Mitigating Climate Change with Managed Forests: Balancing Expectations, Opportunity, and Risk

David G. Ray, Robert S. Seymour, Neal A. Scott, and William S. Keeton

The forestry community is abuzz with anticipation regarding how managed forests will be able to participate in emerging markets for carbon offsets. Carbon markets may offer some potential for compensating forest landowners for actions that demonstrably reduce the atmospheric CO₂ burden. Foresters, however, must recognize that not all forms of enlightened forest management can, or should, qualify for credits. We caution that in the exuberance to take advantage of new, imperfectly formed cap-and-trade markets (e.g., Chicago Climate Exchange, California Climate Action Registry, and Regional Greenhouse Gas Initiative), some managed forest projects may prove to confer no real climate benefit, owing to leakage or lack of additionality. Indeed, questions surrounding the credibility of certain cap-and-trade projects already being implemented in nonforestry sectors under the Clean Development Mechanism of the Kyoto Protocol may be placing this approach in jeopardy (Bell 2008).

Forestry projects can influence CO₂ sequestration in essentially three ways: (i) by creating new forests (afforestation), (ii) by avoiding their destruction (avoided deforestation), and (iii) by manipulating existing forest cover (managed forests). Land-use change, specifically deforestation and regrowth, are by far the biggest players, globally, in terms of forests acting as sources or sinks for CO₂, respectively (Intergovernmental Panel on Climate Change [IPCC] 2000). Projects that create forests are the least controversial in terms of qualification for credits because they have the potential to sequester relatively large amounts of carbon and are fairly easy to quantify and monitor.

Realistically, opportunities for afforestation projects here in the United States are limited. This may help explain the growing momentum to include “sustainably” managed forests (e.g., Ruddell et al. 2007) that incorporate silvicultural activities such as extended rotations, structural retention, promoting full stocking and vigor, and lowering vulnerability to catastrophic losses. If implemented effectively, these approaches have the potential to increase the amount of sequestered carbon relative to the background condition (e.g., business-as-usual [BAU]) that provides the reference (baseline) against which offsets accrue (additionality). However, extending rotations on ownerships participating in cap-and-trade could also lead to tightening supply and stimulate harvests elsewhere, potentially canceling those gains (leakage). A recent example of this type of un-intended consequence is provided by increased tropical deforestation in response to domestic biofuel production initiatives (Laurance 2007).

Holistic assessments of forest management scenarios incorporating product life cycles (i.e., carbon stored in wood products and landfills and biomass energy) and direct substitution for more energy-intensive building materials (e.g., concrete and steel) suggest active management can be carbon neutral or may even represent a substantial net sink for atmospheric carbon (Perez-Garcia et al. 2005, Miner and Perez-Garcia 2007). Intensive management and short rotations appear to maximize such benefits effectively by increasing the rate of substitution, not by storing more carbon in forests (Perez-Garcia et al. 2005). However, such scenarios potentially conflict with the “permanence” tenant required of carbon offsets under cap-and-trade. Moreover, absent the substitution effect (but accounting for storage), intensive approaches do not appear to compare favorably with more passive management in terms of sequestration potential (Harmon et al. 1990, Perez-Garcia et al. 2005). The reasons for this have to do variously with the interactions among storage and uptake rates (Harmon et al. 1990), basic production ecology (Long et al. 2004), conversion efficiencies from trees to wood products, fuel emissions from wood harvesting and transportation to mills and distributors, and the dynamics of long-term storage (Smith et al. 2006).

If climate benefits from managed forests rely heavily on the substitution of wood for more energy-intensive alternatives, then cap-and-trade may not be the best approach for promoting this shift. An alternative policy, e.g., a short-term direct subsidy until a robust market develops, might be a better alternative. If interested parties are concerned about the cost of tracking the marginal benefits of improved forest management relative to BAU, imagine the additional layer of complexity required to verify that wood products originating from a given ownership are actually being substituted for less desirable materials. In addition, owing to the focus on additionality, cap-and-trade inherently favors rates of uptake as opposed to storage—arguably one of forestry’s strongest suits. This could have the perverse consequence of putting those who have managed their lands aggressively in the past at a distinct advantage because of lower stocking and thus potential for additional uptake, while providing limited opportunities for ownerships that have maintained high carbon density forests all along.

Forestry can ill afford further deterioration of its public image. The climate change issue is very much in the public eye. Foresters must identify and support true win-win scenarios in which forests can contribute meaningfully to climate change mitigation; however, there is little scientific justification for promoting all projects that involve forestry. Furthermore, we need to keep in mind that cap-and-trade is widely viewed as a short-term stop-gap measure to “buy time” until technologies develop to dramatically reduce greenhouse gas emissions. Limited will and resources exist with which to address this problem, and
given the primarily negative consequences of
global climate change (IPCC 2007), the
responsible thing to do is to focus on strategies
most likely to provide short-term benefits. If
a robust definition for additionality can be
developed and compensation is tied to tan-
gible climate benefits (including addressing
leakage issues), then managed forests can
participate in carbon offset markets with
confidence.

Like all foresters, we recognize the mul-
tiple benefits to society of forests as a renew-
able resource when managed skillfully. For-
estry deserves to compete (and be provided
with similar levels of assistance that other
“green” technologies are receiving) for a
prominent role in a future that is less reliant
on fossil fuels. Recent scenario analyses have
shown that no single emissions-offset tech-
nology is going to solve the climate crisis
(e.g., Pacala and Socolow 2004). What is
needed are a wide range of approaches with
various degrees of “readiness” that function
over various temporal scales. It is time for
the forestry community to critically examine
key questions regarding how managed for-
est will participate in the national cap-and-
trade policy likely to develop in the near fu-
ture.

Literature Cited

Bell, J. 2008. U.N. effort to curtail emissions in
turmoil. The Wall Street Journal. Available on-
line through the Wall Street Journal online at
online.wsj.com/article/SB120796372237309
757.html

Harmon, M. E., W. K. Ferrell, and J. F. Frank-
lin. 1990. Effects on carbon storage of conver-
sion of old-growth forests to young forests. Sci-

Intergovernmental Panel on Climate
Change (IPCC). 2000. Special report on land
use, land-use change and forestry. Watson, R.T.,
I.R. Noble, B. Bolin, N.H. Ravindranath, D.J.
Verardo, and D.J. Dokken (Eds.). Cambridge

Intergovernmental Panel on Climate
Change (IPCC). 2007. Climate change 2007:
Synthesis Report. Contribution of Working
Groups I, II, and III to the 4th Assessment
Report of the Intergovernmental Panel on
Climate Change. Pachauri, R.K., and A. Reis-
ger (Eds.). IPCC, Geneva, Switzerland.
104 p.

Laurance, W. F. 2007. Switch to corn promotes
Amazon deforestation. Science 318:1721.

Long, J. N., T. J. Dean, and S. D. Roberts.
2004. Linkages between silviculture and ecol-
ogy: Examination of several important concep-
261.

Miner, R., and J. Perez-Garcia. 2007. The
greenhouse gas and carbon profile of the global
forest products industry. For. Prod. J. 57(10):
80–90.

wedges: Solving the climate problem for the
next 50 years with current technologies. Sci-
ence 305:968–972.

Perez-Garcia, J., B. Lippke, J. Comnick, and C.
pools, storage, and wood products market sub-
stitution using life-cycle analysis results. Wood
Fiber Sci. 37(Special Issue):140–148.

Ruddell, S., R. Sampson, M. Smith, R. Giffen,
J. Cathcart, J. Hagan, D. Sosland, J. God-
bee, J. Heissenbuttel, S. Lovett, J. Helms,
W. Price, and R. Simpson. 2007. The role for
sustainably managed forests in climate change

Smith, J. E., L. S. Heath, K. E. Skog, and R. A.
Birdsey. 2006. Methods for calculating forest
ecosystem and harvested carbon with standard es-
timates for forest types of the United States. Gen.
Tech. Rep. NE-343, US For. Serv. Northeast-

David G. Ray (dray@ttrs.org) is forestry scien-
tist, Tall Timbers Research Station, Tallahas-
see, FL 32312. Robert S. Seymour (seymour@
umenfa.maine.edu) is Curtis Hutchins
professor of forest resources, University of
Maine, Orono, ME 04469. Neal A. Scott
(scott@queensu.ca) is assistant professor and
Canada Research Chair in greenhouse gas dy-
namics and ecosystem management, Depart-
ment of Geography, Queen’s University, King-
ston, ON K7L 3N6, Canada. William S.
Keeton (william.keeton@uvm.edu) is associate
professor of forest ecology and forestry, Ruben-
stein School of Environment & Natural Re-
sources, University of Vermont, Burlington,
VT 05405.