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Abstract We introduce a new method 

for exploratory analysis of large data sets 

with time-varying features, where the aim is 

to automatically discover novel relationships 

between features (over some time period) that 

are predictive of any of a number of 

time-varying outcomes (over some other time 

period).  Using a genetic algorithm, we 

co-evolve (i) a subset of predictive features, 

(ii) which attribute will be predicted (iii) the 

time period over which to assess the 

predictive features, and (iv) the time period 

over which to assess the predicted attribute. 

After validating the method on 15 synthetic 

test problems, we used the approach for 

exploratory analysis of a large healthcare 

network data set. We discovered a strong 

association, with 100% sensitivity, between 

hospital participation in multi-institutional 

quality improvement collaboratives during or 

before 2002, and changes in the risk-adjusted 

rates of mortality and morbidity observed 

after a 1-2 year lag. The proposed approach is 

a potentially powerful and general tool for 

exploratory analysis of a wide range of 

time-series data sets. 
 

1. Introduction 

The rapid growth of technology has facilitated 

widespread collection and storage of vast amounts of 

time-varying data (e.g. [1]). This data undoubtedly contains 

a wealth of potentially valuable information regarding 

relationships between various time-varying features and 

outcomes.  However, the very size of these databases is an 

impediment to knowledge discovery, creating a need for 

automated exploratory analysis tools. Over recent decades 

the scientific community has expressed an increasing 

interest in knowledge discovery in large databases [4], and 

some exciting progress has been made in this area.  For 

example, a new method for automated discovery of 

non-parametric associations between pairs of variables was 

recently proposed and was shown to discover a wide range 

of functional and non-functional associations [25]. 

However, it would be computationally prohibitive to extend 

this method for discovering multivariate associations.  

In general, large data sets include many features, only a 
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few of which may interact, potentially in very nonlinear 

ways, resulting in some association with other outcome 

features in the data. Thus, identifying the relevant features 

is a critical aspect of knowledge discovery in large data sets. 

Evolutionary algorithms provide a particularly attractive 

approach for feature selection, because they require no 

pre-determination of the number of features in the optimal 

feature subset.  Genetic algorithms (GAs), in particular, 

have been widely and successfully applied for feature 

selection in a variety of problems (e.g., [3], [16], [19], [22], 

[24]). 

However, identifying the correct set of features is only 

part of the challenge in exploratory data analysis. For 

example, one may also need to identify which outcome(s) 

those features are associated with. Indeed, many distinct 

complex relationships between different feature subsets and 

different predicted outcomes may be present in the same 

data set, waiting to be discovered.  The problem is 

compounded with time-series data sets, where there may be 

time-dependent aspects to the association. There are domain 

specific solutions that can address this problem for specific 

tasks ([21], [29], [14]), but developing a general tool that 

can find novel multivariate associations between features in 

time varying data for arbitrary problems is a much bigger 

challenge. 

Our motivation in addressing this problem stems from a 

particular application in the healthcare domain. The 

Vermont Oxford Network (VON) is a non-profit 

corporation dedicated to the mission of improving the 

quality and safety of medical care for newborn infants and 

their families through a coordinated program of research, 

education, and networking of neonatal intensive care units 

(NICUs) at hospitals around the world. Since its inception 

in 1990, the VON has maintained databases with detailed 

information about hospital characteristics, treatments, and 

outcomes for all of the very low birth weight (VLBW) 

infants (birth weight under 1500 grams) treated at member 

hospitals around the world (e.g., [2], [6]-[9], [18], [27]-[28], 

[30]). These data are used to quantify treatment practices 

and risk-adjusted morbidity and mortality for VLBW 

infants treated at NICUs in the VON. While they account 

for only one percent of births, VLBW infants account for 

half of infant deaths in the US each year [17]. A major and 

consistent finding of previous VON database analysis is the 

dramatic variation in outcomes among NICUs, even after 

adjusting for differences in case mix among units [6]-[7], 

[9], [18], [27]-[28], [30]. Differences in hospitals and unit 

characteristics such as teaching status, volume or NICU 
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level also fail to explain the large discrepancies in health 

outcomes [27]. We hypothesize that differences in 

VON-sponsored activities designed to improve healthcare 

practices may account for some of these unexplained 

discrepancies in patient outcomes in VON member 

hospitals. Of particular interest are VON-sponsored team 

quality improvement collaboratives, in which 

interdisciplinary teams from multiple institutions work 

together to identify, test, implement, and report on 

innovative evidence-based treatment strategies [10]-[13], 

[20], [23], [26]. In order to explore this hypothesis, we have 

assembled a large database of VON-sponsored interactions 

among member hospitals between 1995 and 2010. We seek 

to discover novel multivariate associations between 

time-varying VON-sponsored hospital interactions and 

patient outcomes. Discovering such relationships, if they 

exist, could potentially have widespread application to 

managing collaborative healthcare networks, such as the 

VON, that seeks to innovate and spread quality 

improvement practices between hospitals around the world. 

In this paper we propose a genetic algorithm for 

co-evolving four important aspects of exploratory 

multivariate time-series analysis: (i) a subset of features to 

be used as input into some sort of statistical predictor (such 

as a classifier or regression analysis), (ii) which attribute we 

can best predict from these features, (iii) a dividing year that 

partitions the time-series, and (iv) a time lag to be added to 

the dividing year. Fitness is determined by seeing how well 

the values of the selected features before the dividing year 

can be used to predict changes in the selected attribute after 

the dividing year + lag.  In this proof-of-concept study, we 

first validate the approach using synthetic data, and then 

apply the method to a subset of the VON data. 

2. Methods 

We propose a new method that uses a Genetic 

Algorithm (GA) to co-evolve the inputs and output to a 

fitness function based on a statistical predictor, seeking 

causal associations in large time-varying data sets with 

multiple input features and potential prediction attributes.   

In this paper we focus on classification predictors, although 

one could easily employ other types of predictors (such as 

multiple regression).  For brevity, we refer to this method 

as GAMET (Genetic Algorithm for Multivariate 

Exploration of Time-varying data). 

In the general problem, the hypothesis is that there is 

some sort of causal relationship between a set of features 

that affect the value of some outcome attribute over some 

time period in the future.  For example, we hypothesize 

that interactions between hospitals in the Vermont Oxford 

Network (e.g., as evidenced by participation in 

multi-institutional team quality improvement collaboratives, 

co-authored publications, case study presentations, and 

attendance at annual meetings) can influence future health 

outcomes at these hospitals (e.g., probability of patient 

death, infection, or other morbidity).  However, even 

assuming this causal influence is true, there are doubtless a 

number of other (non-VON related) influences that affect 

the healthcare outcomes at these hospitals (see Fig. 1, top). 

Thus, it is not realistic to expect that we will be able to 

predict healthcare outcomes based on knowledge of the 

VON interactions alone.  Furthermore, the number of 

hospitals that actively participate in the more intense types 

of VON interactions (such as team collaboratives and 

co-authorship on scientific studies) is much smaller than the 

number of member hospitals that don't actively participate, 

so these classes are very imbalanced. Consequently, for this 

application we seek to do the prediction in the opposite 

direction (see Fig. 1, bottom). That is, given knowledge of 

time-varying healthcare outcomes at various hospitals, can 

we predict which hospitals actively participated in 

VON-sponsored interactions (even if we cannot determine 

which hospitals did not actively participate)? 
 

(a) 

 
(b) 

 
Fig. 1. a) Hypothesis of causality. b) Inverted hypothesis tested by the 

classifier. 
 

In a problem like this where we hope to infer causal 

relationships, it is important to take the time-varying nature 

of the data into account. For example, if a hospital 

participates in a team collaborative designed to reduce 

infection rates, then one would hope to see infection rates 

decrease at that hospital at some time in the future, although 

there may be a time lag between when the collaborative 

activity took place and when measurable changes in 

infection rate can be detected.  We handle this time 

component by looking at the change in health outcomes, 

averaged before and after a given points in time, relative to 

some ―dividing year‖ and possibly with an intervening time 

lag, and see if we can use this to predict the presumed 

causal attribute (level of participation in VON-sponsored 

activities) before the dividing year (as illustrated in Fig. 2 

for a dividing year of 2004 and a time lag of 2 years).  

Thus, we desire to co-estimate three types of 

information simultaneously: which features to use as input 

to the classifier, what dividing year and lag to use in 

processing the time-series data, and which attribute to try to 

predict. The binary chromosomes used in GAMET thus 

include genes associated with each of these three parts (see 
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Fig. 3). 

 
Fig. 2. Information is extracted and aggregated from the time-series data 

relative to a dividing year (2004, in this example) and lag (2 years, in this 

example). 
 

For feature selection, we are using binary flags that 

indicate whether the given feature is included in the final 

features subset or not. To evolve the time series component 

we evolve the dividing year and lag, both of which are 

represented as gray-coded integers in the chromosome. 

Finally, a gray-coded ―participation index‖ specifying 

which single attribute (from a list of potentially predicted 

attributes) is to be predicted. 
 

 
To calculate the fitness of an individual, we first 

process the data for the included features, using the dividing 

year and lag as described above (labeled as time series 

extraction and aggregation in Fig. 4). We then pass these 

time-processed features as inputs to the classifier, and 

compare the predicted classes to class outcomes of the 

attribute specified by the participation index, averaged prior 

to the dividing year. The data is divided into training and 

testing sets, using a parameter to control the percentage of 

the data used for training (80\% for our experiments). We 

use Latin hypercube sampling to ensure adequate 

distribution of samples in the training and testing sets for 

this highly unbalanced classification problem. After the 

training phase we evaluate the classifier performance using 

the confusion matrix, which shows the number of correctly 

and incorrectly classified samples in each class (see Fig. 4). 

For our VON data set we are using two classes for all 

predicted outputs: a ―positive‖ (P) classification means that 

we are predicting that a particular hospital participated in 

the specified activity before the dividing year, whereas a 

―negative‖ (N) classification means we are predicting the 

hospitals that didn't participate in the specified activity. The 

fitness is calculated using the following formula: 

 
where FP is the number of false positives, TP is the number 

of true positives, FN is the number of false negatives and 

TN is the number of true negatives. The first two terms 

represent the proportion of samples in each class that were 

classified incorrectly, whereas the last term is the proportion 

of the overall misclassified samples. This fitness function 

thus takes into consideration both the overall prediction rate 

and the individual class prediction rates (the latter is helpful 

for unbalanced classes). We would like to note that there is 

some stochasticity involved in the calculation of the fitness 

function (due to the Latin hypercube sampling and any 

stochasticity possibly associated with classifier), which can 

result in slightly different fitness values being evaluated for 

the same chromosome on different occasions.  

We employ two different classifiers in this paper. For 

the synthetically generated data set, we were able to use a 

naïve Bayes quadratic discriminant analysis (DA) classifier.  

However, because the VON data set violated so many 

assumptions of the DA, for this application we used a 

non-parameter counter-propagation artificial neural network 

(CPNN) classifier [5]. The overall architecture of the 

approach, illustrated for the VON data set, is shown in 

Figure 4, where the co-evolved entities are indicated in red. 
 

TABLE 1.  

GA PARAMETERS USED IN THIS STUDY. 

 
 

TABLE 2.  

CPNN PARAMETERS USED IN THIS STUDY. 

 
 

 
Fig. 3. Overall architecture of the approach, illustrated for use with the 

VON data set. Items outlined in red are co-evolved by GAMET. 

3. Experiments 

A. Synthetic data 

In order to test the capability of GAMET for co-evolving 

correct feature sets of varying sizes, attribute to predict, 

year, and lag, we created synthetic data sets for 15 test 

problems, as follows. 



Narine Manukyan et al.: Exploratory Analysis in Time-Varying Data Sets: a Healthcare Network Application. 

International Journal Publishers Group (IJPG) © 

325  

We first generated 5 random "true" combinations of 

dividing year (selected uniformly from 2002..2009), lag 

(selected uniformly from 0..3 years), and index for the 

attribute to predict (selected uniformly from 0..3). We next 

generated 15 random multivariate expression trees in 3 sets 

of varying levels of difficulty; 5 expressions contained 2 

variables, 5 contained 3 variables, and 5 contained 8 

variables.  For each of these 15 test problems, we 

generated a 300×100 matrix of uniformly distributed 

random real numbers in the range (0,1), representing 

synthetic data for 300 cases, each with 100 feature variables 

(e.g., synthetic values for 100 heath outcomes at 300 

hospitals).  The expression trees were generated using a 

function set of {+,-,*,exp, <, >, =} and were constructed so 

as to return binary class outcomes such that at most 2/3 of 

the outcomes had the same value.  

 

The expression trees were generated using a terminal set 

comprising 100 distinct real-valued variables 

(corresponding to the 100 feature columns in the synthetic 

data sets), as well as integer constants {1,2,3}. Each set of 5 

expression trees with the same number of variables was 

associated with the set of 5 combinations of year, lag, and 

index of the attribute to be predicted, created as described 

above. The resulting specifications for these 15 test 

problems are outlined in Table 4, column 2. 
 

For each of the 15 random problems, we then created a 

synthetic 300×128 outcomes matrix, where the 128 columns 

in this matrix correspond to all combinations of 4 possible 

attributes to predict (e.g., synthetic values for participation 

in 4 types of VON-related interactions), 8 possible dividing 

years, and 4 possible lags. All 96 columns in the outcomes 

matrix corresponding to the 3 incorrect attributes to predict 

(for all 8 dividing years and all 4 possible lags) were 

initialized to uniform random binary class outcomes. 

However, the remaining 32 columns associated with the 

correct attribute to predict (for all 8 dividing years and all 4 

lags), were initialized to the "true" predicted binary class 

outcomes associated with the 15 random problems.  
 

These "true" outcomes were calculated by evaluating the 

expression trees using the columns from the synthetic data 

matrix corresponding to the feature variables in the 

expression trees. Lastly, we added noise to 31 of these 32 

columns, proportional to the Hamming distance (H) 

between the 5-bit gray-coded sequences representing their 

dividing years (3-bits) and lags (2-bits) and the 5-bit vector 

representing the ―true‖  dividing year and lag. Specifically, 

we overwrote 30×H bits in each of these columns with 

random binary values. 
 

This algorithm thus creates a synthetic data set that has 

known associations between a subset of feature vectors and 

one of the attributes to predict. By design this relationship 

has a perfect association when the dividing year and the lag 

exactly match the ―true‖ target values, but the level of 

added random noise increases as the dividing year and lag 

get farther from the target values, as one might expect to see 

in real time series data. 

B. VON data set 

1) VON-related interactions: We assimilated a large 

database of VON-facilitated interactions between hospitals 

for the years 1995 through 2010. During this time, the VON 

network grew from around 100 hospitals to 850 hospitals.  

Here, we report on four specific types of VON-sponsored 

interactions: (i) participation in VON annual meetings; (ii) 

preparation of case studies that were presented at VON 

meetings; (iii) participation in VON-sponsored team 

collaboratives, which are 2-year long team projects where 

multidisciplinary quality improvement teams from 

participating hospitals work together to identify and 

implement potentially better health practices, and (iv) 

co-authorship on publications resulting from VON-related 

activities.  It should be noted that the level of participation 

in these four types of interactions is quite variable, with 

many member hospitals not actively participating in any of 

these types of VON-sponsored interactions. On average, in 

any given year only {53.2%, 11.5%, 8.3%, and 21.5%} of 

all VON member hospitals participated in these four types 

of activities, respectively. Thus, although we have 

quantitative information on the amount of participation in 

each of these activities, for this preliminary study we have 

binarized the annual participation in these four types of 

interactions for each member hospital.   Our initial goal is 

to see if changes in health outcomes are associated with any 

level of participation, in any of these types of 

VON-facilitated interactions.  I.e., these four types of 

VON-sponsored interactions comprise four potential 

―attributes to predict‖, where the predicted values are the 

binary classes representing participation or 

non-participation. After the creation of this database, all 

identifying information was removed, to ensure member 

hospital privacy. 

 

2) VON health outcomes:  The VON maintains an 

extensive database of over 200 types of annual health 

outcomes at all member hospitals. In this preliminary study, 

we are focusing on only 18 risk-adjusted measures (see 

table 3) over the period 2001 through 2010, representing the 

health outcomes of over half a million VLBW infants. The 

risk adjusted outcome measures are recorded as observed 

divided by expected values of the outcome, where expected 

values vary with the number of patients at the hospital. 

These particular features were identified by VON staff as 

ones they thought had strong potential to have been 

impacted by VON-related interactions, based on 

collaborative studies they had sponsored during this time 

period.  I.e., we want to see if subsets of these 18 

real-valued features can be used to classify individual 

hospitals as participants or non-participants in any of the 4 

types of VON-sponsored interactions described in Section 

3.B.1. The distribution of health outcomes in the real VON 

data violates assumptions of normality and independence. 

Preliminary testing, using the real VON health outcome 

features described in Section 3.B.2 with synthetically 

generated known associations to class outcomes, confirmed 

that the parametric DA classifier was not able to correctly 

classify known outcomes associated with these data, 
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whereas the non-parametric CPNN was. Thus, as mentioned 

previously, we used CPNN-based fitness in the 

co-evolutionary method applied to the VON data. The data 

provided by VON for use in this study was de-identified to 

protect the confidentiality of patients and hospitals and did 

not include personal patient or hospital identifiers.  The 

protocol for this research was submitted by the Committees 

on Human Research at the University of Vermont and 

determined to be exempt from formal Committee review 

and approval.  
  

TABLE 3. HEALTH OUTCOMES USED AS POSSIBLE FEATURES IN OUR 

ANALYSIS OF THE VON DATA. 

 
 

C. Experimental design 

For the 15 synthetic problems described in Section 3.A 

we ran 10 replicates of the GA, using the DA-based fitness 

function. For the actual VON data described in Section 3.B, 

we ran 10 replicates of the GA, using the CPNN-based 

fitness function.  Because both the DA and the CPNN can 

still classify well even with a certain number of excess 

features given as inputs, we subsequently intersected the 

feature sets of the best individuals resulting from each of the 

10 replicates.  The results of these experiments are 

described in the following section.  

 

4. Results 

In all 10 replications of each of the fifteen 100-feature 

synthetic problems GAMET was able to correctly identify 

the dividing year, lag, which attribute to predict (labeled 

"output"), and all of the 2, 3, or 8 true features (see table 4, 

compare columns 2 and 3), using the DA-based fitness 

function. As the number of true features increased, the 

tendency of GAMET to return excess features also 

increased (see table 4, column 4), since the DA can 

accommodate excess features (but simply not give them 

much weight). 

 

TABLE 4.  

EXPERIMENTAL RESULTS ON THE 15 SYNTHETIC TEST PROBLEMS. 

 
 

However, the intersections of the feature sets in the 10 

replications contained relatively few excess features (see 

table 4, column 5). These results demonstrate that the 

system is able to co-evolve the correct feature subsets, 

correct attribute to classify, correct dividing year, and 

correct lag in time-series data with known relationships 

between input features and attribute to classify. 

  On the VON data set, all 10 runs consistently returned a 

dividing year of 2002, and discovered that participation in 

VON-sponsored team collaboratives was the attribute that 

could most accurately be classified.  In 7 of the 10 runs, 

the lag was determined to be 2 years, whereas in the 

remaining 3 runs the lag was determined to be 1 years.   

The health outcome features selected as input to the 

CPNN-based fitness function were also relatively consistent 

between the 10 runs (see Figure 5).  However, since the 

CPNN can do robust predictions even when given a few 

excess inputs, we then searched for consensus in the 

selected features between the different runs. 

In all cases, the CPNN was able to predict the ―true 

positives‖ in the smaller class (participants) with 100% 

accuracy (i.e., based on the selected health outcomes, the 

CPNN could correctly predict which hospitals had 

participated in a VON-sponsored team collaborative during 

or before the dividing year) (see table 5, column 1).  

However, the classifier was not able to use the selected 

health outcomes to accurately predict the ―true negatives‖ 

(hospitals that didn't participate in any VON-sponsored 

team collaboratives during or before the dividing year) (see 

table 5, column 2).  In other words, the identified classifier 

has high sensitivity, but low specificity. We assessed the 

overall classification accuracy in prediction participation in 

a VON-sponsored team collaborative, using health outcome 

feature sets that included the top n in {4,8,9,11,12,13,16} 

most consistently selected features, based on the consensus 

features selected in {100%, 90%, 80%, 70%, 30%, 20%, 

10%} of the replicates, respectively (i.e., those features 

whose frequency bars are at or above the horizontal dotted 
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lines in Figure 5), using a dividing year of 2002 and a lag of 

2 years. We report the resulting percentage accuracies to the 

right of Figure 5. Four features (5, 6, 8, and 14) occurred in 

the selected features of all 10 replicates, but the highest 

prediction accuracy (33%) was obtained when using the 9 

features (2, 5, 6, 7, 8, 9, 10, 11, 12, 14, and 17) that were 

found in at least 7 of the 10 replicates; this 9-feature set also 

coincides with the best single individual found in the 10 

runs (see Figure 5, red asterisks). The confusion matrix for 

this individual is shown in Table 5. Note that differences in 

these percent accuracies only reflect the differences in the 

specificity of the classifier, since all had perfect sensitivity.  

Conversely, we also found that the overall classification 

accuracy dropped dramatically to only 16%-18% when 

predicting from any 3 of the top 4 features, indicating that 

all four of these are important predictive features. 
 

TABLE 5. CONFUSION MATRIX FOR THE BEST INDIVIDUAL FOUND BY 

GAMET ON THE VON DATA. HERE, ―PARTICIPANTS‖ REFERS THOSE 

HOSPITALS WHO PARTICIPATED IN VON-SPONSORED QUALITY 

IMPROVEMENT COLLABORATIVES DURING OR BEFORE TO 2002. 
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Fig. 4. Experimental results on the VON data set. The bars indicate the 

frequency with which each of the individual features was selected in 10 

GAMET trials.  The red asterisks near the top indicate the features 

selected in the single best individual. 

5. Discussion and Conclusions 

In this paper, we introduce a method for exploratory 

analysis of large data sets with time-varying features. Such 

data sets may contain information about many different 

potential relationships between features and outcomes. The 

aim is to automatically discover novel relationships between 

features (over some time period) that are predictive of any 

of a number of time-varying outcomes (over a different time 

period), but where the specific features, outcomes, and time 

periods are not known in advance.  The application that 

motivated this study concerns exploratory analysis of a 

large healthcare network data set, comprising various types 

of time-varying interactions between subsets of hospitals in 

the Vermont Oxford Network (VON) and a variety of 

annual health outcomes at those hospitals.  

The approach we take uses a Genetic Algorithm for 

Multivariate Exploration of Time-varying data (GAMET), 

in which we co-evolve (i) a subset of health outcomes, (ii) 

one of four types of VON-sponsored interactions to 

consider, (iii) the maximum ``dividing" year up to which we 

consider these VON-sponsored interactions, and (iv) how 

many years’ time lag after the dividing year before which 

we assess changes in the health outcomes.   

We first validated that GAMET was able to select the 

correct features, outcomes, dividing year, and lag in 15 

synthetically designed problems with 2, 3, and 8 

non-linearly interacting features with known associations to 

a specific binary-valued attribute.  For these synthetic 

problems we assessed fitness based on the classification 

accuracy of a naive Bayes quadratic discriminant analysis 

classifier.   

We then conducted preliminary exploration of the 

actual VON data set with 18 potential health outcome 

features, 4 types of VON-sponsored interactions, 8 possible 

dividing years, and 4 possible lags, representing a search 

space of over 33 million possible combinations of solutions. 

Due to the non-parametric nature of this actual data set, we 

assessed fitness based on the classification accuracy of 

non-parametric counterpropagation artificial neural network 

classifier.  In addition, because the participation classes 

were highly unbalanced, we used Latin hypercube sampling 

to determine how to subdivide the data into appropriate 

training and testing sets. 

The strongest association so far discovered by GAMET 

in the VON data set was between participation in 

VON-sponsored team quality improvement collaboratives 

during or before 2002, and changes in the risk-adjusted rates 

of mortality and morbidities including intraventrical 

hemorrhage and pneumothorax (collapsed lung) that were 

observed after 2003 or 2004, relative to these rates during or 

before 2002. Using changes in only 4 health outcomes 

selected by GAMET, we achieved 100% sensitivity in 

predicting which hospitals had participated in these 

collaboratives in 2002 or earlier. The identified lag of 1-2 

years is a reasonable amount of time one would expect such 

changes in health practices to be implemented, and the 

health impacts of these changes observed, in the 

annually-updated health outcome records.   

Our results on the VON data had relatively low 

specificity, however. The best individual returned by 

GAMET was still only able to achieve an overall 

classification accuracy of 33%, because the classifier was 

not able to accurately predict which hospitals had not 

participated in VON-sponsored interactions during or before 

2002, based on the changes in health outcomes after 2003 or 

2004.  This result is actually to be expected, because there 

are many changes in healthcare practices at VON member 

hospitals that were independent of participation in 

VON-sponsored activities (and are consequently not in our 

database) that are expected to contribute to changes in 

health outcomes. 

Having established proof-of-concept for the method, we 

now plan to apply GAMET to a more complete set of health 

outcome features and VON-sponsored interactions aimed at 
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stimulating improvements in healthcare practices.  We will 

then more closely examine the specific nature of the 

relationships embedded in the associations discovered by 

GAMET. For example, we intend to use genetic 

programming (GP) for symbolic regression, using 

GAMET-selected features as variables in the GP terminal 

set (much as in [3]). 

We can also envision many ways in which to improve the 

GAMET algorithm itself. For example, since the two types 

of classifiers employed here (the DA and the CPNN) can be 

trained to ignore excess features, the features selected by 

GAMET also contained excess features. Consequently, we 

applied a post-processing step to further reduce the final 

feature sets, by looking for features common to the selected 

feature sets from different GAMET replicates. Others have 

reported promising results in GA-based feature selection by 

actually embedding set intersection directly into the 

crossover operator [3], [15]. Although we found that strict 

set intersection was too aggressive in reducing features in 

the VON application, we plan to explore whether a 

probabilistic application of a ―softer‖ form of multiset 

intersection (i.e., including all elements that occur in a 

certain percentage of parents) in multiparent crossover 

could help improve feature selection in GAMET, and 

therefore preclude the need for the post-processing of 

multiple replicates, as done here.  In addition, the current 

version of GAMET only allows for the evolution of a single 

dividing year. We plan to explore whether it may prove 

more powerful to apply the evolved lag directly to the 

hospital-specific years of participation for selected types of 

VON interactions. 

Although the proposed method was originally developed 

for analysis of the VON healthcare network data set 

described here, the GAMET approach is a potentially 

powerful and general tool for exploratory analysis of a wide 

range of time-series data sets. Future work will include the 

application of GAMET to time-vary problems in a variety 

of other domains (such as those in [1]). 
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