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Abstract

In a previous article, I developed, and demonstrated with simulations, an analytical approach for predicting and analyzing
effects of press (step-function) perturbations on food chains [Ecol. Model. 171 (2004) 21]. The method allows explicit variation
of the functional dependence connecting trophic levels. Here I extend that analysis to perturbations sinusoidal in time. The
sinusoid partially bridges the gap between the idealized press-type experiment (which assumes initial and final steady states,
but is doubtful experimentally) and a totally dynamic situation (which is daunting analytically but closer to reality). I find that
the effect of a sinusoidal perturbation is to multiply the previous press result by a factor that diminishes both up and down the
food chain. The factor depends on perturbing frequency approximately as 1/(1+ (ωτi)

2)1/2, whereτi is the characteristic time of
affected leveli. This frequency-dependent diminution is another potential reason why bottom-up and top-down cascade effects
are hard to detect.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In a food chain, the trophic cascade (TC) refers
to the change in the stock of one trophic level when
the stock of another trophic level is changed. In
Herendeen (2004)I showed that reasonable variation
in the functional dependence connecting trophic levels
in a food chain yields widely varying bottom-up and
top-down outcomes for press-perturbed food chains.
In particular, stock changes can be large or vanish-
ingly small depending on parameters reflecting the
degree of prey and predator dependence. For example,
the same system (i.e., as characterized by the same
parameters), can show strong bottom-up effects and
weak top-down effects, or with different parameters,
can show the opposite. Both of these combinations
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have been seen experimentally (Carpenter et al., 1996
andDyer and Letourneau, 1999, respectively).

In this paper, I extend chain analysis to include per-
turbations sinusoidal in time. Transient and asymptotic
oscillatory response are both included. I will show
that compared with a press (i.e., a constant perturba-
tion), a sinusoid in time should produce a more severe
diminution of effect with increasing trophic distance
from the perturbed level.

I investigate a sinusoidal perturbation for two rea-
sons:

1. At least one observed trophic cascade (McLaren
and Peterson, 1994; Post et al., 1999) is claimed to
derive from periodic forcing.

2. As discussed inHerendeen (2004), many trophic
cascade experiments are dynamic (intentionally
or not); therefore dynamic analysis is appropriate.
A pure sinusoid is a dynamic perturbation that is
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tractable analytically. It is a conceptual opposite of
the press (step function). With a press, the system
starts and ends, hopefully, in steady states. With a
sinusoid, the system starts at steady state and ends
by oscillating indefinitely.

The paper is organized as follows.

Section 2. Motivation: a potentially sinusoidal sys-
tem.

Section 3. Extending the press analysis to the dy-
namic regime.

Section 4. Response of a three-level food chain to a
sinusoidal perturbation.

Section 5. Comparison with simulation results.
Section 6. Conclusions.

2. Motivation: a potentially sinusoidal system

A sinusoidal perturbation is suggested by the
wolf-moose-fir tree system in Isle Royale, Michigan.
The data ofMcLaren and Peterson (1994)seemed
to show oscillations. The authors’ interpretation was
that the wolves were oscillating for reasons exoge-
nous to the trophic cascade, and that the moose and
fir responded in a lagged fashion. LaterPost et al.
(1999) presented evidence that this system is driven
by winter snow depth: increased depth causes wolves
to hunt in larger packs and limits moose’s mobility,
resulting in higher kill rates. Snow depth is correlated
with the North Atlantic Oscillation, a quasi-periodic
climatic variation with a period of roughly 50 years.

Another possibility is that a system oscillates nat-
urally because of internal dynamics. Then the TC is
problematic to define because there is neither a unique
initial state nor a unique perturbation. This was re-
cently suggested for the Ilse Royale system (Post et al.,
2002; Vucetich et al., 2002).

From Fig. 1 ofPost et al. (1999), I measure the
fractional changes in the three stocks as:

Fir: ±0.57 (period 20 years)
Moose: ±0.29 (period 21 years)
Wolf: ±0.40 (period 21 years)

For fir, this is measured as width of annual growth
ring, which the authors assume is proportional to that
year’s fir needle stock. The latter is less than the total
fir tree biomass stock. The data are somewhat out of

phase, but it appears that the signs of the changes agree
with the trophic cascade’s prediction of alternating
signs in successive levels down the food chain.

3. Extending the press analysis to the dynamic
regime

The basic question is how periodic effects propagate
through a food chain. Assume a food chain ofk trophic
levels, as shown inFig. 1. (Table 1contains definitions
of all symbols.)

For each level i, the general, non-steady-state
biomass energy conservation equation is:

INPUTi = METMORTi + CROPPINGi + INPUTi+1

+dSi
dt

(1)

where INPUTi is energy flow into leveli resulting
from preying upon leveli − 1, METMORTi is en-
ergy flow out of leveli resulting from metabolism and
non-predation mortality, CROPPINGi is energy flow
out of level i resulting from cropping (if negative, it
represents stocking), INPUTi+1 is energy flow out of
level i resulting from predation by leveli + 1, Si is
energy stock in leveli.

Eq. (1) is identical to that used for press analysis
except for the addition of the time derivative. The
time independent equation is analyzed in detail in
Herendeen (1995, 2004)and will be glossed over here.
I will consider three perturbations over time: changes
in CROPPING, changes in RESOURCE (light or nu-
trient), or changes in functional dependence. I assume
that the latter is given byBi(Si, Si−1) = bi(function
of Si andSi−1).

With perturbations,Eq. (1)becomes

�INPUTi = �METMORTi +�CROPPINGi

+�INPUTi+1 + d�Si
dt

(2)

For small changes

Li
�Si−1

Si−1
+Mi

�Si

Si
+N

�Si+1

Si+1

= �CROPPINGi − INPUTi
�bi

bi

+ INPUTi+1
�bi+1

bi+1
+ Si

d�Si/dt

Si
(3)
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Fig. 1. Food chain. The arrows are biomass energy flows, plus metabolic heat loss in METMORT. Trophic level increases to the right.

where

Li ≡ INPUTi
∂Bi

∂Si

Si−1

Bi

Mi ≡ INPUTi

(
1 + ∂Bi

∂Si−1

Si

Bi

)

− INPUTi+1
∂Bi+1

∂Si

Si

Bi+1
− METMORTi

Ni ≡ −INPUTi+1

(
1 + ∂Bi+1

∂Si+1

Si+1

Bi+1

)
(4)

All quantities in Eq. (4) are evaluated at the original
steady state. Let us streamline the notation by defining
stock-normalized quantities li = Li/Si, mi = Mi/Si,
ni = Ni/Si, and δi = Si/Si.

Then Eq. (4) becomes

liδi−1 +miδi + niδi+1 − dδi
dt

= −l1�RESOURCE

RESOURCE
+ �CROPPINGi

Si

− INPUTi
Si

�bi

bi
+ INPUTi+1

Si

�bi+1

bi+1
(5)

In Eq. (5) all three types of perturbations appear.
Level 0 is interpreted as resource, an independent vari-
able. Then δ0 = 0 and the resource term appears as a
perturbation for i = 1.

These equations for i = 1, . . . , k can be written in
matrix form as

Aδ
¯
− dδ

¯
dt

= P (6)

where A is a matrix containing the l, m, and n, and
δ
¯

is a vector of the fractional stock changes. P
¯

, the

perturbation vector, contains the terms on the right
hand side of Eq. (5). In Herendeen (1995, 2004), P

¯was assumed to be time independent
A is related to the community matrix used in an-

alyzing the generalized Lotka–Volterra equations by
Bender et al. (1984) and Case (2000, pp. 345–367) The
complete solution to Eq. (6) is the sum of the comple-
mentary and a particular solution (Spiegel, 1958).

3.1. Complementary solution

Aδ
¯
− dδ

¯
dt

= 0

Assume δ
¯
= δ

¯0eλt . Then

Aδ
¯
− λIδ

¯
= 0 (7)

where I is the identity matrix. λ is obtained by solving
det(A− λI) = 0.

This is a generalized eigenvector problem; λ can
have real and imaginary parts, corresponding to expo-
nentials and sinusoids in time. Standard stability anal-
ysis requires that the real part of all λ be negative; this
assures that the system is at a stable steady state ini-
tially, that it “could exist,” and implies (but does not
assure) that the system will not crash when perturbed.
The δ

¯
that satisfy Eq. (7) are the eigenvectors of A;

they can be complex, the real and imaginary parts indi-
cating the relative phases of the δi. Because of the par-
ticular form of A here (nearest neighbor interactions),
and because typically mi and ni are negative and li is
positive (but not always; see Appendix A), the roots
are of the form λ = −|real| or −|real| ± imaginary,
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Table 1
Symbols and terms used

Symbol Description Units

A
i

Matrix of l, m, n Energy time−1 energy−1

bi Time-dependent parameter in Bi Dimensionless
Bi Feeding input (per unit stock) to

level i as function of Si and Si−1

Energy time−1 energy−1

ci Parameter in Bi Dimensionless
CROPPINGi Exogenous removal from level i Energy time−1

Prey dependence INPUTi is functionally dependent only on Si−1

Predator dependence (also called
interference dependence)

INPUTi is functionally dependent only on Si

Ratio dependence INPUTi is functionally dependent only on (Si−1/Si)
fbui δi/δi−1 (for bottom-up effect) Dimensionless
ftdi δi/δi+1 (for top-down effect) Dimensionless
INPUTi Feeding input to level i Energy time−1

I Identity matrix Dimensionless
j j = √−1 Dimensionless
k Number of trophic levels in food chain Dimensionless
Li, Mi, Ni

a Coefficients characterizing
relationship between δi; function
of initial flows and of prey and
interference derivatives

Energy time−1

li, mi, nia li = Li/Si, etc. Energy time−1 energy−1

METMORTi Metabolic and non-predation loss from level i Energy time−1

P
¯

Most general perturbation vector Energy time−1 energy−1

qi Parameter expressing degree of prey dependence Dimensionless
ri Parameter expressing degree of interference Dimensionless

Prey derivativeia
∂Bi

∂Si−1

Si−1

Bi
= qi

(
ci

ci+1

)
Dimensionless

Interference (predator)
derivativeia

∂Bi

∂Si

Si

Bi
= −ri

(
ci

ci+1

)
Dimensionless

RESOURCEi Resource (light or nutrient) level; affects level 1 only vary depending on resource
(eg. light intensity, nutrient
concentration)

Si Stock of level i Energy
u
¯

Constant vector Energy time−1 energy−1

V Matrix of normalized eigenvectors of A Dimensionless
αi Relative abundance of level i’ s prey Dimensionless
β δi−1/δi for an infinite chain of identical levels Dimensionless
δi �Si/Si (�Si = change in Si) Dimensionless
λ Eigenvalue of A Time−1

τi Characteristic time of level i (=|1/mi |) Time
µi METMORTi/Si (assumed constant) Energy time−1 energy−1

ω Frequency of sinusoidal perturbation Time−1

a Quantities are evaluated at initial steady state.

indicating that the solutions are declining exponen-
tials or damped sinusoids. In time these will die out,
as can be seen in the graphs in Herendeen (2004)
for a press. However, if all the mi = 0, which holds
for Lotka–Volterra type predation in an initially un-
cropped system, at least some of the roots are pure
imaginary or have positive real parts, yielding persis-

tent oscillations or an exponential crash. (There is an
exception to this statement for k = odd, as described
in Table 2.)

Form the matrix V containing the normalized eigen-
vectors of A in each column. A is diagonalizable; then

δ
¯
= V êλtV−1δ

¯0c
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Table 2
Aspects of solutions to Eq. (9) for press and sinusoidal perturbations

Functional relationship Perturbation type

Press (step function) Sinusoidal

Ratio-dependent predation (mi 	= 0) Transients can occur but die out. Steady state
develops. A−1 exists and yields the asymmetric
results found in Herendeen (1995), e.g., that for
bottom-up perturbation, the δi are equal in sign
and approximately equal in magnitude, while for a
top-down perturbation, the δi alternate in sign and
diminish by approximately an order of magnitude
for each additional trophic level up from the
perturbed level.

Transients can occur but die out.
System oscillates at driving
frequency. (A− jωI)−1 yields
frequency-dependent δi. Finite
resonances can occur. With
increasing frequency, both top-down
and bottom-up effects decrease.

Lotka–Volterra functional dependence,
special case of prey-dependent
predation (mi = 0)

For all k (=number of trophic levels), transients
persist and may mask the steady-state response or
lead to crash. If k = even: A−1 exists, so a unique
steady-state response is possible for an arbitrary
perturbation, except for masking by transients. If k
= odd: A−1 does not exist, so a unique
steady-state response to an arbitrary perturbation
is impossible, with one exception. Because A has
one root = 0, a press perturbation proportional to
the corresponding eigenvector will produce a
steady-state response with no oscillations.

A−1 always exists. Transients persist
and beat against driving frequency, or
can lead to a crash. (A− jωI)−1 gives
frequency-dependent δ, and exhibits
unbounded resonances. With increasing
frequency, both top-down and
bottom-up effects decrease.

In all cases, the boundary condition is that δ
¯
= 0 (i.e., system is at steady state) at t = 0.

ê�t is a diagonal matrix and δ
¯0c is the initial value

of δ
¯
.

3.2. Particular solution

By the assumption of linearity, a response to per-
turbations to RESOURCE, CROPPING, and the bi is
a sum of the response to the individual perturbations.
For clarity, we look at a single-level perturbation to
CROPPING or bi with sinusoidal time dependence.

3.3. Perturbation to CROPPING

Let us assume a sinusoidal perturbation =
�CROPPINGi/Si = ejωtu

¯
, where u

¯
is a constant vec-

tor with units of time−1, and j ≡ √−1. I use complex
notation for conciseness, but it should be understood
that it is always the real part that is observed. Then
the particular differential equation is

Aδ
¯
− dδ

¯
dt

= ejωtu
¯

(8)

To solve, assume δ
¯p

= δ
¯0pejωt . Substituting this in

Eq. (8) gives

δ
¯0p = (A− jωI)−1u

¯
The sum of complementary and particular solutions

is

δ
¯
= V êλtV−1δ

¯0c + ejωt(A− jωI)−1u
¯

Originally the system is at steady state, so the
boundary condition is that δ

¯
= 0 at t = 0. This dic-

tates the value of δ
¯0c Then the complete solution for

a sinusoidal perturbation is

δ
¯
= (−V êλtV−1 + ejωtI)(A− jωI)−1u

¯
(9)

Table 2 gives details about solutions to Eq. (9) for
ratio-dependent and Lotka–Volterra predation.

In the limit of the driving frequency, ω = 0, after
transients have died out, the steady-state problem to
solve is

δ
¯
= A−1u (10)

The approach was applied to a press perturbation
by Bender et al. (1984), and by van den Berg (1998),
Schmitz (1997), and Yang and Sykes (1998), and is
discussed in Case (2000).
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3.4. Perturbation to bi (e.g., change in wolves’
ability to prey on moose)

Following from Eq. (5), a perturbation to bi must
directly affect both levels i and i− 1, so the simplest
possible perturbation is

ejωt




...

...

�bi

bi

INPUTi
Si−1

−�bi

bi

INPUTi
Si

...

...







...

...

i− 1

i

...

...




(11)

(A− jωI)−1 = 1

det(A− jωI)



(m2 − jω)(m3 − jω)− l3n2 −(m3 − jω)n1 n1n2

−(m3 − jω)l2 (m1 − jω)(m3 − jω) −(m1 − jω)n2

l2l3 −(m1 − jω)l3 (m1 − jω)(m2 − jω)− l2n1


 (12)

4. Response of a three-level system to a sinusoidal
perturbation

This method can be applied to a system with any
number of trophic levels. Later in this section I treat
an infinitely long chain, but for clarity I here consider
a three-level food chain. For this system,

A =

m1 n1 0

l2 m2 n2
0 l3 m3




The eigenvalues are obtained by solving det(A −
λI) = (m1 − λ)(m2 − λ)(m3 − λ)− (m1 − λ)l3n2 −
(m3 − λ)l2n1 = 0, i.e.,

λ3 − (m1 +m2 +m3)λ
2 + (m1m2 +m2m3

+m1m3 − l2n1 − l3n2)λ− (m1m2m3

− l2m3n1 − l3m1n2) = 0

Stability in the usual sense requires that the real
parts of all three λ < 0. By the theory of equa-
tions, the sum of the roots is (m1 + m2 + m3), the

product is (m1m2m3 − l2m3n1 − l3m1n2), and the
sum of the pairwise products is (m1m2 + m2m3 +
m1m3 − l2n1 − l3n2). Because l, m, and n are real,
a necessary and sufficient condition for stability
is:

1. (m1 +m2 +m3) < 0,
2. (m1m2 +m2m3 +m1m3 − l2n1 − l3n2) > 0, and
3. (m1m2m3 − l2m3n1 − l3m1n2) < 0.

One can see that a pure Lotka–Volterra system,
for which all mi = 0, is unstable. Similarly, ra-
tio dependence, for which typically all li > 0,
mi < 0, and ni < 0 (see Appendix A), yields
stability.

Now consider ω 	= 0. det(A − jωI) = (m1 −
jω)(m2 − jω)(m3 − jω) − (m1 − jω)l3n2 − (m3 −
jω)l2n1, and

For example, assume a sinusoidal cropping pertur-
bation applied to the middle level:

P
¯

= ejωt




0

1

0


 .

The entries in column 2 of Eq. (12) give the rela-
tive magnitudes of the after-transient sinusoidal re-
sponse. As in Herendeen (1995), define the bottom-up
factor fbu3 = δ3/δ2, and the top-down factor
ftd1 = δ1/δ2.

fbu3 = δ3

δ2
= − l3

(m3 − jω)
,

with magnitude =
∣∣∣∣ l3m3

∣∣∣∣ 1√
1 + ω2/m2

3

ftd1 = δ1

δ2
= − n1

(m1 − jω)
,

with magnitude =
∣∣∣∣ n1

m1

∣∣∣∣ 1√
1 + ω2/m2

1

(13)
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For ω = 0, Eq. (13) reduces to what Herendeen
(1995) found for a press perturbation: fbu3 = −l3/m3
and ftd1 = −n1/m1. This shows the asymmetric nature
bottom-up and top-down response to a press. However,
as ω increases from 0, both fbui and ftdi are multiplied

by the factor 1/
√

1 + (ω2/m2
i ). This factor has the

same form up as well as down the chain, indicating that
frequency dependence causes a diminution of effect
above and below the perturbed level. For an infinite ω,
this factor is 0, and the influence of the perturbation’ s
effect stops at level i.
mi = Mi/Si is a flow divided by a stock and has

dimensions of time−1. Let |mi| = 1/τi, where τi is
the characteristic time of level i. Then the diminution
factor is

1√
1 + (ωτi)2

(14)

Here τi = Si/Mi is defined in metabolic terms:
energy stock divided by energy flow. By Eq. (4), how-
ever, Mi is not simply INPUTi, and it can approach 0,
resulting in a large τi. The details of Eq. (4) must be
examined to determine how large τi can be, and there-
fore how likely is a detectable frequency-dependent
effect. An extreme example occurs for the top trophic
level, for which, if initially uncropped, INPUTi =
METMORTi, Mi = INPUTi(∂Bi/∂Si)(Si/Bi), and
therefore τi is inversely proportional to interference
in that level. If there is little interference, τi can be
many times larger than Si/INPUTi. To use an ex-
treme example, for a typical affluent adult human, S
is roughly 10 kg carbohydrate equivalent, and INPUT
1 kg per day. S/INPUT is then 10 days, but interfer-
ence between affluent humans for food is essentially
0, giving a nearly infinite τ. On the other hand, per-
haps the characteristic time is a reproductive one, with
τi ≈ 25 years for humans. The issue of appropriate τ
deserves more study.

By assumption a perturbation to RESOURCE di-
rectly affects only level 1 and gives fbus comparable
to fbu3 found above. For a perturbation to b3, i.e., to
the functional form of predation by level 3 on level 2,
we use Eqs. (11) and (12) to obtain

ftd1 = − n1

(m1 − jω)

fbu3 = [(m1 − jω)l3/S2] + [(m1 − jω)(m2 − jω)/S3] − (l2n1/S3)

[(m1 − jω)(m3 − jω)/S2] + [(m1 − jω)n2/S3]

(15)

In Eq. (15) we see that the top-down effect from
level 2 to level 1 is identical to the case where only
level 2 was perturbed (Eq. (13)), and ftd1 vanishes for
large ω. On the other hand, fbu3 does not approach
0 as ω → ∞; rather, it approaches −S2/S3. This is
reasonable; the perturbation to b3 affects both levels 2
and 3 in a reciprocal manner. In Section 5 the predic-
tions of Eqs. (13) and (15) are compared quantitatively
with simulation results.

The specific frequency dependence described here
for a three-level system also applies to a general k-level
system. Besides using matrix inversion, one can also
show this by applying the explicit algebraic approach
of Herendeen (1995), noting that every equation in that
paper can be used here by substituting Mi − jωSi for
Mi. For example, we can calculate the ratio of succes-
sive δi for an infinite chain of identical compartments
(identical l, m, n). For levels distant from the pertur-
bation, by translational symmetry we expect the ratio
of successive δi to be a constant.

Then

lδi−1 + (m− jω)δi + nδi+1 = 0

becomes

lβ2 + (m− jω)β + n = 0 (16)

where β≡δi−1/δi, independent of i. Solving Eq. (16)
gives

β = m− jω

2l

[
−1 ±

√
1 − 4nl

(m− jω)2

]

Being careful regarding signs when taking the
square root and assuming that nl 
 m2, we obtain
the limiting cases for fbu and ftd given in Eq. (13).

The asymptotic response to a sinusoidal perturba-
tion, which is steady oscillation, depends on both ini-
tial stocks and flows. This contrasts with the asymp-
totic response to a press, which is a steady state and de-
pends only on the flows. The ratio li:mi:ni (=Li:Mi:Ni)
determines how a press is passed on. Additionally,
it is the relative sizes of mi (=Mi/Si=1/τi) and ω

that determines how a sinusoid is passed on. Because



136 R.A. Herendeen / Ecological Modelling 177 (2004) 129–142

the τi can vary among trophic levels, there is
often quantitative asymmetry in the frequency
dependence.

5. Comparison with simulation

For this purpose, I use the same functional form as in
Herendeen (2004), a Holling Type 2 pattern that shows
feeding saturation with infinite prey abundance, with
abundance defined in terms of both prey and predator
densities.

Bi = INPUTi
Si

= INPUTi,0
Si,0

bi(ci + 1)αi
(ci + αi)

(17)

where αi ≡ “abundance” ≡ (Si−1/Si−1,0)q /(Si/Si,0)r

The subscript “0” refers to the initial steady state,
where all αi = 1. If qi = 0, level i is totally insensi-
tive to abundance of prey. If ri = 0, level i is totally
insensitive to interference. qi = ri = 1 defines ratio
dependence. For c → ∞, Lotka–Volterra and pure
donor and recipient control forms occur for particular
q and r. For Eq. (17),

prey derivativei ≡ ∂Bi

∂Si−1

Si−1

Bi
= qi

(
ci

ci + 1

)

interference derivativei ≡ ∂Bi

∂Si

Si

Bi
= −ri

(
ci

ci + 1

)
(18)

These derivatives go into the l, m, and n.
Let us look at the three-level food chain of Fig. 2

under two types of sinusoidal perturbation:

PHOTOSYN

360,000

324,000

PROD

10800

32,400

HERB

7200

3240

CARN

2520

36,000 3,600

360

Fig. 2. A hypothetical three-level food chain at initial steady state.
Numbers in compartments are stocks (unit: energy). Other numbers
are flows (unit: energy per week). PROD = producers (level 1),
HERB = herbivores (level 2), CARN = carnivores (level 3).

1. changed cropping of level 2,
2. change in b3,

for two types of functional dependence:

1. ratio-dependent predation (all ci = qi = ri = 1),
2. approximately Lotka–Volterra functional depen-

dence (all ci = 1E12 (approximating), all qi = 1,
all ri = 0.1 (approximating D 0 but assuring
stability)).

The simulation is performed using the software
Stella 3.0.7 (High Performance Systems, Hanover,
NH). The following relationships connect the stocks
(units = energy) and the flows (units = energy/time);
all are determined from Fig. 2.

METMORT (metabolic loss and non-predation
mortality):
METMORTi = µiSi, with µi = 30, 4.5, and

9/7 per week, respectively for i = 1, . . . , 3.

INPUT:
INPUTi/Si = INPUTi,0/Si,0(ci + 1)αi/(ci +
αi), with INPUTi,0/Si,0 =
100/3, 5, and 10/7 per week.

Level 1: α1 (“abundance” ) = (1)/(S1/S1,0).
There is no change in resource.

Levels 2 and 3: αi = (Si−1/Si−1,0)/(Si/Si,0).
Results are shown in Figs. 3–6, as follows.

Ratio-dependent predation

Perturbation to level 2:

Fig. 3: simulation result for a press pertur-
bation (ω = 0) and sinusoidal cropping
perturbations of two frequencies. These
frequencies are chosen to demonstrate
an increasing effect.

Fig. 4a: comparison of calculated and
simulated results.

Perturbation to b3:

Fig. 4b: comparison of calculated and
simulated results (no simulations are
shown).

Approximately Lotka–Volterra functional depen-
dence

Perturbation to level 2:
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Fig. 5: simulation result for a press per-
turbation (ω = 0) and sinusoidal crop-
ping perturbations of two frequencies.

Fig. 6a: comparison of calculated and
simulated results.
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Fig. 3. Ratio dependence (all ci = qi = ri = 1): response of three-level food chain of Fig. 2 to perturbation to level 2, herbivores.
Amplitude of perturbation is same in all cases. (a) press (step function), (b) sinusoid, ω = 1 per week, (c) sinusoid, ω = 2 per week.
τi = |1/mi| = 0.066, 0.44, 1.75 week for levels 1–3.

Perturbation to b3:

Fig. 6b: comparison of calculated and
simulated results (no simulations are
shown).
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Fig. 3. (Continued ).

5.1. Ratio dependence

Fig. 3a shows that for the press, after transients have
died out, levels 2 and 3 have roughly equal fractional
stock changes, so fbu3 = 1.29. Level 1 experiences a
much smaller fractional stock change, opposite in sign:
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Fig. 4. Ratio dependence (all ci = qi = ri = 1): comparison of calculated (smooth curve) and simulated (points) |ftd1| and |fbu3| for
sinusoidal perturbation to three-level food chain in Fig. 2. (a) Cropping perturbation to level 2. Note different axes for ftd1 and fbu3. (b)
Perturbation to b3, the strength of the feeding relationship of level 3 on level 2.

ftd1 = −0.14. Both of these results are expected for
ratio dependence (Herendeen, 1995). As the perturb-
ing frequency increases (Fig. 3b and c),after transients
have died out, the response of all levels decreases, but
more importantly, the response of levels 1 and 3 de-
creases relative to that of level 2.
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Fig. 4a and b show the frequency dependence of
|ftd1| and |fbu3| calculated from Eqs. (13) and (15)
and from the simulations. (I use the absolute values
because the sign is ambiguous as phase lags change
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Fig. 5. Approximately Lotka–Volterra functional dependence (ci = 1E12, qi = 1, ri = 0.1): response of three-level food chain of Fig. 2 to
perturbation to level 2, herbivores. Amplitude of perturbation is same in all cases. (a) press (step function), (b) sinusoid, ω = 1 per week,
(c) sinusoid, ω = 2 per week. τi = |1/mi| = 0.3, 2, 7E12 week for levels 1–3.

for ω 	= 0.) The agreement between theory and simu-
lation is excellent, even though the simulated system
is nonlinear and the perturbation was large enough
to induce large changes (e.g., δ2 ≈ −0.4). The small
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Fig. 5. (Continued ).

disagreement for ω < 4 per week is due to nonlinear-
ity, as it disappears for a perturbation 1/100th as large
as used here. Fig. 4a shows that with a perturbation
to level 2, both |ftd1| and |fbu1| decrease towards 0
with increasing ω, indicating the qualitative symme-
try of the frequency-dependent effect. However, one
can see that |fbu3| diminishes much more rapidly with
frequency than does |ftd1|. This quantitative asymme-
try is expected because of the different values for τi
(0.067, 0.44, and 1.75 week for levels 1–3). These
times imply that transients will die out in ≈5 weeks,
which is observed in, e.g., Fig. 3a.

Fig. 4b illustrates the result of perturbing b3. |ftd1|
decreases towards zero, but |fbu3| approaches a limit-
ing value of 2.86 (=S3/S2) for large ω, as predicted
by Eq. (15).

5.2. Approximately Lotka–Volterra functional
dependence

As mentioned, this deviates from a pure Lotka–
Volterra system in that the ri = 0.1, not 0. This is
necessary to avoid crash or endless oscillation. In ad-
dition, this system is initially cropped, which also vi-
olates the “pure” Lotka–Volterra assumption.

Fig. 5a shows that for the press, after transients have
died out, levels 1 and 2 have roughly equal fractional

stock changes, both much smaller than the change in
level 3. Thus we have ftd1 = −0.89, and fbu3 = 42
(Eq. (14) gives 1E13; linearity breaks down for such
large changes.). As the perturbing frequency increases
from zero to 0.5 per week (Fig. 5b and c), the responses
of levels 1 and 2 increase, allowing one to see more
clearly that they have approximately the same mag-
nitude, while that of level 3 decreases. As frequency
increases further, all decrease.

Fig. 6a and b show the frequency dependence of
|ftd1| and fbu3| calculated from Eqs. (13) and (15) and
from the simulations. The agreement between theory
and simulation is excellent, even though the perturba-
tion was large enough to induce large changes (e.g.,
δ3 ≈ −0.3). Fig. 6a shows that with a perturbation
to level 2, both |ftd1| and fbu3| decrease towards 0
with increasing ω, again indicating the qualitative
symmetry of the frequency-dependent effect. Again,
fbu3 diminishes much more rapidly with increasing
frequency than does |ftd1| because of the differ-
ent values for τi (0.3, 2.0, and 7E12 (!!) week for
levels 1–3).

Fig. 6b illustrates the result of perturbing b3. |ftd1|
decreases towards zero. |fbu3| decreases from a value
of 10.12 for ω = 0, dips to 1.75 for ω = 3 per week
and then approaches a limiting value of 2.86 (=S3/S2),
as predicted by Eq. (15).
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Fig. 6. Approximately Lotka–Volterra functional dependence (ci = 1E12, qi = 1, ri = 0.1): comparison of calculated (smooth curve) and
simulated (points) |ftd1| and |fbu3| for sinusoidal perturbation to three-level food chain in Fig. 2. (a) Cropping perturbation to level 2. Note
different axes for ftd1 and fbu3. (b) Perturbation to b3, the strength of the feeding relationship of level 3 on level 2.

6. Conclusions

An analytical method has been developed for inter-
preting and predicting the effects of period i.e. per-
tubations on food chains. Its predictions agree well
with results from simulation of a model three-level
ecosystem. This verifies the hypothesis that, compared
with a press, a sinusoidal perturbation produces addi-
tional diminution of effect with increasing trophic dis-
tance from the perturbed level. This adds to the many
possible reasons for the observed varying strength of
top-down and bottom-up effects in ecosystems, espe-
cially to the absence of top-down effects.

Appendix A

l, m, and n (calculated using Eqs. (4) and (18) and Fig. 2) and eigenvalues of A for the ratio-dependent and app-
roximately Lotka–Volterra cases analyzed here. These are stable. The pure Lotka–Volterra case, which is unsta-
ble, is included for comparison

Level c q r l (per week) m (per week) n (per week) τ (=|1/mi |)
(week)

Eigenvalues of
A (per week)

Stability under
simulation?

Ratio dependence
1 1 1 1 16.67 −15 −1.67 0.067 −0.67, −14.66, −2.49 Stable
2 1 1 1 2.5 −2.25 −0.25 0.444
3 1 1 1 0.714 −0.57 −0.143 1.25

A subsequent article will apply the method here and
in Herendeen (2004) to experimental results.
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Appendix A (Continued )

Level c q r l (per week) m (per week) n (per week) τ (=|1/mi |)
(week)

Eigenvalues of
A (per week)

Stability under
simulation?

Pure Lotka–Volterra
1 1E12 1 0 33.33 −3.33E−6 −3.33 3E5 0.13, 0.007 ± j4.17 Unstable
2 1E12 1 0 5 5E−7 −0.5 2E6
3 1E12 1 0 1.43 0.143 −0.143 7

Approximately Lotka–Volterra
1 1E12 1 0.1 33.33 −3.33 −3 0.3 −0.13, −1.85 ± j3.66 Stable
2 1E12 1 0.1 5 −0.5 −0.45 2
3 1E12 1 0.1 1.43 1.43E−7 −0.143 7E6
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