
Environmental Modelling & Software 21 (2006) 1491e1502
www.elsevier.com/locate/envsoft
The comparison of four dynamic systems-based software packages:
Translation and sensitivity analysis

Donna M. Rizzo a,1, Paula J. Mouser a,*, David H. Whitney a,1, Charles D. Mark a,1,
Roger D. Magarey b,2, Alexey A. Voinov c,3

a University of Vermont, Department of Civil & Environmental Engineering, 213 Votey Building, Burlington, VT 05405, USA
b United States Department of Agriculture, 1017 Main Campus Drive, Suite 1550, Raleigh, NC 27606, USA

c University of Vermont, Gund Institute for Ecological Economics & Computer Science Department, 590 Main Street,
Burlington, VT 05405, USA

Received 3 May 2004; received in revised form 12 July 2005; accepted 22 July 2005

Available online 19 October 2005

Abstract

Dynamic model development for describing complex ecological systems continues to grow in popularity. For both academic research and
project management, understanding the benefits and limitations of systems-based software could improve the accuracy of results and enlarge
the user audience. A Surface Wetness Energy Balance (SWEB) model for canopy surface wetness has been translated into four software pack-
ages and their strengths and weaknesses were compared based on ‘novice’ user interpretations. We found expression-based models such as Si-
mulink and GoldSim with Expressions were able to model the SWEB more accurately; however, stock and flow-based models such as STELLA,
Madonna, and GoldSim with Flows provided the user a better conceptual understanding of the ecologic system. Although the original objective
of this study was to identify an ‘appropriate’ software package for predicting canopy surface wetness using SWEB, our outcomes suggest that
many factors must be considered by the stakeholders when selecting a model because the modeling software becomes part of the model and of
the calibration process. These constraints may include user demographics, budget limitations, built-in sensitivity and optimization tools, and the
preference of user friendliness vs. computational power. Furthermore, the multitude of closed proprietary software may present a disservice to
the modeling community, creating model artifacts that originate somewhere deep inside the undocumented features of the software, and masking
the underlying properties of the model.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Model comparison; Dynamic simulation; System-based models; Canopy surface energy balance
* Corresponding author. Fax: C1 802 656 8446.

E-mail addresses: donna.rizzo@uvm.edu (D.M. Rizzo), paula.mouser@uvm.edu

(P.J. Mouser), dwhit1885@yahoo.com (D.H. Whitney), charles.mark@uvm.edu

(C.D. Mark), roger.d.magarey@aphis.usda.gov (R.D. Magarey), alexey.voinov@

uvm.edu (A.A. Voinov).
1 Fax: C1 802 656 8446.
2 Fax: C1 919 513 7044.
3 Fax: C1 802 656 2995.
1364-8152/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.envsoft.2005.07.009
1. Introduction

Understanding complex ecological systems and the manage-
ment of associated ecosystem resources requires an interdisci-
plinary approach by a variety of researchers, policy makers,
resource managers, and stakeholders. The development of
systems-based models for forecasting and decision making
is far too complex for any one individual or isolated group
of researchers, requiring collaborative model development,
validation and assessment. Recently, a suite of general-purpose,
systems-based, software tools have been introduced, specifically

mailto:donna.rizzo@uvm.edu
mailto:paula.mouser@uvm.edu
mailto:dwhit1885@yahoo.com
mailto:charles.mark@uvm.edu
mailto:roger.d.magarey@aphis.usda.gov
mailto:alexey.voinov@uvm.edu
mailto:alexey.voinov@uvm.edu
http://www.elsevier.com/locate/envsoft

1492 D.M. Rizzo et al. / Environmental Modelling & Software 21 (2006) 1491e1502
designed to support the development of dynamic ecological/eco-
nomic/social systems models. These modeling environments
(i.e., STELLA, Madonna, GoldSim, Simulink, etc.) are becom-
ing increasingly popular, primarily because they provide an
easy-to-use, graphical icon-based interface that can be
understood by novice modelers (Costanza and Voinov, 2001),
while model development using more traditional low- and
high-level programming languages may require years of techni-
cal training. With the plethora of software packages available,
each developed for different purposes and with individual sets
of strengths and weaknesses, choosing a software package for
a particular application can be a frustrating and time-consuming
process, as there is little literature to rely upon when choosing an
appropriate software package for a particular ecosystem model-
ing objective. Voinov (1999) offers an overview of several mod-
eling packages with a limited description of their features.
Seppelt and Richter (2005) have compared a number of packages
with a focus on the mathematical rigor and precision of non-linear
models. These sources do not highlight the general benefits or
drawbacks of one software package over another for a particular
application of interest. The situation is further complicated be-
cause we are dealing with graphical, icon-based commercial soft-
ware intended for scientists with little programming experience,
which by design specifically masks details and programming
scripts from the user. From a research or management standpoint,
understanding the advantages and limitations of these dynamic
systems-based software packages may improve the accuracy of
research results and increase the user audience. Unfortunately,
the software is often pre-selected, either by the training of the
user (e.g., users tend to use familiar software), or because the soft-
ware has already been purchased. As a result, it is rare to find
comparisons of these systems-based software tools applied to
the same model or system.

As part of a simulation modeling course at University of
Vermont, we translated a Surface Wetness Energy Balance
(SWEB) model for grape canopy surface wetness (Magarey,
1999; Magarey et al., 2005a), into four dynamic systems soft-
ware packages and compared the strengths and weaknesses
based on ‘novice’ user interpretation. We deliberately selected
a fairly simple model, expecting a simple and accurate
implementation in each of the analyzed software packages.
The task proved more difficult than anticipated, illuminating
some inherent differences in the software packages and mod-
eling results. This raises questions regarding the whole process
of modeling with these various systems-based software tools.
It appears that switching from one software package to another
is not that straightforward. The software actually becomes part
of the model and the embedded algorithms and methods
become an important part of the calibration process. There-
fore, when changing between software, developers must be
conscious that additional adjustments and calibration may be
necessary.

The overall goal of this study is to compare the benefits and
limitations between four dynamic, systems-based software
packages using a fairly simple Surface Wetness Energy
Balance (SWEB) model to forecast relative canopy surface
wetness. Three specific objectives associated with this goal
include: (1) translate the original SWEB model into four soft-
ware packages: STELLA, Madonna, GoldSim, and Simulink
and identify the most appropriate for representing surface wet-
ness in crop canopies; (2) compare the benefits and limitations
of the software packages to the original SWEB canopy model;
and (3) perform a sensitivity analysis on five of the six input
parameters.

2. Background

Crop management studies have shown that forecasting the
risk of fungal and bacterial diseases in a crop canopy using dis-
ease risk models can reduce disease incidence and severity
(Campbell and Madden, 1990; Funt et al., 1990), as well as de-
crease excess application of fungicides, which alters the soil
ecosystem and accelerates resistance. Although a number of
specific weather agricultural variables (i.e., temperature, rela-
tive humidity, net solar radiation, wind speed, and canopy sur-
face wetness duration) are needed to accurately predict plant
diseases, surface wetness duration (SWD) has long been ac-
knowledged as a key parameter (Yarwood, 1978; Huber and
Gillespie, 1992); and despite considerable attention from a di-
verse group of scientists, it continues to be the most difficult
of these variables to quantify and forecast. SWD is defined as
the sum of the duration over which the observed fraction of plant
parts or organs that are wet in a canopy, exceeds some specified
(plant specific) threshold (Magarey, 1999; Magarey et al.,
2005a).

Experts in quantifying canopy surface wetness rely on visual
observations, tactile observations, and/or a variety of sensor
measurements on some number of individual leaves to reflect
the spatial aspect of the proportion of leaves wet in an entire
canopy. Despite meticulous measurements and various proto-
cols, the sensors represent only a portion of the physics under-
lying the duration of the canopy wetness. As a result, the
accuracy of these indirect sensor measurements should be
validated with visual observations; however, this is often omit-
ted because data collection is labor intensive. While other cli-
matic variables have become standard measurements in
weather station networks, the inconvenience and lack of a mea-
surement standard for monitoring SWD at the local crop scale
prevent existing disease risk models from being used with
reliability.

An alternative to sensor measurements is the computational
simulation (both statistical and physical) of surface wetness
(Huber and Gillespie, 1992; Weiss, 1990) calibrated to a given
crop via visual observations or sensor measurements. For excel-
lent reviews of surface wetness models that have been validated
under controlled or field conditions, see Huber and Gillespie
(1992) and Magarey et al. (2005a). Despite the complexity of
testing at the leaf scale and the lack of standards for defining
and measuring surface wetness, it is anticipated that the
next 10e20 years will see a shift in the estimation of surface
wetness from systems based on in situ sensors to those based
on simulation models and remote sensing (Magarey et al.,
2005b).

1493D.M. Rizzo et al. / Environmental Modelling & Software 21 (2006) 1491e1502
2.1. SWEB model Version 0.28

Recently, a Surface Wetness Energy Balance (SWEB, Ver-
sion 0.28) model has been developed as a potential theoretical
standard for surface wetness measurement (Magarey, 1999;
Magarey et al., 2005a). Fig. 1 provides a schematic of the
overall model structure. The model uses a physical approach
to predict surface wetness using a canopy water budget and
surface energy balance. The canopy water budget (Fig. 1a)
is a function of the water storage (S) which, in turn, is a func-
tion of the volume of water condensing on the leaf as dew (D),
the volume of water that is evaporating (E), and the intercepted
Fig. 1. Equations and model structure for the SWEB canopy model.

1494 D.M. Rizzo et al. / Environmental Modelling & Software 21 (2006) 1491e1502
rain or irrigation (I). The interception term, I, selected for this
application (see Fig. 1a) is the simple exponential formulation
provided in Norman and Campbell (1983). It is a function of
precipitation (P) and leaf area index (LAI); the latter being de-
fined in broadleaf canopies as the one-sided green leaf area per
unit ground area. The equation presented in Fig. 1b for the vol-
ume of water evaporating from the canopy surface is derived
from the combination of surface energy balance and aerody-
namic transport equations (Tanner and Fuchs, 1968). The equa-
tions and other details of the SWEB model are provided in the
MATLAB code in Appendix A. More information regarding the
derivation of equations within the SWEB model can be found in
Magarey (1999) and Magarey et al. (2005a).

The SWEB model calculates a relative canopy leaf surface
wetness (fraction of the canopy that is wet represented by
a number ranging between 0 and 1) and a relative water
balance from six main input parameters: temperature, relative
humidity, precipitation, wind speed, net canopy radiation,
and Julian date (Fig. 1e). It has a combination of both time-in-
dependent calculations and time-dependent differential equa-
tions. For example, the volume of intercepted rain is
calculated using the date and the volume of precipitation asso-
ciated with the current time step (t) without considering the
volume of precipitation during the previous time step, while
the volume evaporated from the leaf surface is based on
the net radiation and relative humidity at the current time
step (t) and the quantity present at the previous time step
(t� 1). This combination of time-independent and time-
dependent calculations presented challenges during model
translation.

The SWEB model was calibrated and tested on an exten-
sive data set from four grape cultivars growing at the Climato-
logical Reference Station (NWS) in Geneva, New York
(Magarey, 1999; The Leaf Surface Wetness Duration). Only
one of the four field sites (Geneva_LO98) was used for the
model comparisons and analyses presented in this work.
This particular field site consisted of a 173-day growing
season and included observations of surface wetness over six
rain and eight dew events. For each moisture event, electronic
sensors collected data (leaf wetness, temperature, relative
humidity, wind speed and direction, precipitation, net radia-
tion, soil heat flux, soil moisture and Julian date) along three
vines within the canopy at five canopy positions and at
10-min intervals. Visual surface wetness measurements were
collected in triplicate along the same 15 canopy positions at
approximately 1-h intervals (totaling 45 visual measurements
at any given collection time). These visual measurements
provide validation for the physics-based SWEB model
forecasts.

Fig. 2 is an example of the visual, sensor, and predicted
SWEB canopy wet surface area, for a single moisture event
(dew in this case). (Note: each point is the average over 15
canopy positions; and although the visual data collection is
quite extensive for this particular moisture event, there is still
a significant gap in the frequency of the resulting surface wet-
ness measurements.) For this example moisture event, the
shape of the SWEB model matches the sensor measurements
well. The timing of the SWEB model and sensor data are off-
set. The SWEB model appears to lag behind both the sensor
and visual data; the correction for this time offset will be dis-
cussed in the next section.

3. Methods

3.1. Model translation: SWEB Version 0.28

The original SWEB model was developed in Microsoft Ex-
cel (Microsoft Corporation, Redmond, WA) by leading experts
in the area of leaf wetness who have worked on determining
suitable protocols for estimating surface wetness in physical
terms, as well as solutions to the lack of surface wetness stan-
dardization from both a measurement and a simulation per-
spective (Magarey, 1999; Magarey et al., 2001, 2005a,b).
Excel was selected primarily because the experts had access
to this software and were not familiar with a more traditional
programming language. To gain an understanding of the
SWEB model prior to translation into dynamic systems mod-
els, we first coded it into a high-level programming language
(MATLAB, V6.1, R12.1). This conversion was relatively
straightforward; equations could be translated directly from
excel to MATLAB, resulting in leaf wetness estimates identi-
cal between excel and MATLAB to five decimal places (Table
1 and Fig. 4).

MATLAB (Mathworks Inc., Natick, MA) is both a low- and
high-level programming language that markets to the science

0

0.2

0.4

0.6

0.8

1

1.2

1190 1195 1200 1205 1210 1215
Time (Hours)

C
an

op
y

Su
rfa

ce
 W

et
ne

ss

 Visual Data
Normalized Sensor Data
SWEB Predictions

Fig. 2. Visual observations, sensor measurements, and SWEB model predic-

tions of canopy surface wetness averaged over all vines and elevations within

the canopy for one moisture event.

Table 1

Root mean square (RMS) error values between software packages and the

Excel SWEB model

Software package RMS (Excel)

MATLAB 0.00006

STELLA 0.1307

Madonna 0.1297

GoldSim (Flows) 0.1613

GoldSim (Expressions) 0.0908

Simulink 0.0891

1495D.M. Rizzo et al. / Environmental Modelling & Software 21 (2006) 1491e1502
and engineering disciplines. It is unique when compared to
computer languages such as FORTRAN, BASIC, C, CCC,
Pascal, and Java, as it uses a combination of the two major
types of programming language translators e compilers and
interpreters. This interactive programming environment does
not require the formal compilation, linking/loading, and exe-
cution associated with other high-level computer languages.
MATLAB models are scripted in m-files that are then com-
piled (part-way) into p-code (pseudo code) the first time
they are executed in a given a session. The p-code is then in-
terpreted, resulting in a much faster development environment
because most of the compilation has already been performed.
MATLAB is coupled with extensive visualization capabilities
for generating graphs and the ability to access and process ex-
ternal files with large quantities of data. While MATLAB is
computationally very powerful and flexible, it is a program-
ming language and, as a result, requires a reasonable invest-
ment of time and training.

The systems-based software packages chosen to represent
the SWEB model, including STELLA, Madonna, GoldSim,
and Simulink, spanned a range of dynamic systems model
development tools. While programming languages such as
MATLAB often require more mathematical and programming
experience, dynamic systems models are developed by creat-
ing a symbolic representation of the system with graphical
icons and imbedded equations. The intricacies of complex sys-
tems are exposed through the use of distinctly different and
descriptive icons, with flow lines that indicate interactions
between parameters. For stock and flow models (STELLA,
Madonna, GoldSim with Flows), we first translated the
SWEB model to STELLA and used these equations as the basis
for the Madonna and GoldSim. Madonna has the capability to
directly import STELLA models, which was used as one
method of minimizing translation errors between the dynamic
software packages. The equation-based models (Simulink,
GoldSim with Expressions) were developed directly from the
SWEB model equations. Brief descriptions of the four software
packages are provided in Section 3.2.

3.2. Simulation modeling software packages

3.2.1. STELLA Version 5.0
The STELLA (High Performance Systems, Inc., Lebanon,

NH) dynamic systems software package is an icon-based sim-
ulation tool that uses differential equations represented as
stocks and flows. This software has been highly used for un-
derstanding population dynamics and economic fluxes. Stocks
represent a balance unit that changes with each time step;
flows represent a positive or negative change of flux; convert-
ers represent input parameters; and arrows represent mathe-
matical relationships between the elements. Simple graphing
and table features allow the user an easy visual or quantitative
method for checking output values. Three numerical integra-
tion methods are available in STELLA: Euler, Runge-Kutta
2 and Runge-Kutta 4. Equations are easily accessed by click-
ing on the icons or by manually altering mathematical
relationships in the equation editor. Tables and equations can
be quickly exported as text files to be used in other software
programs.

3.2.2. Berkley Madonna Version 7.0.2
Berkeley Madonna (Macey and Oster, Berkeley, CA) is

a dynamic systems software package developed under National
Science Foundation (NSF) and National Institute of Health
(NIH) sponsorship. Equations may be drawn graphically using
the flowchart editor or formulated manually in the equation
editor. Although it can be applied to a variety of ecological
and systems-based problems, it would be particularly useful
in mechanical engineering and chemistry applications, as
illustrated by the accompanying tutorials, batch runs, modules,
and sensitivity options. Madonna allows users to have direct ac-
cess to all equations, time steps, and constants. The user may
select an integration method from one of four built-in functions
(Euler, Runge-Kutta 2, Runge-Kutta 4, Rosenbrock) or design
a custom time integration method within the software. Madonna
also allows for quick data input and output through text files
loading as vectors or matrices. The graphical user interface is
easy to use and allows easy comparison of model results to ex-
ternal data. Optimization and sensitivity analyses are built-
in options in the Madonna software and are extremely
useful when evaluating the relative importance of model
parameters.

3.2.3. GoldSim Pro Version 7.51.100
GoldSim (GoldSim Technology Group, Redmond, WA) is

a flexible software modeling package with applications rang-
ing from simple static and deterministic systems, to complex
systems with unpredictable behavior and high degrees of un-
certainty. There are many built-in features that quantitatively
address uncertainty associated with modeled processes, pa-
rameters and future events such as the discrete and triggered
event tools. The Euler numerical integration method is used
for solving differential equations in the GoldSim simulator.
Models are created in GoldSim by constructing an influence
diagram using built-in elements that are represented by graph-
ical icons or by programming equations. The programming ca-
pabilities of GoldSim are much more flexible and/or advanced
than STELLA and Madonna. More complex models are as-
sembled by arranging the system in a hierarchical, modular
manner. GoldSim may be dynamically linked to external pro-
grams or spreadsheets, a useful feature for importing large
data sets. In addition, GoldSim is ‘dimensionally aware’, inter-
nally converting output to user-specified units, and thereby
minimizing error. For example, if the dimensional units for
time, distance, and velocity have been specified as minutes,
kilometers, and miles-per-hour, respectively, the user can
specify output units for travel time in minutes, and GoldSim
will complete all necessary unit conversions.

3.2.4. Simulink Version 4.1.2.4
Simulink (Mathworks Inc., Natick, MA) is a block diagram

visual modeling tool that is an add-on package to MATLAB. It

1496 D.M. Rizzo et al. / Environmental Modelling & Software 21 (2006) 1491e1502
uses the same MATLAB language and functions, but rather
than writing lines of code, models are developed in an icon-
based user interface that enables a conceptual diagram of the
modeled system, similar to electrical circuits. Icons are added
to the model using a library of available graphics. Groups of
variables and operations are built as sub-modules that trans-
form complicated models into a comprehensible diagram
where relationships between system components can be read-
ily observed. Many integration methods are available for Si-
mulink including Euler, Runge-Kutta, Gear, Rosenbrock, as
well as the ability to manually program alternative methods.
When data are not available for a particular time step, Simu-
link automatically interpolates a value for the missing time
step. Results are easily graphed using the graph block feature
connected to a variable flow path.

4. Results

4.1. Model translation

When translating the SWEB model into the four dynamic
systems software packages, two interesting challenges sur-
faced. First, the translation of the SWEB model into each soft-
ware package required a slightly different model formulation
due to the individual program structure and syntaxes. Less
room for interpretation error was encountered using the equa-
tion-based models (e.g., MATLAB, Simulink, and GoldSim
with Expressions), in contrast, the stock and flow-based
models relied heavily on the programmer’s conceptual under-
standing of the system (e.g., STELLA, Madonna, GoldSim
with Flows). The combination of time-independent and time-
dependent calculations in the SWEB model (Fig. 1e) resulted
in large accumulation errors for uncalibrated stock and flow
models. In general, software packages that enabled the use
of programming language to code expressions rather than
stocks and flows to describe temporal difference equations
produced results that more closely resembled the original
canopy surface wetness model.

Secondly, we observed that translating the SWEB model
into a dynamic systems-based model (STELLA, Madonna,
GoldSim with Flows) provided a better conceptual understand-
ing of the ecological system than the language-based programs
(MATLAB, Simulink, GoldSim with Expressions). If an objec-
tive of model development is to gain a better understanding of
a system, the capability of a software package to graphically
represent the model structure should not be overlooked. Scien-
tists with little programming experience can begin developing,
calibrating and testing models almost immediately. This is an
important consideration if the model is for educational purposes
or for fostering a collaborative model development rather than
for accuracy or prediction.

Additionally, other interesting discussion points surfaced
between the four different software packages. Although
many of the packages had functions and capabilities that over-
lapped, we found a broad range of user friendliness and
mathematical power between the systems-based software
(Fig. 3). These comments are summarized in tabular form
(Table 2).

STELLA was by far the most user-friendly piece of soft-
ware with cartoon-like icons and animated stocks and flows.
However, we found it to be somewhat limited when interacting
with external data sets and equations that are not strictly cal-
culating a mass-balance. For example, one of the most tedious
tasks associated with the SWEB model development in STEL-
LA was data input/output. STELLA allows a maximum of
1500 data points to be manually imported or copied and pasted
from an external file. Additionally, circular references were of-
ten encountered in STELLA when converters involved param-
eters calculated from previous time steps. The construction of
additional stocks and flows in an attempt to circumvent errors
resulted in compounded time-step errors.

The Madonna software is, in general, very user-friendly and
similar to STELLA in its presentation as an icon-based editor.
Madonna is capable of importing equations directly from
STELLA; this is an attractive feature, as many models have
been historically developed in STELLA. In addition, Madonna
performed quick and easy sensitivity analyses and optimiza-
tion of parameters with manual sliders. Graphical displays
were updated immediately with the response of the model to
parameter changes.

The GoldSim software has a less user-friendly interface than
STELLA or Madonna, but includes the capability to develop
models using built-in icons or an equation editor. In addition,
the GoldSim software has expansion capabilities (i.e., a con-
taminant transport package, dashboard authoring, distributed
processing) and may be linked directly to external files such
as Microsoft Excel for easy data access. To circumvent circular
references, GoldSim allows the user to create a new parameter
using the built-in delay function. The GoldSim software had
slightly slower run-times when the model was linked to an ex-
ternal data set and equations could not be created in this soft-
ware without clicking on individual icons.

In the stock and flow software packages (STELLA,
Madonna, and GoldSim with Flows), one major limitation is
the user’s lack of control over computations taking place be-
hind the scenes, particularly, discretizations in time. For exam-
ple, when a model developer wants to calculate parameters
using values that should be lagged in time, circular dependen-
cies often appear in dynamic software packages. This issue can

Fig. 3. Conceptual relationship between software packages for ease of use and

computational power.

1497D.M. Rizzo et al. / Environmental Modelling & Software 21 (2006) 1491e1502
Table 2

Comparison of five modeling software packages used to simulate the SWEB canopy witness model

Software package Costa Data

input

formats

Operating

system

(Interface)

Available

integration

method

Sensitivity analysis Optimization

MATLAB V. 7 Excel, Text,

Database, Realtime

Windows/Macintosh

(No Graphical Interface)

Euler, Gear,

Runge-Kutta,

Rosenbrock,

Manual

Manual Manual through

specialized functionsStudent version $99.00

Academic price $500.00

Commercial version $1900.00

STELLA V. 8.1 Excel, Text Windows/Macintosh

(Graphical Interface)

Euler,

Runge-Kutta

Built-in Manual

Student version $129.00

Academic price $649.00

Commercial version $1899.00

Berkeley Madonna V. 8.0 Excel, Text Windows

(Graphical Interface)

Euler,

Runge-Kutta

Rosenbrock,

Manual

Built-in Built-in

Student version $99.00

Academic price N/A

Commercial version $299.00

GoldSim Pro V. 9 Excel, Text Windows

(Graphical Interface)

Euler Manual Manual

Student version Free

Academic price $950.00

Commercial version $3950.00

Simulink V. 6.1 Excel, Text,

Database, Realtime

Windows/Macintosh

(Graphical Interface)

Euler, Gear,

Runge-Kutta,

Rosenbrock,

Manual

Manual Manual through

specialized functionsStudent version $99.00

Academic price $500.00

Commercial version $2800.00

a Listed prices are for must recently available versions as of July 2005.
be addressed through model refinement in the form of additional
variables or delays that introduce redundancy and error.

Simulink was not as easy to learn as the systems-based soft-
ware packages; it is icon-based, but relies on a programmer to
provide additional model structure that is automatically created
in dynamic systems software such as STELLA, Madonna, and
GoldSim. For example, the differential equations developed in
one step using dynamic systems-based models may take up to
three user steps to discretize time, overlay the function, and ap-
ply the time sequence in Simulink. The additional steps give the
user more control over specific aspects in the modeling process,
which may explain why errors between Simulink and the
SWEB model are lower than other software packages (Table
1). Circular references were not encountered in Simulink and
the model may be directly linked to external files for quick
and easy importation of data.

4.2. Ability to translate the SWEB model

The ability to translate the SWEB model into the four
modeling packages was assessed using two measures: absolute
and root mean square error. Absolute error was used as a mea-
sure of precision between the SWEB model and the systems
software packages. It was calculated as the square root of the
difference between the estimates of canopy surface wetness pro-
duced by the SWEB model, Xi, and the systems-based software
model of interest, Yi, for each of the 3970 hourly time steps, i,
using AbsErroriZ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXi�YiÞ2
p

. We found the software packages
produced statistically significant absolute errors when compared
to the SWEB model (KruskaleWallis Test, p ! 0.0001) (Fig. 4).
GoldSim with Expressions had the lowest absolute error; while
GoldSim with Flows had the highest absolute error. These abso-
lute errors from GoldSim with Expressions and GoldSim with
Flows were significantly different from each other and all other
models (Tukey’s Pairwise Comparison, p Z 0.01). STELLA,
Madonna, and Simulink had similar absolute errors that were
not significantly different from each other (Tukey’s Pairwise
Comparison, p Z 0.01).

Fig. 4. Box plot of individual absolute errors between the SWEB Excel model

and software package. Boxes represent the 25th, 50th, and 75th percentile,

Whiskers represent the 5th and 95th percentiles, circles represent outliers,

and dotted lines represent the means.

1498 D.M. Rizzo et al. / Environmental Modelling & Software 21 (2006) 1491e1502
The second assessment measure, the root-mean-square
(RMS) error, is an overall measure of accuracy between
the SWEB model and the systems-based software packages.
It was calculated for each of the models over all 3970 hourly
time steps as RMSZ

ffi
ð
Pn

iZ1
ðXi�YiÞ2Þ=n

p
where, n Z number of

time steps. The RMS errors between the SWEB model and the
software packages are shown in Table 1. Simulink and GoldSim
with Expressions had the lowest RMS error values. These two
models were expression based yet used icons to represent rela-
tionships that may have resulted in slight translation errors. The
stock and flow-based software packages, STELLA, Madonna,
and GoldSim with Flows had the highest RMS values, which
may be a result of interpretation and translation error from
the SWEB model. It is interesting to note the slight difference
in RMS error between STELLA and Madonna. The STELLA
equations were imported directly into Madonna. As a result,
we expected exact results between the two models using
the same equations; however, this was not the case with Madon-
na having slightly larger RMS error than STELLA (Table 1).

One explanation for the difference in RMS errors between
icon- and expression-based models is the user’s control of the
timing over which calculations are made. Errors produced by
the numerical approximations and the timing of these errors
could have resulted in higher RMS error values for the stock
and flow-based software packages. A second reason for the
difference in RMS errors between models is related to the de-
veloper’s choice in addressing circular dependencies in each
of the software packages and the selection of time steps.

An overall RMS error does not describe all aspects of mod-
el performance. In addition to errors between overall model
performance, we were interested in time-dependent error or
performance (i.e., within a particular wetting or drying event).
To assess this, a cumulative RMS error and an RMS error val-
ue averaged over a moving window of 200 time intervals (h)
were calculated.

Fig. 5 shows the two RMS error statistics versus time for each
software package (cumulative RMS error values are shown
under the title). The time period between 500 and 800 hours
yielded a low time averaged RMS error value. This time period
corresponds with a period of stable and sustained relative leaf
wetness values at or near full saturation. It should be noted
that MATLAB (Fig. 5a) is plotted on a much smaller scale
than the other software packages (Fig. 5bef). In general, the
shape of all RMS error values over time is similar. The expres-
sion models (Simulink and GoldSim with Expressions) have
RMS values that are approximately half as large, on average,
as the stock and flow models (STELLA, Madonna, GoldSim
with Flows). The change in the cumulative RMS error can indi-
cate the stability of the model over time whereas a cumulative
RMS error value that remains constant or decreases over time
indicates a model in which the performance does not deteriorate
over time. All translated models had cumulative RMS errors
that remained constant or decreased over time (Fig. 5aef).
This is especially significant for the stock and flow-based models
since they are more susceptible to accumulating errors than ex-
pression-based models. Note the largest variance in error for
the stock and flow models occurs in the first 1000 hourly time
steps, which are approximately three times that of the expres-
sion-based models. After the first 1000 time steps, the cumulative
and moving window average of the stock and flow models ap-
proaches that of the expression-based models (an RMS error of
approximately 0.1).

4.3. Sensitivity analysis

Sensitivity analysis is performed to better understand how
changes in model parameters affect output values and stability.
In this project, we were interested in how noise from the
microclimate sensor data may affect canopy surface wetness
predictions. One measure of sensitivity is to create systematic
errors in one or more input parameters and observe how the
system responds. In this work, five input variables: tempera-
ture, wind speed, precipitation, relative humidity, and net
canopy radiation were each subjected to random noise of
G10%. Random noise was added to one of the five input pa-
rameters while each of the other four parameters were held
constant. The sixth sensitivity run incorporated G10% random
noise to all five input parameters. Canopy surface wetness
was the response (output) variable used for comparison.
Performance for the sensitivity analysis was measured by
comparing each model’s original performance against its
performance with G10% random error, rather than a compari-
son between software packages. As a result, the correlation pa-
rameter R2 was used as an internal performance for relative
leaf wetness measurements with and without noise,
respectively.

Table 3 compares the resulting R2 values for the various
software packages with lower R2 values indicating greater
sensitivity to the random errors and worse performance.
MATLAB, Simulink and Madonna packages performed well.
It is interesting to note that Madonna performed the best of
the dynamic systems models, including STELLA, the software
package from which it was originally translated. Both Madon-
na and STELLA models used the same equations and struc-
ture, yet Madonna was much less sensitive to noise. The
GoldSim models in general were much more sensitive to noise
than the other modeling software packages.

The sensitivity analysis also helped quantify the influence of
each input parameter in the model. Net canopy radiation and rel-
ative humidity were the two most sensitive variables for all soft-
ware packages, as indicated by the lowest average R2 values.
From an application standpoint, this indicates that noise in these
two variables causes the largest model error, thus more resour-
ces (time, quantity, and quality of sensors) should be allocated to
improving the accuracy of the data collection, reducing the mea-
surement error and insuring correct sensor calibration. Another
interesting comparison occurs between the R2 values for MAT-
LAB and Madonna. MATLAB is the least sensitive to changes
in net canopy radiation, but the reverse is true for the relative hu-
midity parameter. While the difference in ranked sensitivity be-
tween each model’s parameters is slight in this study, it may be
a significant consideration in software selection when the user
has some prior knowledge of the expense (labor or monetary)

Fig. 5. Variations of the root-mean-square (RMS) errors over 3970 hourly time steps. The dark line represents the cumulative RMS error while the lighter gray line

represents the 200 time step moving interval.

1499D.M. Rizzo et al. / Environmental Modelling & Software 21 (2006) 1491e1502
associated with obtaining input parameter data (e.g., net canopy
radiation is a more costly and labor intensive expense than
relative humidity and temperature, which is important for this
particular application).

5. Discussion

Two of the primary objectives of this study were to (1)
identify an ‘appropriate’ software package for representing
the conceptual energy balance model of surface wetness in
crop canopies and (2) compare the benefits and limitations be-
tween four dynamic, systems-based software packages. As is
frequently the case, the choice of software depends on the ap-
plication, since many factors must be considered by the stake-
holders when selecting a model. These constraints may
include user demographics, phase of development, budget lim-
itations, built-in sensitivity and optimization tools, and the
preference of user friendliness versus computational power.
The results of this study suggest that dynamic systems tools
provide a good conceptual understanding of the SWEB model,
without necessarily sacrificing accuracy. However, under-
standing the underlying mathematics behind stock and flow
models may be difficult at best for novice modelers. We rec-
ommend that models like SWEB be developed initially in a dy-
namic software package until researchers are confident with

1500 D.M. Rizzo et al. / Environmental Modelling & Software 21 (2006) 1491e1502
Table 3

R2 values resulting from a sensitivity analysis conducted by changing five input parameters (wind speed, temperature, radiation, precipitation, and relative humidity)

by G10%

Model Wind speed Temperature Radiation Precipitation Relative humidity All 5 Average

MATLAB 1.0000 1.0000 0.9939 0.9999 0.9666 0.9617 0.987

STELLA 0.9999 0.9999 0.9355 0.9989 0.9562 0.8956 0.964

Madonna 1.0000 1.0000 0.9772 0.9999 0.9767 0.9547 0.985

GoldSim flows 0.8221 0.8226 0.8016 0.8223 0.7690 0.7494 0.798

GoldSim expressions 0.8519 0.8522 0.8435 0.8519 0.7744 0.7671 0.824

Simulink 1.0000 1.0000 0.9933 1.0000 0.9712 0.9649 0.988

Average 0.946 0.946 0.924 0.945 0.902 0.882
the selection of input parameters and variable ranges. The dy-
namic model can then be translated into an expression-based
model to improve accuracy of results.

The error associated with a given solution is directly related
to the integration method used. The Euler method was used in
all software packages for this comparison, however, a ‘basic’
and ‘modified’ Euler method exists and may not have been
consistent between packages. We noted that changing the
time step size significantly affected output results, particularly
in the dynamic software packages. Thus, it is possible that the
dynamic packages were (1) not consistent with the power
order and number of significant figures retained during
integration or (2) used a variation of the Euler integration
method. A good example is the difference in model output
and sensitivity results between STELLA and Madonna. The
same syntax, input files, and parameter values were copied di-
rectly between the packages, yet output results differed
slightly.

For this study, models were selected that spanned a range
between dynamic system simulators and expression-based com-
putational tools (see Table 2). The SWEB model developed in
Excel was translated to MATLAB with minimal error
(RMS Z 0.00006), yet translation to dynamic software
packages ultimately resulted in different types of translation er-
rors. The dynamic system software SWEB models were not as
accurate, although similar performance trends were observed
between model pairings such as GoldSim with Expressions
and Simulink, as well as STELLA, Madonna, and GoldSim
with Flows. A sensitivity analysis indicated that all models
were most sensitive to net canopy solar radiation and relative
humidity. Simulink and Madonna exhibited the least amount
of sensitivity to input parameter variability. STELLA and
GoldSim models were significantly affected when all five of
the input parameters were varied, while the GoldSim
models were the most sensitive to noise in individual input
parameters.

Our major conclusion from this study is that switching from
one systems-based software package to another can be chal-
lenging at best, even for very simple models. The modeling
software becomes part of the model and of the calibration
process. The performance becomes intimately connected
with the choice of software package used to implement and
analyze the model. Therefore, the reimplementation in differ-
ent software is not similar to switching from one programming
language to another. Each package has its own conventions
and restrictions that become an inherent part of the model im-
plementation and are best taken into account in the early stage
of model development. A mechanistic transition from one
package to another results in surprises, discrepancies, errors
and behavior that may be difficult to explain and mitigate.
The multitude of closed proprietary software that has hit the
market lately may actually present a disservice to the model-
ing community, creating a multitude of model artifacts that
originate somewhere deep inside the undocumented features
of the software, and may hide or distort the actual properties
of the methods and formalizations of the model that are
reported and published. When programming languages are
used to implement models, the models are separate from the
computer implementation, and it matters less what language
is selected for model development. Programming languages
do not, however, provide a conceptual understanding of the
system, or visual interpretation of the interactions between
parameters without studying the code and individual
equations.

Acknowledgements

Special thanks goes to Alaina Dickenson for development of
Fig. 1 and Appendix A. Work was funded in part by a Vermont
NSF EPSCoR Graduate Research Assistantship #524474.

Appendix A

The program is implemented for MATLAB Version 6.1
Release 12.0 and requires no toolboxes. This program is
copyrighted and permission is granted for the use of this
program for individual study. Commercial use is explicitly not
allowed. The authors and the University of Vermont provide
this code on an ‘‘as is’’ basis and accept no responsibility for
errors, mistakes, or misrepresentations that may occur as a
result of its use. Our use of MATLAB is for product identifica-
tion purposes and does not represent an endorsement of the
product.

1501D.M. Rizzo et al. / Environmental Modelling & Software 21 (2006) 1491e1502
Constants
ZcZ1.8;
DzZ1.2;
ZoZ0.18;
ZZ3;
CpZ0.286;
pairZ0.0012;
WmaxZ0.5;
cfZ4.1;
cdZ18.2;
LLZ4.5;
radEZ0;
finalWBZzeros(length(Uz),1);
ClZ0.02;

Model

LAI Z 0.161C2.0929. / (1Cexp (�0.1951.* (day-175.18))); *Calculate leaf area index

C Z LAI.*Cl; *Calculate max water storage for canopy

Uc Z Uz.*(log ((Zc-Dz)/Zo)/log ((Z-Dz)/Zo)); *Calculate canopy wind speed

Ucl Z Uc.*(1C1.3*(1-1.05/1.8))^-2; *Calculate Landsberg canopy wind speed

CNR Z (ANR-BNR).*0.00002388.*60.*0.5; *Calculate canopy net radiation

(ea*) Z 6.11*exp (5327*(1/273-1./ (TC273))); *Calculate saturated water vapor pressure of atmosphere

D Z (ea*).*(6790.4985./(TC273).^2-5.02808./ (TC273)); *Calculate slope of saturation vapor pressure curve

DP Z DC0.66; *Calculate slope of saturation vapor pressure curve C constant

Rn Z (CNR.* D). / DP; *Calculate radiant flux

coef1 Z (Cp*r). / DP; *Calculate coefficient 1

Rh2 Z (1-Rh/100); *Calculate variation of relative humidity

I Z (P. / 10).*(1-exp (�0.5.*LAI)); *Calculate intercepted rain

for loop Z 1:1:length(Rn);
*Calculate potential condensation of dew

if Rn (loop,1) ! 0;

D(loop,1) Z -Rn (loop,1).*(60/583);

else

D(loop,1) Z 0;

end

end

for loop Z 1:length(Rn);

if loop ZZ 1;

initialWB(loop,1) Z max(0,min((I(loop,1)C D(loop,1)C 0),C(loop,1))); *Calculate initial water balance

W(loop,1) Z Wmax .* ((0./C(loop,1)).^(.6667)); *Calculate proportional leaf wetness

else

initialWB(loop,1) Z max(0,min((I(loop,1)C D(loop,1)C finalWB(loop-1,1)), C(loop,1))); *Calculate initial water balance

W(loop,1) Z Wmax .* ((initialWB(loop-1,1)./C(loop,1)).^(.6667)); *Calculate proportional leaf wetness

end

c(loop,1) Z((1-W(loop,1)).*cdC(W(loop,1).*cf)); *Calculate shape scale constant

h(loop,1) Z c(loop,1).*sqrt((Ucl(loop,1).*6000)./(LL)); *Calculate transfer coefficient

E(loop,1) Z (Rh2(loop,1).* coef1(loop,1).* (ea*) (loop,1)./583).* h(loop,1).* W(loop,1); *Calculate evaporation rate

volE(loop,1) Z E(loop,1).*60; *Calculate volume evaporation

minusWB(loop,1) Z radE C volE(loop,1); *Calculate minus water balance

if loop ZZ 1;

finalWB(loop,1) Z max(0,min(0CminusWB(loop,1),C(loop,1))); *Calculate final water balance

else

finalWB(loop,1) Z max(0,min(initialWB(loop-1,1)C minusWB(loop,1),C(loop,1)));

end

end

relWB Z finalWB./C; *Calculate relative water balance

Wr Z relWB.^(0.6667); *Calculate relative canopy wet area
References

Campbell, C.L., Madden, L.V., 1990. Introduction to Plant Disease Epidemi-

ology. John Wiley & Sons, New York.

Costanza, R., Voinov, A., 2001. Modeling ecological and economic systems

with STELLA: Part III. Ecol. Model. 143 (1e2), 1e7.
Funt, R.C., Ellis, M.A., Madden, L.V., 1990. Economic analysis of

protectant and disease-forecast-based fungicide spray programs for

control of apple scab and grape black rot in Ohio. Plant Dis.

74 (9).

Huber, L., Gillespie, T.J., 1992. Modeling leaf wetness in relation to plant dis-

ease epidemiology. Annu. Rev. Phytopathol. 30, 553e577.

1502 D.M. Rizzo et al. / Environmental Modelling & Software 21 (2006) 1491e1502
Magarey, R.D., Seem, R.C., Weiss, A., Gillespie, T.J., Huber, L., 2005a. Esti-

mating surface wetness on plants. In: Hatfield, J.L., Baker, J.M., Viney,

M.K. (Eds.), Micrometeorology in Agricultural Systems, Agronomy

Monograph No. 47, in a series of Agronomy. American Society of Agron-

omy, Crop Science Society of America, Soil Science Society of America:

Madison, WI.

Magarey, R.D., Russo, J.M., Seem, R.C., Gadoury, D.M., 2005b. Surface wetness

duration under controlled environmental conditions. Agric. For. Meteorol.,

128 (1e2), 111e122.

Magarey, R.D., 1999. A theoretical standard for estimation of surface wet-

ness duration in grape. PhD Dissertation, Cornell University, Ithaca,

NY.

Magarey, R.D., Seem, R.C., Russo, J.M., Zack, J.W., Waight, K.T.,

Travis, J.W., Oudemans, P.V., 2001. Site-specific weather information

without on-site sensors. Plant Dis. 85, 1216e1226.
Norman, J.M., Campbell, G., 1983. Application of a plant environment model

to problems in the environment. Adv. Irrig. 2, 155e188.

Seppelt, R., Richter, O., 2005. ‘‘It was an artifact not the result’’: a note on systems

dynamicmodeldevelopment tools. Environ. Model. Softw., 20 (20), 1543e1548.

Tanner, C.B., Fuchs, M., 1968. Evaporation from unsaturated surfaces: a gen-

eralized combination method. J. Geophys. Res. 73, 1299e1304.

Voinov, A., 1999. Simulation Modeling. !http://www.likbez.com/AV/Simmod.

htmlO.

Weiss, A., 1990. Leaf wetness: measurements and models. Remote Sens. Rev.

5, 215e224.

Yarwood, C.E., 1978. Water and the infection process. In: Kozlowski, T.T.

(Ed.), Water and Plant Disease. Water Deficits and Plant Growth, vol. V.

Academic Press, New York, NY, pp. 141e173.

The Leaf Surface Wetness Duration. !http://www.nysaes.cornell.edu/pp/

faculty/seem/magarey/leafwet/lwtitle2.htmlO.

http://www.likbez.com/AV/Simmod.html
http://www.likbez.com/AV/Simmod.html
http://www.nysaes.cornell.edu/pp/faculty/seem/magarey/leafwet/lwtitle2.html
http://www.nysaes.cornell.edu/pp/faculty/seem/magarey/leafwet/lwtitle2.html

	The comparison of four dynamic systems-based software packages: Translation and sensitivity analysis
	Introduction
	Background
	SWEB model Version 0.28

	Methods
	Model translation: SWEB Version 0.28
	Simulation modeling software packages
	STELLA Version 5.0
	Berkley Madonna Version 7.0.2
	GoldSim Pro Version 7.51.100
	Simulink Version 4.1.2.4

	Results
	Model translation
	Ability to translate the SWEB model
	Sensitivity analysis

	Discussion
	Acknowledgements
	Appendix A
	References

