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ABSTRACT: Exploratory data analysis on physical, chemical, and biological data
from sediments and water in Lake Champlain reveals a strong relationship
between cyanobacteria, sediment anoxia, and the ratio of dissolved nitrogen to
soluble reactive phosphorus. Physical, chemical, and biological parameters of lake
sediment and water were measured between 2007 and 2009. Cluster analysis
using a self-organizing artificial neural network, expert opinion, and discriminant
analysis separated the data set into no-bloom and bloom groups. Clustering was
based on similarities in water and sediment chemistry and non-cyanobacteria
phytoplankton abundance. Our analysis focused on the contribution of individual
parameters to discriminate between no-bloom and bloom groupings. Application
to a second, more spatially diverse data set, revealed similar no-bloom and bloom discrimination, yet a few samples possess all the
physicochemical characteristics of a bloom without the high cyanobacteria cell counts, suggesting that while specific
environmental conditions can support a bloom, another environmental trigger may be required to initiate the bloom. Results
highlight the conditions coincident with cyanobacteria blooms in Missisquoi Bay of Lake Champlain and indicate additional data
are needed to identify possible ecological contributors to bloom initiation.

■ INTRODUCTION
Cyanobacteria are a ubiquitous component of freshwater
phytoplankton communities worldwide, but in eutrophic waters,
these algae can reach nuisance proportions.1,2 Cyanobacteria
blooms are the result of complex interactions among
phytoplankton, zooplankton grazers, nutrients, and other biotic
and abiotic factors3,4 and are problematic due to their density and
because some cyanobacteria produce secondary toxic metabo-
lites.5

Over the past decade, summer cyanobacteria bloom frequency
has increased in Lake Champlain (New York and Vermont, USA,
and Quebec, Canada), with regular occurrence in Missisquoi Bay
(Figure 1).6 Intensive quantitative cyanobacteria monitoring
shows dominance by three genera: Microcystis, Anabaena, and
Aphanizomenon, with relative proportions varying from year to
year.6 Microcystins are the predominant cyanotoxin group
within the bay.7 Despite intensive monitoring, the bloom ecology
and links to water quality conditions remain poorly understood.
Phosphorus (P) is believed to be the dominant nutrient tied to

increases in Lake Champlain phytoplankton.8 Under low
nitrogen (N) conditions, cyanobacteria can dominate other
algal groups, especially when P is abundant.9 Some cyanobacteria
can fix N2 or have other physiological adaptations enabling
efficient uptake of dissolved N and outcompete other
phytoplankton for nitrogen.10 When the N:P ratio is low,
cyanobacteria may have an advantage, particularly when the ratio
drops below 29:1,11 although these observations are contra-
dicted.12 Biological activity can stimulate the seasonal develop-

ment of sediment anoxia and lead to the release of P and
ammonium to the overlying water by reduction (and dissolution)
of iron oxide-hydroxide minerals that sorb P and from organic
material decomposition by heterotrophic bacteria, respec-
tively.13,14

Data-driven computational approaches (e.g., artificial neural
networks or ANNs) are ideally suited for assimilating the
multiple, intercorrelated data associated with cyanobacteria
blooms.15 These ANN algorithms account for more data
variability than linear parametric statistics when applied to
geochemical and microbiological data sets.16 We selected the
self-organizing map (SOM), a non-linear and non-parametric
clustering method because of its robustness with data that violate
the assumptions associated with parametric clustering methods.
It outperforms many clustering methods (e.g., hierarchical and
K-means) on data sets with high dispersion, outliers, irrelevant
variables, and non-uniform cluster densities.17 In general,
clustering methods are attractive for exploratory data analysis
because the number of groupings does not need a priori
specification.18 The SOM has proved useful for highlighting
patterns in cyanobacteria dominance19 and is more robust than
traditional methods for clustering hydrochemical data.20

Although specific results are not transferrable to another system,
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the SOM methodology and follow-on 2-D visualizations may be
applied to any data set.
In this work, the SOM clusters a unique set of water quality

and sediment redox chemistry measurements to examine the in-
lake conditions supporting cyanobacteria blooms, especially
those of the dominant genus Microcystis. Clustering used only
non-cyanobacteria phytoplankton cell counts, sediment, and
water chemistry data. Results were compared to Microcystis cell

counts with emphasis on individual input parameter contribu-
tions, while leveraging the SOM visualization tools, expert
opinion, and a modification that allows weighting of input
variables.

■ METHODS

Lake Champlain is the sixth largest lake in the northeastern U.S.,
draining regions of Vermont and New York, United States and
Quebec, Canada into the Richelieu River and ultimately the St.
Lawrence River (Figure 1). Missisquoi Bay, straddling the U.S.−
Canada border, is hydrodynamically isolated from the rest of
Lake Champlain and is one of the most eutrophic segments,
exhibiting nearly annual cyanobacteria blooms, at times
accompanied by the cyanotoxin, microcystin.6 The Bay has a
maximum depth of∼4m, amean depth of 2.8 m, and a watershed
to water surface area ratio of 40:1.21

The study data set was collected over 12 days in 2007, 2008,
and 2009 from a sampling platform in Missisquoi Bay (Figure 1)
at multiple times of the day. The intent was to capture conditions
(1) after ice-out, prior to the initiation of the bloom and during
(2) bloom initiation, (3) peak bloom, and (4) bloom subsidence.
During each event, samples were collected three times (mid-day,
dusk, and dawn) at multiple depths over a 24-h period, to capture
diel patterns in cyanobacteria behavior and chemistry at the
sediment−water interface.22
Additional samples were collected more frequently from the

sampling platform and four additional locations within
Missisquoi Bay as part of a long-term monitoring (LTM)
partnership between the Vermont Agency of Natural Resources
and the University of Vermont (Figure 1). Footnote a
designation in Table 1 indicates parameters measured as part
of this LTM effort.
Data were analyzed using an SOM23 modified and coded by

the first author (MATLAB R2009B, The Mathworks, Natick,
MA). The algorithm and its modifications are described in detail

Figure 1. Sampling locations in Missisquoi Bay, Lake Champlain, USA/
Canada. Detailed data were collected from the sampling platform. The
long-term monitoring data were collected from the platform and at four
additional locations in the bay.

Table 1. Parameters Measured from the Sampling Platform

parameter units minimum mean maximum std dev

nutrients total phosphorusa μg/L 16.7 55.4 266 45.9
total nitrogena mg/L 0.327 0.604 0.997 0.147
dissolved nitrogena mg/L 0.29 0.47 0.997 0.157
soluble reactive phosphorus μg/L 0.5 6.53 33.26 5.86

microcystin μg/L 0.003 3.22 18.5 4.5

phytoplankton Bacillariophyceaea cells/mL 23.4 292 1694 319.6
Chlorophyceaea cells/mL 70.2 998 3455 924
Anabaenaa cells/mL 0 3039 17563 4127
Aphanizomenona cells/mL 0 1108 9919 2082
Microcystisa cells/mL 0 31016 319804 63622

physical parameters temperaturea °C 21.1 22.4 24 0.89
conductivity μS/cm 82.1 114.6 127.9 12.2
dissolved oxygen mg/L 6.52 8.36 10.89 1.12
PAR (irradiance) W/m2 0.057 287.7 1120 421
fluorescence mg/m3 0.98 8.26 18.9 3.78
turbidity FTU 3.03 13.3 84 16.9

sediment dissolved oxygenb μM 5 51.9 150 45.7
oxic boundaryc mm −1 −0.25 0.5 0.47
Mn(II) redox boundaryc mm −12 −0.96 10 5.5

aAlso measured as part of the long-term monitoring data set. bMeasured at the sediment−water interface by voltametric microelectrode. cRelative to
the sediment−water interface.
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elsewhere.23,24 Briefly, the SOM teratively self-organizes the
input data (i.e., lake water samples) onto two-dimensional maps
using a mathematical measure of similarity. Modifications
include a mask that enables weighting of the input variables
based on their relative importance. Statistical analyses were
performed using JMP 8.0.1, SAS Institute, Inc., Cary, NC.
Our choice of the following 10 input data parameters was

determined via sensitivity analysis and consultation between
coauthors: ln(dissolved nitrogen:soluble reactive phosphorus),
cell counts of Bacillariophyceae (diatoms) and Chlorophyceae
(green algae) [as ln(cells/mL)], temperature [°C], conductivity
[μS/cm], dissolved oxygen (DO) [mg/L], PAR irradiance [W/
m2], chlorophyll fluorescence [ln(mg/m3)], turbidity [ln-
(FTU)], and depth of sediment anoxia measured vertically
along the sediment−water interface to the dissolved MnII [mm]
front. Of the measured sediment parameters, depth to the
dissolved MnII front most consistently represented the overall
redox condition and potential for nitrate reduction and NH4

diffusion from the sediment.
Because Missisquoi Bay is shallow, almost always well mixed

vertically, and known to have cyanobacteria migrate vertically on
a diel basis,25−27 we assumed sediment redox chemistry impacted
cyanobacteria throughout the water column and used the same
sediment redox measurement for water samples collected in each
vertical profile. The dissolved nitrogen:soluble reactive phos-
phorus ratio (DN:SRP) was selected instead of total nitro-
gen:total phosphorus (TN:TP) because a large portion of the
total water column nutrients at any time are tied up in organisms
or bound to other particles and not available for biological
uptake. Natural log transformations were applied when extreme
values skewed the analysis. Concentration of microcystins and
cyanobacteria cell counts were omitted from the SOM clustering
analysis to allow comparison of the SOM-generated clusters to
these observed measurements.
Preliminary data analyses revealed that a few samples with low

water temperature (in early May and late October) dominated
the cluster analysis yet provided no information about what was
driving bloom dynamics. Microcystis growth is very sensitive to
temperature, with growth beginning in earnest when water
temperature rises to around 20 °C in the summer. Cells also
persist in cooler late-season water by out-competing other algae
for space near the water surface allowing blooms to linger with
little or no growth.4,28,29 To eliminate masking of other
potentially important associations, samples with water temper-
atures less than 20 °C were omitted from further analysis (n =
56). Removing the low-temperature samples allows differences
related to cyanobacteria bloom dynamics, beyond simple
associations with temperature, to emerge during clustering.
Removing data that do not capture the phenomenon of interest is
a common (and necessary) practice when examining non-
stationary, spatially autocorrelated phenomena.30

The LTM data set comprises 167 samples collected across all
sampling locations (Figure 1) between 2006 and 2009. Although
these data are similar to our shorter-term data set, aquatic data
are limited, and sediment anoxia measurements do not exist
(Table 1). As a result, LTM data for the SOM consists of only 5
input parameters: the natural log of DN:SRP, cell counts of
diatoms and green algae [ln(cells/mL)], temperature (>20 °C),
and day of year (as a surrogate for sediment anoxia because day of
year and the depth to dissolved MnII are correlated in our
shorter-term data set, R2 = 0.63).

■ RESULTS
Summary statistics (Table 1) characterize sediment and water
quality and assess cyanobacteria bloom conditions. For this work,
a 1000 Microcystis cells per mL (Figure 2) threshold defines a

bloom. Samples with and without a Microcystis bloom coincide
with lower and higher DN:SRP, respectively. The two samples
(Figure 2) with low DN:SRP values and low cyanobacteria cell
counts occurred in late July 2008 at ∼13:00 h. Samples collected
at ∼20:00 h have similar chemistry but significantly higher
cyanobacteria cell counts, likely an indication of the vertical
migration of Microcystis.
An initial SOM organizes the data into groups approximately

corresponding to bloom and no-bloom (Figure 3a and b). Circles

in Figure 3a identify the final self-organized location of each
sample on the 15 × 15 node output map. This 2-dimenionsal
map visualizes the non-parametric organization/clustering of the
input data and has no physical meaning. Black circles indicate
samples associated with a bloom, while gray circles indicate no-
bloom as defined by the 1000 cell/mL threshold. A second SOM
simulation using the same inputs and settings explicitly forces the

Figure 2. Microcystis cells/mL vs DN:SRP.

Figure 3. (a) Clustered SOM showing the final location of each sample
on the 15 × 15 node output map. Data were directly clustered into 2
groupings, with the separation indicated by the black line. The color of
the circles marking map location of each sample is based on a 1000 cell/
mL threshold. (b) The final location of each sample on the 15× 15 node
output map is marked with a circle sized proportionally to the count of
Microcystis cells/mL. Neither Microcystis cell counts nor toxin
concentrations were included as input data.
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data into two clusters using only two output nodes. The black
line delineates groups determined by the 2-node SOM. Small
squares show unused SOM node locations. Open circles (Figure
3b) identify self-organized samples at the same grid locations as
Figure 3a but are now sized by the natural log of the Microcystis
cell count (cells/mL). All cell counts are plotted as cell count +1
to permit the location of samples with no observed Microcystis
cells to be visualized on a log scale. Note: neitherMicrocystis cell
counts nor toxin concentrations were included as input data
when generating these bloom or no-bloom data clusters.
Weighting the SOM inputs using expert opinion refines the

bloom/no-bloom groupings (Figure 4a and b). The modified

SOM allows users to weight input variables if desired.24 Our two
experts (M.C.W. and G.K.D.) suggested weighting DN:SRP and
the depth to dissolved MnII twice as much as the other variables.
Sample clustering (Figure 4a and b) is similar to the unweighted
clustering (Figure 3a and b), but the SOM bloom/no-bloom
groupings now better correspond to the 1000Microcystis cell/mL
threshold. The black division line is superimposed on the 10 two-
dimensional SOM component planes (Figure 5), showing the

contribution of individual input parameters to the overall
organization of the data. The organization of the SOM output
data (Figure 4) maps identically to the individual values on the
component planes (Figure 5). These component planes enable
observations about the characteristics of the groupings.
Conductivity and turbidity are distributed relatively uniformly
over the map, suggesting little contribution to the clustering. The
bloom cluster comprises a large concentration of the highest
temperatures. The natural log of DN:SRP and the depth to MnII

(the variables more heavily weighted in the analysis) are lower
and higher, respectively in the bloom group.
When the weighted SOM (Figure 4) is applied to the larger,

LTM data set, the same division of bloom/no-bloom groupings
is observed (Figure 6a−c). The final self-organized sample map
locations are labeled with black (bloom) or gray (no-bloom)
circles (Figure 6a) as defined by our 1000 cell/mL threshold
(Figure 2). In general, samples associated with high Microcystis
cell counts (open circles sized by the natural log of Microcystis
cells/mL) cluster to the upper left of the map (Figure 6b). Forty-
four samples with less than 1000 Microcystis cells/mL are
misclassified by the SOM (black circles located to the left of the
solid line). Note: Some samples occupy the same map location
making it appear that there are fewer misclassified samples.
Twenty-one of these misclassified samples were collected in
2007. The black stars (Figure 6c) represent samples collected in
2007, the one year when Missisquoi Bay did not support more
than 1000Microcystis cells/mL, though the water quality data are
more similar to ‘bloom’ conditions.
Figure 7 displays a relationship between available nitrogen and

the composition of phytoplankton in Missisquoi Bay. At low
DN:TN ratios, cyanobacteria at ∼20,000 cells/mL are much
more abundant relative to green algae and diatoms. At higher
DN:TN ratios, green algae and diatoms comprise a larger
fraction of the phytoplankton community.
As an alternative to weighting the SOM input by expert

opinion, regularized discriminant analysis (DA) was performed
(γ = 0.5, ρ = 0.5) to extract the importance (or weight) of input
variables using the canonical coefficients generated during
sample classification into two categories (bloom and no-
bloom). Unlike expert opinion, the DA is a classification tool
that requires a predefined threshold (i.e., cell count) to define a
bloom; we defined this as 1000 Microcystis cells/mL. The DA
misclassifies only 2 of the samples associated with high and low
Microcystis cell counts, while the canonical coefficients show the
DN:SRP ratio and the extent of sediment anoxia contribute most

Figure 4. The same information as in Figure 3, but this SOM weights
DN:SRP and the depth to the dissolved MnII front twice as much as the
other variables on the recommendation of the subject area experts.
Again, neither Microcystis cell counts nor toxin concentrations were
included as input data. (a) SOM output showing the final location of
each sample on the 15 × 15 node output map. Data were explicitly
classified into 2 new groupings with the separation between the
groupings indicated by the black line. The color of the circles marking
map location of each sample is based on a 1000 cell/mL threshold. (b)
The final location of each sample on the 15 × 15 node output map is
marked with a circle sized proportionally to the count of Microcystis
cells/mL.

Figure 5. Component planes corresponding to the SOM results of Figure 4. These show the distribution of each input parameter superimposed on the
final map and the association with the bloom and no-bloom groupings (i.e., division line Figure 4).
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to the discrimination of the bloom and no bloom groupings
(Supplementary Figure S2).
SOM clustering results using the canonical coefficient scores

to weight the 10 input variables of Table 1 are visualized on a 15
× 15 node map (Figure 8a and b). Solid black and gray circles
(Figure 8a) indicate bloom and no-bloom clusters, respectively.
Open circles are sized in proportion to the number ofMicrocystis
cells (Figure 8b).
The results of using the SOM to cluster data into 3 groups are

provided in Figure 8c. The squares (Figure 8d) are sized
proportionally to the measured concentration of toxic micro-
cystins. The three clusters are characterized by samples without a
bloom, samples with cell counts that indicate a bloom yet have no
detectable measured microcystins (i.e., < 0.1 μg/L), and samples
with a bloom and measurable microcystins. Neither Microcystis
cell counts nor toxin concentrations were included as input data.

■ DISCUSSION
TheDN:SRP ratio and the extent of sediment anoxia has a strong
influence on sample groupings with and without a cyanobacteria

bloom. TheN:P ratio has been suggested previously as important
in determining conditions that favor cyanobacteria since many
cyanobacteria are nitrogen fixers or possess other mechanisms
for nitrogen competition.9 Microcystis species, in particular, do

Figure 6. SOM results using the long-term monitoring data. (a) Final SOM showing data clustered into 2 groups, with the groups divided by the black
line. The self-organized samples are superimposed by theMicrocystis cell count. It is important to note thatMicrocystis cell counts were included as input
parameters. (b) This is the samemap as panel a; however, the open circles mark the final location of each sample on the map and are sized proportionally
by the count ofMicrocystis cells/mL associated with the sample. Nearly all of the samples with more than 1000Microcystis cells/mL group together. (c)
Similar to panel b, with black stars indicating samples with <1000 Microcystis cells/mL collected in 2007. Forty-four samples with less than 1000
Microcystis cells/mL were misclassified by the SOM, but 19 of these misclassified samples were collected in 2007, a year that saw no widespread blooms
in Missisquoi Bay.

Figure 7. Phytoplankton abundance as a function of the ratio of
dissolved nitrogen to total nitrogen (DN:TN). Cyanobacteria (as the
sum of Microcystis, Anabaena, and Aphanizominon) are relatively more
abundant at low DN:TN.

Figure 8. SOM output map using input variables weighted by canonical
coefficients generated by discriminant analysis imposing 1000 cells/mL
as the threshold between bloom and no-bloom groupings. Neither
Microcystis cell counts nor toxin concentrations were included as input
data. (a) SOM output with 2 clusters; the black line indicates the
boundary between the discretely clustered samples, with the circles
colored according to the count ofMicrocystis cells/mL. (b) Same map as
panel a with each sample now sized proportionally by theMicrocystis cell
count. (c) SOM output map with 3 discrete clusters delineated in black;
samples in the third SOM generated cluster are marked with white dots.
(d) Squares show the final location of each self-organized sample and are
sized proportionally to the measured microcystin sample concentration.
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not fix atmospheric nitrogen but are capable of adjusting their
buoyancy to allow for vertical migration within the water
column.25−27,31 In this shallow Missisquoi Bay, sampling does
show changes in vertical distribution of Microcystis over time,22

and it is possible that Microcystis avoids N limitation by
descending to the sediment−water interface to take up
ammonium diffusing from anoxic sediments.32 Of the other
dominant cyanobacteria genera observed inMissisquoi Bay, both
Anabaena and Aphanizomenon can fix nitrogen. Figure 7 shows
that cyanobacteria in Missisquoi Bay are more successful than
green algae and diatoms whenDN is a smaller component of TN.
Preliminary analysis indicated that cold-water temperatures

(in early May and late October) dominated the clustering,
masking important information about bloom dynamics. Since
Microcystis cells are active primarily above 20 °C,28 eliminating
cold samples allowed patterns specific to cyanobacteria bloom
dynamics to be extracted, especially those associated with the
intensity and duration of a bloom. Other SOM applications used
to investigate cyanobacteria19,33,34 have also produced strong
seasonal trends in data groupings.
Although not necessary for SOM clustering, the ability to

weight input variables allows users to fine-tune their importance,
when the latter is known. Initially, we did not weight the SOM
inputs; however, subsequent weighting using expert opinion
significantly refined the groupings. We also weighted the input
variables using canonical coefficients from a DA to provide a
more systematic approach when expert opinion is not available;
however, the DA requires a priori distinction of the classes.
Initially, our experts advised weighting DN:SRP and the extent of
sediment anoxia twice as much as the other variables. The
canonical coefficients verified these expert recommendations
(Supplementary Figure S2), and as a result, DN:SRP and MnII

are weighted 2−3 times more than other input variables in the
subsequent SOM clustering. Weighting the SOM input variables
increased our ability to discriminate samples with and without a
bloom relative to clustering methods that do not weight the input
variables.
The sampling design and schedule (multiple depths at

multiple times per day) were intended to capture the diel cycles
ofMicrocystismigrating vertically in the water column at multiple
points throughout the season, and there is likely multiscale
temporal and spatial autocorrelation within the data set, as well
correlation between parameters. This inherent autocorrelation
within and correlation among the input variables makes the non-
parametric SOM an ideal clustering method.
Two biologically meaningfully clusters (i.e., samples with and

without a cyanobacteria bloom) were identified by the SOM.
Prior work suggests cyanobacteria blooms result from in-lake
conditions necessary to sustain a bloom and an environmental
event(s) that can initiate a bloom.35 So, although samples in our
“bloom” clusters indicate the conditions (of those measured)
necessary to sustain a cyanobacteria bloom, they provide little
information about the conditions sufficient to initiate the bloom.
The SOM applied to the LTM data creates two groupings: one
contains samples without a cyanobacteria bloom, and the other
isolates nearly all samples with high counts of Microcystis cells.
However, this later group also contains many samples from 2007,
the season without dominance by cyanobacteria. Since data
clustering was based on only a small number of in-lake
conditions, we cannot speculate about the combination of
events required to initiate a bloom, but the conditions to support
a bloom may have existed.

The SOM component planes allow us to examine the
magnitude of each variable across the output map. The expert
weighted SOM component planes (Figures 4 and 5) show that
low DN:SRP ratios correspond with highMicrocystis cell counts.
Also, we have observed a fairly regular seasonal pattern of
dominance by different phytoplankton taxa in Missisquoi Bay,
with green algae and diatoms dominating the early portion of the
warm season and cyanobacteria dominating later in the season.
The SOM component planes (Figures 4 and 5) suggest that
samples with lower cyanobacteria cell counts clustered with the
bloom may represent one snapshot in time of the community
succession transition. In this same region of the map, the
component planes suggest higher cell counts of green algae and
diatoms.
Microcystis are less dominant in summer blooms than 8−10

years ago, providing evidence that the algal community may be
shifting due to larger processes such as global climate change or
invasive species introduction. Future monitoring should include
metrics that more fully capture climate and the entire biological
community, including zooplankton, at higher temporal reso-
lution. To understand bloom initiation, meteorological data
collection along the shore of Missisquoi Bay and nutrient and
sediment loading data associated with river discharge to the Bay
will be important. Our own observations suggest that extremely
high spring stream flows, the success of cyanobacteria over-
wintering, intensity and frequency of summer storms, wind and
lake circulation patterns, as well as the interactions between
phytoplankton and zooplankton grazers affect bloom initiation
and duration.36 These observations are consistent with recent
papers highlighting the complexity of bloom dynamics,
particularly in the face of global climate change and extreme
weather events.37−40

This data set combines sediment redox chemistry and water
column chemistry. The water column in Missisquoi Bay is
typically, but not always, well mixed. The effects of sediment
anoxia and its control on the flux of biologically available forms of
N and P from the sediment may be felt throughout the water
column in large part because of the vertical mobility of
Microcystis. Although seasonal thermal stratification does not
develop, we intermittently observe anoxic layers a few
centimeters above the sediment−water interface.22 This anoxic
layer could be a valuable source of reduced N for Microcystis
when migrating vertically or for the rest of the phytoplankton if
the water column is suddenly mixed. Since sediment anoxia data
were not available for the LTM data set, the day of year acted as a
surrogate for anoxia intensity. This data-driven approach
demonstrated the transferability of the methodology; keeping
in mind that specific results from statistical methods cannot be
applied directly to other locations.
The modified SOM identified patterns of bloom dynamics

when used in tandem with expert knowledge of local
cyanobacteria behavior and a unique Lake Champlain data set
that paired water quality data with precise sediment redox data.
Clusters of lake samples with input variables weighted by expert
opinion and regularized DA based only on non-cyanobacteria
phytoplankton cell counts, sediment, and water chemistry were
compared to measured Microcystis cell counts. The SOM
successfully mined patterns from this highly dimensional data
producing groupings in concert with expert feedback. The SOM
identified a significant division of samples with and without a
cyanobacteria bloom, corroborating a previously suggested
hypothesis that cyanobacteria growth is sustained by a set of
conditions but requires additional environmental events to
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initiate the bloom. In Missisquoi Bay, low DN:SRP and anoxic
sediment contribute to the set of bloom-sustaining conditions.
Additional environmental drivers are likely required to initiate
the rapid growth of cyanobacteria and cyanotoxin production,
but we currently lack data at the spatial and temporal frequency
necessary to identify these.
Environmental data are often correlated in both space and

time and contain multiple correlated variables, rendering
traditional parametric statistical analyses inappropriate. Complex
systems tools such as the non-parametric clustering algorithm
used here are necessary to mine patterns, determine thresholds,
and understand non-linear relationships. The SOM, in particular,
is useful for organizing data and interpreting the effects of
individual input parameters. In addition, the modified SOM
allows relative weighting of the input parameters, which likely
vary in their effects on cyanobacteria growth. Discerning the
input parameters and their weights is improved by iterative
collaboration between science experts and complex systems
modelers. This research cultivated a positive feedback loop, in
which the original expert-derived hypotheses not only
necessitated modifications and development of new computa-
tional algorithms but also led to more efficient and better-
informed hypotheses, which in turn suggested data gaps as well as
the need for increased spatial and temporal sampling frequency.
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