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[1] This work contributes a combination of laboratory-
based aquifer tracer experimentation and bias-aware
Ensemble Kalman Filtering (EnKF) to demonstrate that
systematic modeling errors (or bias) in source loading
dynamics and the spatial distribution of hydraulic
conductivity pose severe challenges for groundwater
transport forecasting under uncertainty. The impacts of
model bias were evaluated using an ammonium chloride
tracer experiment conducted in a three dimensional
laboratory tank aquifer with 105 near real-time sampling
locations. This study contributes a bias-aware EnKF
framework that (i) dramatically enhances the accuracy of
concentration breakthrough forecasts in the presence of
systematic, spatio-temporally correlated modeling errors,
(ii) clarifies in space and time where transport gradients are
maximally impacted by model bias, and (iii) expands the
size and scope of flow-and-transport problems that can be
considered in the future. Citation: Kollat, J. B., P. M. Reed,

and D. M. Rizzo (2008), Addressing model bias and uncertainty in

three dimensional groundwater transport forecasts for a physical

aquifer experiment, Geophys. Res. Lett., 35, L17402, doi:10.1029/

2008GL035021.

1. Introduction

[2] Eigbe et al. [1998] provide an excellent review of
groundwater applications of the linear Kalman Filter (KF)
as well as the extended KF for nonlinear systems. The
review highlights that very few studies exist for three-
dimensional groundwater flow-and-transport applications
due to these problems’ high-dimensional, nonlinear state
spaces (i.e., heads and concentrations) and their consequent
computational barriers. KF encompasses a general class of
time-controlled state estimators that account for both pro-
cess noise, and measurement noise simultaneously [Grewel
and Andrews, 1993]. The KF proceeds iteratively in two
steps: (i) a time update (or forecast) that projects the state
and error covariance of the system ahead in time, and (ii) a
measurement update that corrects the estimate and its
associated error covariance by assimilating noisy measure-
ment data. The use of extended Kalman filters for nonlin-
ear groundwater flow-and-transport applications has been
limited by a curse of dimensionality largely associated
with the groundwater head and contaminant covariance

matrices as well as the computational burden and nonlinear-
ity posed by the transport problem.
[3] These challenges have presented themselves in several

scientific domains and motivated [Evensen, 2003] to for-
mulate the EnKF framework for nonlinear oceanographic
applications. The EnKF is well suited to high dimensional
state spaces where traditional Kalman filtering performs
poorly in terms of its accuracy and computational complex-
ity. This study contributes a combination of numerical and
physical three-dimensional aquifer modeling to test a com-
putationally efficient formulation for a bias-aware EnKF.
The overall goal of this work is to minimize the computa-
tional demands associated with the bias-aware EnKF to
provide high fidelity groundwater contaminant forecasts
that account for measurement uncertainties and dynamic,
spatiotemporally correlated model errors. This study pro-
vides the first demonstration of the effectiveness of bias-
aware filtering for fully three-dimensional groundwater
transport. In the broader geophysical research context, this
work uses physical tank aquifer modeling to highlight that
typical sources of model bias in subsurface chemical trans-
port forecasts yield severe, spatiotemporally complex
impacts on predictions. The experimental tank aquifer test
case shows that unknown historical dynamics (e.g., con-
centration source terms, recharge, or discharge) coupled
with hydrogeologic uncertainties will severely limit our
predictions of groundwater or chemical fluxes across mate-
rial or process interfaces. This poses a significant challenge
to future water cycle research and motivates the need for
advances in groundwater transport forecasting [see National
Research Council, 2004, 2008].

2. Physical Aquifer Experiment

[4] The University of Vermont (UVM) (see Figure 1)
scaled physical aquifer transport experiment was constructed
using layered porous media within a 254-cm wide� 356-cm
long� 243-cm high tank constructed using a steel frame and
panels. Constant head inlet and outlet reservoirs (7.6-cm
wide) are located at opposite ends of the tank to control the
tank’s hydraulic gradient. Five layers of sand and silt media
were carefully packed into the tank in 3-cm lifts. A
suspended catwalk was used during the placement of media
to ensure an even media distribution and packing.
[5] A network of 21 wells constructed from 5.08-cm

polyvinyl chloride (PVC) pipe were distributed throughout
the tank. Each well was screened (10-cm) at four depths
along its vertical axis. Five sensors were placed along each
well (one within each media layer) for a total of 105 sensors.
Sensors at each location included a Time Domain Reflec-
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tometer (TDR) for measuring concentration data, a thermo-
couple, and a pressure transducer.
[6] An ammonium chloride tracer was injected through

sampling port B4 (see Figure 1) at an average concentration
of 1 g-L�1 and a rate of 1.5 L-hr�1 over a 15-day period.
Concentration data were collected at the 63 sampling ports
in layers 3 through 5 over a 19-day period at 17.5 minute
intervals.
[7] The temporal variability and systematic increasing

trend in the source term’s loading dynamics (see Figure 2a,
port B4) provides a severe test of the bias aware EnKF
formulation proposed in this paper. The complex loading
history for port B4 would not be known in typical ground-
water transport applications and would be modeled (as we
have done) with a simplified source loading history within
the MT3DMS transport model. Additionally, despite signif-
icant experimental effort spent in characterizing the hydrau-
lic conductivity fields in the tank using slug and pump tests,
the fine sand lens in the center of the flow field served as a
second major source of bias. The fine lens has substantial,
fully three-dimensional effects on the spatiotemporal tracer
breakthroughs that are also not captured in the MT3DMS
simulation.

3. Bias-Aware Ensemble Kalman Filter

[8] Using similar notation to Evensen [2003], the bias-
aware version of the EnKF uses N ensemble members to
update n modeled states based on m observations for the kth

time step. The ensemble of model (y) and bias (h) states are
defined as:

A ¼ Ay

Ah

� �
¼ y1

h1

� �
;

y2

h2

� �
; . . . ;

yN

hN

� �� �
2 <2n�N : ð1Þ

[9] The mean of A (denoted as �A) is obtained through
multiplication with the matrix containing 1/N as its ele-
ments. The ensemble perturbations of A are found from A0 =
A � �A, and the covariance of A is found from P = A0(A0)T/
(N � 1). During a forecast step, (f) the bias portion of the
state ensemble is updated using equation (2)

A
f
h;k ¼ LkA

a;f
h;k�1 þ dhQh;k ; ð2Þ

where Lk describes the time correlation of the model bias,
Qh is an ensemble of independent sources of zero-mean,
spatially correlated noise on the bias states, and dh is a
scaling factor on this noise. The prior bias state Ah,k�1 may
either be based on a forecast (f) or update (a). Once the bias
state is forecast, the ensemble of tracer concentration states
is forecast using equation (3)

A
f
y;k ¼ A

a;f
y;k�1 � A

f
h;k þ dyQy;k ; ð3Þ

where Qy is an ensemble of independent sources of zero-
mean, spatially correlated noise on the model states, and dy
is a scaling factor on this noise. Notice that equation (3)

Figure 1. Diagram of the UVM physical tank experiment’s dimensions, media layering and average calibrated K values,
sensor and well locations, and constant head reservoirs.
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fully incorporates the bias state forecast into the model state
forecast (referred to as full feedback [Drecourt et al.,
2006]). When observations are available, the ensemble of
bias states can be updated based on those observations.
First, a subset of updated bias states is calculated as the
difference between the observations and the model state
forecasts at the observation locations. However, since m, the
number of observations is typically much fewer than n,
the number of model states, a Gaussian model is fit to the
covariance structure of the bias obtained at the m observa-
tion locations. A contribution of this work is to spatially
condition the mean bias field and its covariance on observed
modeling errors using Sequential Gaussian Simulation
(SGS) [Deutsch and Journel, 1998]. The bias present at
the observation locations is used to conditionally simulate

an ensemble of bias states at all n model state locations.
Equation (4) is used to update the ensemble of bias states,Ah,

Aa
h;k ¼ LkA

f
h;k�1 þ ð1� LkÞWk ; ð4Þ

where Lk again describes the time correlation of the model
bias, and W is the simulated ensemble of bias states based
on the newly available observations. Our Bayesian condi-
tioning of the mean and covariance of the bias field
substantially improves the spatial representation of system-
atic model errors and takes advantage of observations to
permit more advanced representations of the spatial
anisotropy of model error fields. It is interesting to note
that equation (4) provides a mechanism for analyzing three-
dimensional time varying maps of how transport gradients
impact prediction errors. These maps can provide a unique

Figure 2. (a) Tracer breakthrough curves associated with the sampling ports in layer 4 plotted as normalized concentration
versus time for the model, observed, and filtered concentration time-series. (b) BT curves associated with the tracer source
location (port B4) for the various assimilation cases (2-hrs, 6-hrs, 12-hrs, and 24-hrs) where the gray shading represents one
standard deviation above and below the ensemble mean. (c) Normalized tracer concentration (C/C0) maps (two top views of
the layer 4 and layer 3 sampling ports, a side view along the center of the tank, and a 3-dimensional view) provided by the
model at t = 13-days. In addition, the coloring of the sampling ports indicates observed C/C0 concentrations at this time
step. Also shown are the numerically modeled mean tracer concentration at t = 13 days. (d) Mean filtered maps for
assimilation every 2-hrs at t = 13 days (formatted similarly to Figure 2c for comparison).
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mechanism for evaluating changes or improvements in the
forward model’s process formulations. Once the bias en-
semble has been reinitialized, the model states are updated
using the analysis approach of Evensen [2003]. Under the
ensemble formulation, random, zero-mean perturbations
based on the assumed observation error are used to obtain
an ensemble of observations D with perturbations �. The
covariance of the perturbations is then described by R =
��T/(N � 1). The Kalman Gain matrix, K, which can be
thought of as a blending factor to minimize the a posteriori
error covariance of the filter [Grewel and Andrews, 1993], is
then calculated using equation (5)

Kk ¼ P
f
kH

T ðHP
f
kH

T þ RkÞ�1; ð5Þ

where P is the forecast covariance of the state ensemble, H
is a measurement operator that maps the m observation
locations onto the n model states, and R is the covariance of
the observation noise ensemble. K is a 2n � m matrix where
the first n rows represent the model state (y) portion of A
and the last n rows, the bias state (h) portion of A. Finally,
the state ensemble is updated using equation (6)

Aa
y;k ¼ A

f
y;k þKðDk �HA

f
y;kÞ; ð6Þ

where Ak
f is the state forecast and Ak

a, the updated or
analyzed state. The updated covariance of A is then found
from the forecast covariance using equation (7)

Pa
k ¼ ðI�KkHÞPf

k : ð7Þ

4. Computational Experiment

[10] The tracer experiment was modeled in MODFLOW
[Harbaugh et al., 2000] and MT3DMS [Zheng and Wang,
1999] using a grid resolution of x = 35 cells (dx = 7.837-cm),
y = 50 cells (dy = 7.874-cm), and z = 33 cells (dz ranging
from 7.3-cm to 5.08-cm) for a total of 57,750 model cells.
No flow boundary conditions were established at the bottom
and sides of the tank and constant head boundary conditions
of 203.2-cm at the inlet and 200.6-cm at the outlet reservoirs
were established.
[11] A separate, non-point source ammonium chloride

tracer test (1 g-L�1) was used to calibrate MODFLOW
and MT3DMS for the tank. Tracer breakthrough curves for
the sampling ports in all media layers were fit simulta-
neously using PEST 10.2 [Doherty, 2006] by adjusting
hydraulic conductivity (K), porosity, and dispersion to
minimize the RMSE between observed and modeled trans-
port. The calibrated K values were used as conditioning
points for simulating multiple realizations of the K-field
using SGS. This provides a distribution of hydraulic con-
ductivity fields, in turn providing an ensemble of transport
model realizations to be used within the ensemble frame-
work of the filter.
[12] Since the media in the tank was layered during

construction, the K-field of each media layer was condi-
tionally simulated individually to eliminate SGS smoothing
effects. The flow realizations were used in MT3DMS to
model 100 realizations of the tracer transport over time steps

of 8.1 minutes and two stress periods (3330 steps of tracer
injection and 209 steps with no tracer) for a total simulation
period of 20 days. Longitudinal dispersivities ranged from
6.44 cm in the course sand layer to 0.44 cm in the silt layer
and the dispersivity ratios (relative to longitudinal) used in
the transverse and vertical directions were 0.17. The diffu-
sion coefficient was specified as 1 � 10�4, and a Courant
number of 0.9 was used to minimize numerical dispersion.
An initial tracer concentration of zero was assumed
throughout the domain.
[13] An ensemble size of 100 realizations was used for

the EnKF. To enhance the computational efficiency of the
EnKF, a filtering subdomain was defined at a courser
resolution of 588 cells bounding the simulated regions with
non-zero tracer concentration within the overall numerical
model grid containing 57,750 cells. The filtering subdomain
was defined to have at least one grid cell between every cell
containing observation points in all three dimensions to
support spatial evaluation of the filter. The time correlation
factors, L for the bias forecast and reinitialization were set
to 99-percent. The spatially correlated noise fields, Qh and
Qy were generated for the filtering subdomain using a
Gaussian covariance model with sill = 1.0 and range =
5 cells. These fields were then scaled using noise scaling
factors (db and dm) of 15-percent. The noise applied to the
observations was normally distributed random noise with
mean 0 and standard deviation 0.05 to represent approxi-
mately 5-percent error. The filter was then run for the full
19-day experiment with varying assimilation intervals.
Filter forecasts were conducted at intervals of 2-hrs while
observation assimilation was conducted at intervals of 2-hrs,
6-hrs, 12-hrs, and 24-hrs for four separate test cases. The 2-hr
forecast, 2-hr assimilation is defined as the maximum data
case, meaning that the filter was used to forecast the tracer,
and then was immediately updated in the same time step with
the observation data. For the 24-hr case, 12 forecasts
occurred before the filter was updated using the observa-
tions at the 24th hour.

5. Results and Discussion

[14] Figure 2 shows that the bias-aware filtering is able to
effectively capture complex tracer loading behavior, reduce
errors due to the spatial distribution of hydraulic conduc-
tivities (i.e., the fine sand lens), and resolve advective
gradients not captured in the original MODFLOW/
MT3DMS simulation. It should be noted that complex
contaminant source histories are rarely known and represent
a very large source of model bias when simplified source
area dynamics are assumed.
[15] Figure 2a shows the tracer breakthrough (BT) curves

associated with the sampling ports in layer 4 plotted as
normalized concentration versus time. The green line indi-
cates the modeled BT curve, the blue dots represent ob-
served concentration, and the ensemble means from the
bias-aware filter assimilation cases are portrayed using a red
color scale. Dark red lines represent the maximum data case
(assimilation every 2-hrs) and the light pink lines represents
the minimum data case (assimilation every 24-hrs). Without
bias awareness, the model would require reinitialization
after each assimilation step, resulting in costly Monte Carlo
simulations of the groundwater flow and transport models.
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[16] Figure 2a demonstrates that by modeling the bias,
the filter can effectively correct for large systematic model
errors. If this were not done, the filter would quickly track
back to the modeled BT curves whenever an observation
was not available. Figure 2b shows the BT curve associated
with the tracer source location for each of the assimilation
rates (2-hrs, 6-hrs, 12-hrs, and 24-hrs). The gray shading in
these plots represents one standard deviation above and
below the ensemble mean. Figure 2b shows that the
complexity of source loading history is a significant source
of error in the model. In addition, Figure 2b shows a clear
increase in uncertainty as the time between data assimilation
is increased from 2-hrs to 24-hrs. However, it is interesting
to note that even for the minimal data case (assimilation
every 24-hrs), the observed tracer concentration is always
captured in the range of the bias aware filter’s projected
uncertainty ranges without the need to reinitialize and rerun
the full Monte Carlo ensemble.
[17] The mean tracer concentration maps of the numerical

model are shown in Figure 2c for t = 13-days. Four different
views of the tracer plume are shown in Figure 2c: (i) an X-Y
slice through the layer 4 sampling ports, (ii) an X-Y slice
through the layer 3 sampling ports, (iii) a Y-Z slice (side
view) through the center of the tank, and (iv) a 3-dimen-
sional view of the tracer plume. The coloring of the maps is
based on the normalized tracer concentration (C/Co) where
red indicates maximum concentration and blue indicates
concentration below the detection limit. The coloring of the
sampling ports indicates observed normalized tracer con-
centrations at this time step. Figure 2c shows that the
numerical model fails to capture the true behavior of the
plume because the sampling ports in layer 4 indicate low
tracer concentration at the leading edge of the plume and the
sampling ports in layer 3 indicate low tracer concentration
at the source region of the plume. The impact of the fine-
sand lens in the center of the tank results in significant
systematic errors in the spatial and temporal contaminant
BT behavior for the tracer. However, Figure 2d provides the
mean filtered maps of the maximum data case (forecasts
following by assimilation every 2 hours) at t = 13 days. The
maps in Figure 2d indicate that bias-aware assimilation of
observations is far more effective for capturing the experi-
mental observations for the system. Not only are the obser-
vation locations appropriately corrected by the filter, but the
spatially adjacent locations are improved as well. The effect
of the fine sand lens is shown in these maps as a build-up of
tracer developing at the source edge of the lens, and
subsequent movement down and through the lens (as would
be expected when hydraulic conductivity decreases at a
boundary).

6. Conclusions

[18] The water cycle research community has highlighted
that uncertainties in the subsurface [Loescher et al., 2007]
and frameworks for improving flux predictions are top
research needs [National Research Council, 2008]. This
work contributes a combination of laboratory tracer experi-
ments and numerical modeling to clearly demonstrate that
commonly occurring limitations in our knowledge of his-
torical dynamics (source loading in this study) and subsur-

face flow properties yield severe sources of model bias,
even for a well characterized sand-dominated laboratory
system. Using a 19-day ammonium chloride tracer experi-
ment, this study shows that filtering systematic model errors
in groundwater transport predictions separately and allow-
ing them to feed back to concentration predictions yields
enhanced forecasting accuracy while eliminating the need to
reinitialize and rerun forward model ensembles. Conse-
quently, this work considerably expands the size and scope
of groundwater flow-and-transport problems where the bias-
aware EnKF can be applied. It would be expected that the
need for and value of the bias-aware EnKF framework will
only increase for more complex field environments. As our
ability to predict multi-process flow-and-transport at water-
shed scales advances [Kollet and Maxwell, 2008], the bias-
aware EnKF framework presented in this study can transform
observation networks and forecasting frameworks to better
account for limits in our knowledge of the subsurface.
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