. The compiled base year data set was passed to
MySQL for running the model. Custom software tools (e.g., SQL
scripts, ArcGIS Model Builder models) have been developed to
facilitate data transfer among the different platforms to improve the
work flow and ensure consistency in data handling. The data devel-
opment stage for the Chittenden County model was complicated by
two primary factors: (a) land use decisions are made at the town
level in Vermont, and as a result, a majority of the parcel-level data
sets for the model come from the 17 individual towns within the
county, oftentimes in different formats representing variable levels
of completeness, and (b) a majority of the essential data was stored
as paper records.

In cases in which data do not exist, the gaps were filled by imput-
ing values based on adjacent (or nearby) observations. For example,
one essential piece of data required by the model is the year that
structures were built. Of the 17 towns in Chittenden County, less than
five had this information stored digitally. Several of the remaining
towns (that contain a high proportion of the county’s total population
and employment) stored their property records in paper files, and
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FIGURE 1 UrbanSim model architecture.



these data were converted to digital format by manually entering the
records into a database. This process was inherently inefficient and
time-consuming, and led to numerous data gaps for which it was not
possible to link paper records to digital parcel data. To rectify these
gaps in the data, a model of structure age was estimated using an
ordinary kriging technique available within ArcGIS Spatial Analyst.
Zonal statistics were run for the parcels with null year built values
to calculate an estimated year built, and these data will stand as a
placeholder for parcels without actual data until town databases have
been updated (preferably to a digital format). A similar process was
followed to prepare land and improvement value data.

The centerpiece of the UrbanSim model is the grid cells database
table. The region of interest is partitioned into a discrete set of cells of
user-specified size. For the Chittenden County model, a cell size of
150 m × 150 m was employed, a resolution used in other UrbanSim
applications in the past (13). At that resolution, there are approxi-
mately 64,000 grid cells spanning the entire region. Data are
aggregated to the grid cell level and stored in a table that features a
set of attributes that define its spatial location and proximity to ameni-
ties (e.g., shopping, parks, and the like), proximity to nondesirable
features (e.g., waste transfer stations, heavy manufacturing, polluted
waterways), presence and areal extent of biophysical features (e.g.,
percent wetlands, slope, and the like), development and infrastruc-
ture characteristics (e.g., land price, housing units, percent roads, sewer
boundary), and policy constraints (e.g., zoning). Table 1 provides
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a partial list of data parameters included in the model, including
their respective data sources.

Although much of the data are aggregated to the grid cell level,
individual households function as the decision makers (e.g., agents)
whose actions have a direct effect on the landscape. UrbanSim v2.8
was used to generate a synthetic population for the region of interest
based on socioeconomic characteristics as reported in the U.S. cen-
sus. Synthesized characteristics include the age of the head of the
household, household income, size of household, number of cars, and
number of workers. Household synthesis for the 1990 population has
been completed, and diagnostic assessments have been performed to
ensure the overall characteristics of the actual population have been
preserved in the process. UrbanSim does not feature a population
model, and instead relies on externally derived control totals for
both population and employment. Control totals developed for the
Chittenden County Regional Planning Commission (CCRPC) and the
CCMPO long-range planning process were used for this model.

After the data collection and processing phase, individual sub-
models (e.g., land price model; residential, commercial, industrial
location choice models; developer location choice model) were esti-
mated using UrbanSim v4.0. The price of land was modeled using
multiple linear regression (hedonic analysis), whereas the suite of
location choice models were estimated using multinomial logit mod-
els. UrbanSim v4.0 includes the necessary statistical tools to estimate
the different regression equation types. The set of estimated equations

(b)

(c)
(a)

FIGURE 2 Study site: (a) Chittenden County, highlighted in white; (b) 350 traffic analysis zones; 
and (c) major roads and town boundaries.



(for each of the submodels) was stored in a database (including
model parameters and their corresponding statistical metrics), and
model selection was based on Akaike’s information criterion, a sta-
tistical measure that trades off the complexity of the estimated model
against how well the model fits the data.

With the land price model, data are summarized at the grid cell
level for a variety of attributes (e.g., commercial square feet, hous-
ing units, percent water, distance to Interstate 89, and the like), and
the value of a grid cell is regressed against a subset of these charac-
teristics. This set of estimated coefficients is then used to predict the
land value of the grid cell for subsequent years. Table 2 displays the
covariates used in the land price model, including location effects,
policy parameters (e.g., conserved land, within sewer district bound-
aries), and neighborhood characteristics (e.g., number of households,
improvement value). The travel time to the central business district
(CBD) covariate (highlighted in bold text in the table) represents the
influence of the transport model on the modeled price of land.

The location choice model algorithms are analogous for house-
holds and employers. These models predict the probability that a job
or household will be located in a specific grid cell using a multino-
mial logit specification. The models can be generalized for an entire
population or stratified by employment sector or household type
(e.g., age of head of household, household income, household size).
In the current implementation of the Chittenden County model,
household location choice is represented with a single model for all
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household types, whereas nonresidential location choice is based on
separate models for commercial and industrial development.

The household location choice generates a set of agents for each
time step to represent households moving within the region (based
on observed rates of household relocation) as well as new households
moving to the area (based on county-level household control totals).
The model generates a selection set of alternative locations to con-
sider, and then “chooses” a location from the list of alternatives based
on the appropriate multinomial logit equation (e.g., household loca-
tion choice model, commercial employment location choice model).
Selected spaces become unavailable to the remaining households
in the queue, and the submodel iterates until all agents are placed
or there is no remaining vacant space. Table 3 includes the model
parameters for the household location choice model. The home
access to population covariate represents the influence of the TDM
on household location choices. In general, this parameter indi-
cates that, all else being equal, households prefer to locate away
from other households (and the results of the with-TDM run bear
this out).

The real estate development model simulates the construction of
new development or the intensification of existing development. The
model is estimated using observations of prior development patterns
through a review of construction permits and year built data. The four
years prior to the base year (1986–1989) were examined to ensure
an adequate sample of both residential and nonresidential develop-

TABLE 1 Partial List of Data Parameters Used in Chittenden County UrbanSim Model

Data Category Data Set Name Data Source

Economic

Biophysical

Infrastructure

Planning and zoning

Demographics

aDenotes proprietary data sets.
bChittenden County Regional Planning Commission (CCRPC).
cChittenden Country Metropolitan Planning Organization (CCMPO).

Land and improvement value
Year built for all structures in the county
Employment (size, sector, location)
Residential units

Topography, soils, wetlands, water
Land cover

Roads
Transit

Zoning
Conserved land

Household characteristics
Forecast

Grand list from individual town assessor’s office
Individual town clerk’s office
Vermont Secretary of State and Claritasa

CCRPCb

Vermont Center for Geographic Information
University of Vermont—Spatial Analysis Lab

Geographic Data Technologya

Chittenden County Transit Authority

Information drawn from individual town plans
University of Vermont—Spatial Analysis Lab

U.S. Census: SF1, SF3, 5% public use microdata samples
CCRPCb/CCMPOc

TABLE 2 Land Price Model Specification with Parameter Estimates

Coefficient Name Definition Estimate t-Statistic Standard Error

Constant 11.16889954 158.3269958 0.070543297

ART Distance to nearest arterial street 0.424149007 43.89479828 0.00966285

LNIMP LN grid cell improvement value 0.057201002 41.71829987 0.00137112

ELEV Elevation −0.000367311 −30.9116993 1.18826E-05

IND_WIWLK % industrial w/in walking distance 1.04801E-07 8.793669701 1.19177E-08

INSEWER Is within sewer district 0.819761992 57.44810104 0.0142696

IS_CONSL Is conserved land −0.227327004 −16.22290039 0.0140127

LN_HOUSEHOLDS LN grid cell # of households 0.162177995 20.76499939 0.00781016

TT_CBD Travel time to CBD −0.0187907 −29.9715004 0.000626952

YRBLT Year built 5.41195E-05 10.17240047 5.32023E-06



ment events. Supply shortages trigger additional development in sub-
sequent years, whereas surpluses cause the pace of development to
slow. All new development is subject to zoning constraints based on
user-specified decision rules (e.g., density, required streamside buffer,
and the like).

To simulate land use interactions with the transportation network,
the CCMPO’s TDM was linked to UrbanSim. The travel model was
developed using TransCAD v4.9 (Caliper Corporation), a trans-
portation planning software package, based on a geographic infor-
mation system, that follows the typical four-step process for travel
demand modeling, including trip generation, trip distribution, mode
split, and traffic assignment. The travel model is based on household
travel diaries collected for CCMPO. Traffic assignment is based on
an equilibrium model that employs an iterative procedure to reach
convergence. The model was calibrated against observed a.m. and
p.m. peak conditions (14). A Python script was written to pass data
between UrbanSim and TransCAD in three steps: (a) export land
use, number of households, and number of jobs for each trip gener-
ator type (low, medium low, medium high, high, school, and hotel
or motel) from UrbanSim to TransCAD; (b) run the travel model; and
(c) export travel model results (e.g., accessibilities) from TransCAD
to the UrbanSim data cache. Once the land use data are exported,
TransCAD is invoked and passed the traffic analysis zone (TAZ)-
scale aggregates of households and jobs, by generator type, for the
current simulation year of the land use model. TransCAD then gen-
erates a TAZ-scale origin–destination matrix of logsum accessibil-
ities for each travel mode simulated (transit, auto, walk or bike) as
well as a composite measure of all modes. These data are written
into the UrbanSim data cache for the current simulation year, and
the measures of accessibility are used in subsequent model steps for
location choice decisions.

For the purposes of this research, the integrated model was run
using UrbanSim v4.0 for the period 1990 to 2030. The land use
model ran on an annual time step, whereas the travel model was run
on 5-year intervals (beginning in 1990). In the case where the travel
model was not linked to the simulation, accessibilities were estimated
for the base year using the travel model, and these accessibilities were
assumed constant for the duration of the model run.
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RESULTS

To compare the results of the model runs with and without the
endogenous TDM, a number of outputs are presented. All of the mod-
eled outputs are aggregated to the TAZ scale. First, histograms were
plotted comparing total commercial square feet for each model for
the year 2030 and total residential units for each model for 2030
(Figure 3). In terms of total commercial square feet, the extreme low
(0 commercial square feet) and the high end (greater than 500,000
commercial square feet), are relatively consistent between the two
models. There were three TAZs with 0 commercial square feet in
the base year data set, and both model runs conclude with 0 com-
mercial square feet in the same three TAZs. Consistency on the high
end is not surprising because of the limited number of large-scale
projects that occur within the county. The middle of the distribution,
however, is quite muddled. One possible explanation for this is the
lack of large-scale commercial development in the county. Big-box
commercial centers are generally located in a select few places within
the county and land use restrictions prohibit their placement in many
others. As a result there is a tendency to develop more small locations
as opposed to a few large ones. For the cases in which the frequency
of observation was greater for the without-TDM run, the addi-
tional TAZs were almost exclusively located in close proximity to
Burlington (the regional CBD). This suggests that the lack of conges-
tion in the without-TDM model did not discourage development
within these TAZs as it is likely to have done for the with-TDM case.
Of note in the residential units histogram is the disparity in fre-
quency at the low end of the scale and the relative equality at the
upper end of the scale. The simulation with the TDM appears to
distribute residential development over a greater number of TAZs.

Histograms were also plotted to show the change in commercial
square feet and residential units over time (Figure 4 and Figure 5,
respectively). Three time periods are included: 1990, 2010, and
2030. The center plot of both Figures 4 and 5 represents the differ-
ence between the two model runs (without − with TDM) for 2010 and
2030, and visually suggests that there are significant differences in
both the number of residential units and amount of commercial square
footage per TAZ when broken down by bins. When the commercial

TABLE 3 Household Location Choice Model Specification with Parameter Estimates

Coefficient Name Definition Estimate t-Statistic Standard Error

AVE_INC

BUILD_AGE

COST_INC_RAT

DEV_TYPE_M1

IS_NEAR_ART_300

IS_NEAR_HIGHWAY

LN_COMSF_WWD

LN_HOME_ACC_POP

LN_HOUSEHOLDS

LN_RVAL_PER_RUNIT

%_LOW_INC_WWD_
IF_HIGH_INC

%_LOW_INC_WWD_
IF_LOW_INC

VAC_RES_UNITS

Average income in the grid cell

Average age of improvements in the grid cell

Average cost of improvement to average income ratio

Is zoned mixed use development

Is within 300 m of arterial street

Is within 1500 m of the Interstate

LN of commercial square feet w/in walking distance

LN home access to population by auto

LN number of households in grid cell

LN average value of residential land per residential unit w/in walking
distance

% low income households w/in walking distance if high income 
household

% low income households w/in walking distance if low income household

# of vacant residential units

1.19E-05

−0.001493

−0.345484

0.223611

2.7211

−0.453467

0.0359928

−3.88147

−0.386432

−0.348223

−0.0451663

0.0543723

−0.682592

17.2403

−3.8204

−9.32952

4.69345

8.52261

−2.49592

7.33788

−4.20383

−20.0571

−11.6168

−19.3233

19.3845

−63.5107

6.88E-07

0.00039086

0.0370312

0.0476433

0.31928

0.181683

0.00490506

0.923318

0.0192665

0.0299759

0.0023374

0.00280494

0.0107477



data results are compared, it appears that congestion effects (in the
with-TDM model) deter development beyond 300,000 ft2. The res-
idential data show that the with-TDM model had many more TAZs
with no or low levels of residential units (<10) than the without-
TDM model, and fewer TAZs with high numbers of residential
units, suggesting a less dense residential configuration.

Variance ratio tests were performed to determine whether the stan-
dard deviations for residential units per TAZ in 2030 were equal for
the two model configurations. The same test was performed for com-
mercial square footage. Significant differences were found between
the with- and without-TDM implementations in the variance of pre-
dicted total residential units but not for total commercial square feet.
Results are provided in Table 4 and Table 5. These same tests were
performed for the year 2010 (detailed results are not presented here)
and neither test resulted in significant differences. Linear regressions
were also run (detailed results are not presented here) between com-
mercial square footage in 2030 under the with-TDM model versus
the same variable from the without-TDM model. Consistent with the
variance tests, the R-squared for the commercial square foot vari-
ables was very high, at 0.98, while the R-squared for total residential
units was lower, at 0.83.

To examine the spatial patterns of land use change over the 40-year
simulation period tabular data were joined to a geographic data
set that defines the TAZ boundaries to create choropleth difference
maps of the modeled outcomes (Figure 6). The difference between
the two model runs was displayed as a percentage of the with-TDM
run. These maps show that differences tend to be small in the more
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central areas around Burlington (near the black dot on the map) and
adjacent to Interstate 89 (not shown), whereas there is heterogene-
ity in the more peripheral areas. This is particularly the case for the
difference in predicted values for residential units. Negative values
(white to light gray) indicate that more development occurred when
the TDM was run, whereas positive values (black) denote more devel-
opment occurring when the travel model is not run. Unlike the pre-
dicted values for number of residential units in a TAZ, there does
not appear to be a discernable pattern in the difference between the
predicted commercial square feet.

DISCUSSION OF RESULTS

These results indicate that running a land use model with an endoge-
nous TDM yields different results from running the model based on
a static set of regional accessibilities. Further, the results from the
with-TDM versus without-TDM model suggest that there are differ-
ent distributions of development counts at the TAZ level for residen-
tial development. The maps in Figure 6 suggest that although centrally
located TAZs tend to see relatively little differences, the big differ-
ences occur in the more distant or peripheral TAZs. Why then do
some of these more peripheral TAZs see a positive differential while
others see a negative one? The answer probably has to do with the dif-
ferent processes that are modeled by the TDM: accessibility to activ-
ities and congestion. The pattern displayed suggests some peripheral
TAZs (such as those in the east of the county) have higher modeled

(a)

(b)

FIGURE 3 Comparison of modeled results for the year 2030 for simulations run with and without TDM:
(a) difference in total commercial square feet at the TAZ scale and (b) difference in modeled outputs for
the total number of residential units.



development with a TDM because the TDM accounts for the increased
proximity of destinations (and the resulting increase in overall acces-
sibility), thereby making these locations more amenable to new
development. Meanwhile, some peripheral TAZs (such as those in
the north of the county) have lower modeled development with a
TDM because they already have good accessibility (the red TAZs in
the north are located on either side of an Interstate) and were viable
development locations based on the initial accessibility values in the
without-TDM simulation. Additionally, because the without-TDM
simulation has no way to account for increased congestion, these
locations continue to look good for development throughout the
entire simulation, and therefore accumulate significant excess devel-
opment when compared to the with-TDM simulation. The model
behavior in the without-TDM simulation defies conventional logic
that congestion effectively decreases accessibility, thereby reducing
development.

CONCLUSIONS

An integrated land use and transportation modeling system was
implemented for Chittenden County to test the model outputs for
differences based on simulations run with and without a dynami-
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cally linked TDM. Statistical tests indicate that the simulations yield
different distributions of residential development over the 40-year
simulation period. This result was not the case for total commercial
square feet, however. A visual inspection of the spatial distribu-
tions of development suggests a more compact pattern of develop-
ment is produced when running the model without the TDM. One
logical next step will be to prepare a complete set of 2000-era 
data to perform model validation, and improve the understanding
of whether modeling land use change in a relatively small metro
area benefits from the inclusion of an aggregate-scale TDM. It
might prove also interesting to include additional transportation
related covariates within the different submodels to see if results
are affected for a similar set of hypothesis tests from an alternative
model configuration.
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FIGURE 4 Distribution of commercial square feet by TAZ showing differences over time for simulations 
(a) without TDM and (c) with TDM; (b) histogram shows the difference (without TDM minus with TDM)
between two model runs.
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(a)

(b)

(c)

FIGURE 5 Residential units aggregated to the TAZ level showing differences over time for simulations 
(a) without TDM and (c) with TDM; (b) histogram shows the difference (without TDM minus with TDM) between 
two model runs.

TABLE 5 Variance Ratio Test Comparing Total Commercial Square Footage at TAZ Scale

Variable Observations Mean Std. Err. SD 95% Confidence Interval

No TDM 333 155,097.7 15,324.13 279,639.2 124,953.1 to 185,242.3

With TDM 333 155,256.1 14,988.89 273,521.6 125,770.9 to 184,741.3

Combined 666 155,176.9 10,709.87 276,389.3 134,147.7 to 176,206.1

NOTE: Ratio = sd(comm1029)/sd(comm1034); f = 1.0452; Ho: ratio = 1; degrees of freedom = 332, 332; 
Ha: ratio < 1; Ha: ratio != 1; Ha: ratio > 1; Pr(F < f ) = 0.6564; 2*Pr(F > f ) = 0.6872; Pr(F > f ) = 0.3436.

TABLE 4 Variance Ratio Test Comparing Total Residential Units at TAZ Scale

Variable Observations Mean Std. Err. SD 95% Conf. Interval

No TDM 333 258.5706 18.05551 329.4821 223.0529 294.0882

With TDM 333 258.5706 22.53505 411.2261 214.2411 302.9001

Combined 666 258.5706 14.4272 372.3223 230.2422 286.8989

NOTE: Ratio = sd(res1029)/sd(res1034); f = 0.6420; Ho; ratio = 1; degrees of freedom = 332, 332; Ha: ratio < 1; 
Ha: ratio != 1; Ha: ratio > 1; Pr(F < f ) = 0.0000; 2*Pr(F < f ) = 0.0001; Pr(F > f ) = 1.0000.
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FIGURE 6 Percent difference in (a) predicted commercial square feet and (b) predicted residential units at the
TAZ geography.


