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s u m m a r y

Watershed managers and planners have long sought decision-making tools for forecasting changes in
stream-channels over large spatial and temporal scales. In this research, we apply non-parametric, clus-
tering and classification artificial neural networks to assimilate large amounts of disparate data types for
use in fluvial hazard management decision-making. Two types of artificial neural networks (a counter-
propagation algorithm and a Kohonen self-organizing map) are used in hierarchy to predict reach-scale
stream geomorphic condition, inherent vulnerability and sensitivity to adjustments using expert knowl-
edge in combination with a variety of geomorphic assessment field data. Seven hundred and eighty-nine
Vermont stream reaches (+7500 km) have been assessed by the Vermont Agency of Natural Resources’
geomorphic assessment protocols, and are used in the development of this work. More than 85% of the
reach-scale stream geomorphic condition and inherent vulnerability predictions match expert evalua-
tions. The method’s usefulness as a QA/QC tool is discussed. The Kohonen self-organizing map clusters
the 789 reaches into groupings of stream sensitivity (or instability). By adjusting the weight of input vari-
ables, experts can fine-tune the classification system to better understand and document similarities/dif-
ferences among expert opinions. The use of artificial neural networks allows for an adaptive watershed
management approach, does not require the development of site-specific, physics-based, stream models
(i.e., is data-driven), and provides a standardized approach for classifying river network sensitivity in var-
ious contexts.

� 2009 Elsevier B.V. All rights reserved.
Introduction

Stream adjustments in response to watershed stressors of vary-
ing types, magnitude, duration, and periodicity result in degraded
surface water quality, loss of agricultural lands, damaged infra-
structure, and mobilization of phosphorus and other sediment-re-
lated pollutants. Modeling such complex instability is difficult
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because of process lag times, threshold relationships, and cumula-
tive effects operating over broad and variable spatial and temporal
scales (Jacobson et al., 2001). Community stakeholders and ecosys-
tem managers are, thus, faced with the challenge of integrating
data from disparate sources regarding the geomorphic condition
and instability of their waterways. Assimilation of climatologic,
geologic, and anthropogenic data is required over variable tempo-
ral and spatial scales to simulate the complex, nonlinear processes
inherent in channel dynamics at the watershed or basin scale.
Huge public investments in time and resources would be required
to develop and apply traditional physics-based models. We exam-
ine here the use of artificial neural networks (ANNs) as an alterna-
tive to conventional hydrologic models to help stakeholders make
stream management decisions. ANNs, used in this work to predict
channel conditions (e.g., instability), offer many advantages,
including the ability to accommodate both large amounts of spatial
and temporal data, as well as multiple data types (i.e., remote sens-
ing, quantitative field data, qualitative rankings, etc.). It also pro-
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vides a standardized, expert-trained approach for classifying the
sensitivity of river networks in various contexts (erosion hazard
mitigation, habitat restoration and conservation).

Background

Watershed managers and planners have long sought decision-
making tools for forecasting changes in stream-channels over large
spatial and temporal scales. In an attempt to resolve and avoid con-
flicts between human stressors and natural fluvial processes, the
Vermont Agency of Natural Resources (VTANR) has developed
stream geomorphic assessment protocols (Kline et al., 2006a,b)
that identify stream-reach susceptibility to lateral and vertical
adjustment. VTANR combines components and theory from several
nationally recognized stream geomorphic classification systems
(e.g., Montgomery and Buffington, 1997; Rosgen, 1994; Rosgen
and Silvey, 1996; Schumm, 1977) to capitalize on, or work around,
what each system communicates or fails to communicate (Simon
et al., 2007). In so doing, they combine components of the Rosgen
stream classification system with Montgomery and Buffington
(1997) to describe the role of both stream form and process when
defining channel susceptibility. Components of the Schumm
(1984) and Simon and Hupp (1986) channel evolution models, in
turn, help capture the temporal and spatial sequence of vertical
and lateral channel adjustments in response to natural or human
stressors. Watershed stressor-response models (i.e., Schumm,
1977) hypothesize that a stressor of given type, magnitude, and
duration will cause a river system to move out of a state of dy-
namic equilibrium by exceeding vertical and lateral threshold(s)
for adjustment (Bull, 1979; Harvey and Watson, 1986). The chan-
nel will then adjust its slope, width/depth relationships, roughness
factors, and velocity, in interdependent ways, to regain equilibrium
(Leopold, 1994). Even when the stressor duration is relatively brief
(hours to months), channel adjustments can play out over several
years to decades, or longer (Schumm, 1977). In the VTANR ap-
proach, sensitivity ratings are assigned to streams in the context
that some streams, due to their setting and location within the wa-
tershed, are more likely to be in an episodic, rapid, and/or measur-
able state of adjustment.

In summary, the VTANR stream classification system uses a set
of broad descriptors and ratios that, together, characterize: (1)
stream–floodplain relationships, (2) drivers and quantity of sedi-
ment transport, (3) channel boundary resistance, and (4) hydro-
logic runoff characteristics. In addition to increasing knowledge
of the physical processes and features shaping a watershed, the
VTANR protocols examine the risk of stream adjustment when
deciding how to best protect, manage, and restore watershed re-
sources, while balancing the needs for economic development.

Stream sensitivity

VTANR stream sensitivity is defined as the likelihood of a
stream responding, through lateral and/or vertical adjustment, to
a watershed or local disturbance, caused by natural events and/
or human activity. This sensitivity is a function of (1) the stream’s
inherent susceptibility to adjustment (hereafter referred to as
stream inherent vulnerability) and (2) its geomorphic condition.
The classification maintains the distinction between channel inher-
ent vulnerability and its sensitivity, i.e., its fluvial erosion hazard rat-
ing. Inherent vulnerability is the susceptibility of a reach to lateral
and vertical adjustment as determined by the inherent characteris-
tics and boundary conditions of the reach including its geologic,
vegetation, and valley dimension parameters. Thus, a channel
may be absent of stressors and in dynamic equilibrium, but may
still be highly sensitive to adjustment due to its high inherent
vulnerability.
Geomorphic condition is correlated to observations of stream
adjustment, i.e., degree of departure from dynamic equilibrium. A
stream’s sensitivity may be heightened when human activities/
stressors alter the characteristics that influence a stream’s natural
adjustment rate; these characteristics include boundary condi-
tions, sediment and flow regimes, and the degree of confinement
within the valley. Streams with low geomorphic condition scores
are currently in adjustment (e.g., degradation or aggradation) and
may become acutely sensitive. For example, a stream that is ac-
tively incising is at greater risk of further adjustment, given addi-
tional stressors, than a similar stream with no evidence of incision.

The majority of watersheds have experienced multiple stressors
(of varying types, magnitude, duration, and periodicity) at multiple
locations (of varying extent), especially over recent centuries of hu-
man habitation. These effects overlap in time and space and man-
ifest themselves in specific channel morphology at specific
watershed locations. ANNs are highly parallel, nonparametric, sta-
tistical methods that are ideally suited to model these dynamic and
multiple-stressor, multiple-response river network systems with-
out the constraints typically associated with traditional parametric
statistical techniques (e.g., normal distributions and continuous
variables).

Hierarchical artificial neural networks for examining stream
sensitivity

In this research, two types of ANN algorithms are used in hier-
archy to assimilate large amounts of multiple data types to predict
stream channel conditions for use in fluvial hazard management
decision-making. This hierarchy consists of supervised counter-
propagation ANNs that predict geomorphic processes scores
(Fig. 1a–d), geomorphic condition scores (Fig. 1e), and inherent
vulnerability categories (Fig. 1f), and an unsupervised Kohonen
self-organizing map ANN that clusters sensitivity to adjustments
(Fig. 1g). A variety of reach- and watershed-scale field geomorphic
assessment data and expert knowledge are used as inputs. The
model is hierarchical in that output from each ANN module pro-
vides hydrologic information that is used as inputs to other ANN
modules, and may be analyzed individually by experts to address
objectives other than stream sensitivity. This ANN hierarchy: (1)
provides a standardized, expert-trained approach for classifying
the sensitivity of river networks in various contexts; (2) documents
the weights experts place on various parameters when classifying
stream geomorphic condition, inherent vulnerability, and overall
sensitivity at the reach-scale; and (3) is data-driven, and therefore
does not require the development of site-specific, physics-based
stream models, or expert system if–then–else rules. The ANN sys-
tem architecture is sufficiently flexible to allow for its continual
update and refinement in light of new and expanded understand-
ings of fluvial geomorphology. However, as a data-driven method,
ANN predictions are only as good as the information provided to
them, stressing the need for accurate and reliable expert assess-
ments. Their use has potential to save time and resources, while
enabling a truly adaptive management approach.

ANN training algorithms fall into one of two categories:
supervised and unsupervised learning. Both are used in this work.
Supervised algorithms (i.e., counterpropagation) are used to map
non-linear relationships between input predictor variables and
known output responses, and make up the majority of ANNs in
use today. These ANNs iteratively adjust their behavior (internal
weights) to better match the known response, similar to a teacher
providing feedback to students on their performance. The most
popular supervised algorithms include the feed-forward back-
propagation network (Rumelhart and McClelland, 1988) and the
radial basis function neural network (Bashkirov et al., 1964). The
selection of the information-passing structure, number of layers



Fig. 1. System of hierarchical ANNs used to predict stream geomorphic condition and inherent vulnerability as well as categorize stream sensitivity to adjustment processes.
ANN predictions channel (a) degradation, (b) aggradation, (c) widening and (d) plan-form change scores are used as inputs to the (f) geomorphic condition ANN. Outputs from
the (e) geomorphic condition and (f) inherent vulnerability ANNs are used as inputs to the (g) stream sensitivity SOM. These outputs are used by the SOM ANN to cluster
stream sensitivity.
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and nodes, nodal activation functions, and internal weight-adjust-
ment algorithms create numerous types of ANNs. For a concise
introduction to ANNs, see Wasserman (1989) or Negnevitsky
(2005). Govindaraju (2000) provides a good review of supervised
ANNs used in a variety of water resource engineering applications.

In contrast, unsupervised ANNs (i.e., Kohonen self-organizing
map) autonomously analyze inherent dataset properties using in-
put data only. They are used primarily to extract relationships
when the response (or output) classification is unknown. Although
unsupervised (Hebb, 1949) and competitive training (Grossberg,
1972; Malsburg, 1973) algorithms had been previously developed,
it was not until Kohonen (1989) merged these concepts into the
self-organizing map (SOM) that unsupervised algorithms became
useful to practitioners.

In this work, we use supervised counterpropagation ANNs to
predict stream geomorphic condition (Fig. 1e) and inherent vulner-
ability (Fig. 1f) in tandem with an unsupervised SOM to cluster and
visualize stream sensitivity relationships (Fig. 1g).

Counterpropagation ANNs
The supervised counterpropagation algorithm has found uses in

a wide range of applications, including the classification of soil
samples (Fidencio et al., 2001), the assessment of ecological status
and prediction of ecosystem water quality (Park et al., 2003b),
modeling of nonlinear pH-processes (Nie et al., 1996), prediction
of spatial and temporal rainfall variation (Hsu et al., 1995; Hsu
et al., 1999), and stream flow prediction (Chang and Chen, 2001).
Rizzo and Dougherty (1994a,b) and Besaw and Rizzo (2007) mod-
ified the counterpropagation network to accommodate large
amounts of spatially auto-correlated data for subsurface character-
ization applications and conditional simulation. Underwood and
Rizzo (2003) and Doris et al. (2004) used this modified counter-
propagation network to classify stream geomorphic condition.

Fig. 1a–d provides schematic counterpropagation ANNs for each
of the four geomorphic processes (aggradation, degradation, wid-
ening, and plan-form change) that combine to predict the reach-
scale geomorphic condition (Fig. 1e). Inputs to these four ANNs
consist of reach-scale channel observations and characteristics
(e.g., incision ratio, entrenchment ratio, channel slope and bed
material, etc.). The outputs are geomorphic scores on a scale from
0 to 20 as developed by the VTANR (0–5 for poor, 6–10 for fair, 11–
15 for good and 16–20 for reference). The geomorphic condition
ANN (Fig. 1e) outputs geomorphic condition rating (0–1) to reflect
reference, good, fair and poor conditions.

Counterpropagation is also used to predict the stream’s inher-
ent vulnerability (Fig. 1f) using six input variables (number of
channel threads, entrenchment ratio, width/depth ratio, sinuosity,
channel slope and bed material). Outputs from the geomorphic
condition and inherent vulnerability ANNs are then used as inputs
to the stream sensitivity SOM.
The self-organizing map (SOM)
The SOM approximates input data probability density functions,

and is typically used to cluster data vectors into similar categories
when a priori categories do not exist (Kohonen, 2001). Using a
topology-preserving projection, SOMs may be used to convert
non-linear, high-dimensional data to some user-defined lower-
dimension. This nonparametric, clustering algorithm is also capa-
ble of incorporating large amounts of discrete and continuous data
types (Kohonen, 1990), while avoiding many assumptions (e.g.,
normal distributed data) required by traditional statistical
techniques.

To our knowledge, the SOM has not been used for stream clas-
sification purposes. It has, however, been used in numerous stream
ecological studies to classify macroinvertebrate communities
(Chon et al., 1996; Gevrey et al., 2004; Lek et al., 2005; Park
et al., 2003a) and assess impacts of environmental disturbances
on those communities (Park et al., 2004). SOMs have also been
used for clustering and forecasting flood events (Chang et al.,
2007) and modeling rainfall–runoff processes (Lin and Wu, 2007;
Moradkhani et al., 2004).



Fig. 2. Vermont watersheds assessed with VTANR protocols and average annual
precipitation in mm (shading) within those watersheds; precipitation data courtesy
of Prism-Group (2008).
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Data and methodology

VTANR statewide assessment data

Historic and current land-use patterns throughout Vermont
greatly impact stream and watershed characteristics. To date, the
VTANR protocols have been applied to 789 stream reaches with a
cumulative length that exceeds 7500 km, covering more than
18,500 km2 of the Vermont landscape (Fig. 2). This study data
was downloaded in May of 2007 from the VTANR website http://
anrnode.anr.state.vt.us/ssl/sga/security/frmLogin.cfm.

As expected for a geographically diverse landscape, Vermont
stream processes are broadly characterized by areas of sediment
production, transport and storage. Streams varied in slope from
0% to 19.5%, with greater than 95% having a slope less than 5%.
The average reach (or sub-reach) length was just over 1.5 km but
varied from less than 0.15 km to almost 16 km. Drainage areas var-
ied from 0.25 km2 to more than 2700 km2 with an average of
90 km2. The assessed watersheds had a log-normally distributed
average annual precipitation (Prism-Group, 2008) ranging from
900 mm (minimum) to 1600 mm (maximum) with an 1100 mm
mean (Fig. 2). The majority of the study reaches had dominant par-
ent geologic material consisting of either river or glacial sediments
Table 1
Dominant geologic parent material of analyzed stream reaches.

Description Erodibility Na

Alluvial river sediments High 276
Glacial river deposits High 139
Glacial lake deposits Moderate–high 97
Glacial sea Moderate–high 0
Till/glacial sediments Moderate–high 153
Colluvium Variable 0
Bedrock Low 0
Miscellaneous/organic deposits Variable 36

a Does not add up to 789 due to missing field data.
(Table 1). The dominant land cover type was forest (89%), while ur-
ban (7%) and agriculture (2%) made up the remainder. Urban land
use varied from less than 1% to more than 95% across the basins.
More than 90% of the reaches used in this study had channel head-
waters less than 350 m above sea level. The majority of the reaches
have been impacted by humans, including 58% with bank armor-
ing, 65% straightening and 12% with a history of dredging. Due to
these, and other human-induced stressors, only 4% of the assessed
reaches had a reference geomorphic condition, while 33%, 57% and
6% were in a state of good, fair and poor, respectively. The follow-
ing VTANR assessment protocols were designed to be equally
applicable to reaches of all geomorphic conditions.

VTANR stream geomorphic assessment protocols

With limited resources in a state as rural as Vermont, the data
collection protocols are not as quantitatively rigorous as those
published in traditional geomorphic stream assessments (e.g.,
Montgomery and MacDonald, 2002). However, from a policy man-
agement and public interest perspective, stream indicator parame-
ters should be: (1) scientifically based, (2) limited in number, (3)
quantitative, (4) easily measured by non-specialists, (5) able to
quantify stream power, resistance and work and (6) applicable to
channels of various type and size (Graf, 2001). With these goals
in mind, various divisions within VTANR (e.g., Department of Envi-
ronmental Conservation, River Management Program, Department
of Fish and Wildlife, Fisheries Division, and Vermont Geological
Survey) collaborated to develop Vermont’s stream geomorphic
assessment protocols.7 A short summary follows; for more details
visit http://www.anr.state.vt.us/dec/waterq/rivers.htm.

The VTANR stream geomorphic assessment protocols consist of
three phases of data collection and assimilation. Phase 1, the re-
mote sensing phase, involves analyzing data on soils, geology,
topography, and land use and land cover from existing topographic
maps, aerial photography and existing field studies. Geomorphic
reaches and provisional reference stream types are established
based on valley landforms and geology. Estimates of channel con-
dition, adjustment process, and reach sensitivity are based on eval-
uations of land use and channel floodplain modifications. While
these estimates are provisional, the Phase 1 analyses allow large
watersheds (250–400 km2) to be assessed within a few months
time.

Phase 2, the rapid field assessment phase, involves the collec-
tion of field measurements and observations at the reach or sub-
reach scale. Stream types are established based on channel and
floodplain cross-sections and stream substrate measurements.
Stream geomorphic and physical habitat condition, adjustment
processes, reach sensitivity, and channel evolution stage are as-
sessed by evaluating basin geologic and topographic setting, field
erosion and depositional processes, changes in channel and flood-
plain geometry, and riparian land use/land cover.

Phase 3, the survey-level field assessment phase, involves the
collection of detailed field measurements (e.g., surveying) at the
sub-reach or site scale and may take three to four days to survey
a stream length of two meander wavelengths. Existing stream
types and adjustment processes are further detailed and confirmed
using quantitative measurements of channel dimension, pattern,
profile, and sediment types and loads.
7 These protocols were nationally recognized by the USEPA-COE sponsored study of
the physical stream assessment methodologies for use in the Clean Water Act section
404 Program. The study found that the VTANR approach deserved the highest overall
score of the 44 protocols examined nationwide.
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The supervised counterpropagation ANN

The supervised counterpropagation algorithm (Hecht-Nielsen,
1987) was used to predict reach-scale geomorphic condition and
inherent vulnerability (Fig. 1e and f, respectively). This relatively
simple, yet powerful algorithm leverages the SOM’s competitive
learning (discussed below) with known output responses (a priori
categories) to create statistical mappings between predictor and
response vectors. The execution of the counterpropagation algo-
rithm is defined by two phases: a training phase and a prediction
phase.

The counterpropagation architecture consists of three nodal
layers: input, hidden and output (Fig. 1a–f). All nodes in adjacent
layers are connected via weights (or connection strengths). During
training, the weights are iteratively adjusted to map the set of in-
put predictor vectors, x, to the set of associated response vectors, y,
defined by some non-linear function y = u(x), represented by the
training data. A given input vector, x, consisting of n variables
(x1, x2, . . . , xn), is passed to the hidden layer and a similarity metric
between the input vector and each node’s weight vector, is com-
puted. The hidden node with the weight vector most similar to
the input vector is identified as the winning node and this node’s
weights are adjusted to be more similar to the input vector. Like-
wise, the winning node’s output weights are adjusted to be more
similar to the corresponding response vector, y. This process is re-
peated for all input–output pairs until the network has learned the
input–output relationship defined by y = u(x) to some user defined
convergence criterion (in this work, a root-mean-square error less
than 10�6). After convergence, the network weights are fixed and
the ANN may be used for prediction. During the prediction phase,
input vectors that were not used to train the ANN are presented to
the network for estimation.

Unlike traditional feed-forward backpropagation learning algo-
rithms, the counterpropagation algorithm cannot be over-trained
and requires very little time for convergence. The counterpropaga-
tion algorithm, used here to predict geomorphic condition and
inherent vulnerability, behaves as an expert system and is consid-
erably more efficient than if–then–else rules from an adaptive
management standpoint. The algorithm was written in MatLab V.
7.4.0.287 (R2007a). For more details refer to (Hecht-Nielsen,
1987). Pseudo-code is provided in Rizzo and Dougherty (1994a).

Geomorphic condition ANN
The geomorphic condition ANN (Fig. 1e) was trained, tested and

validated using geomorphic data sets from two watersheds in
Northwestern Vermont. Lewis Creek and Middlebury River were
selected because of the similarities in their cumulative watershed
area (210 km2 and 163 km2, respectively) and land cover type (for-
est: 70% and 87%, agriculture: 24% and 12% and impervious: 6% and
1%, respectively). In addition, both basins are western-facing slopes
of the Green Mountains that span the eastern Champlain Valley
and drain ultimately to Lake Champlain.

The ANN was trained on 20 contiguous reaches in Lewis Creek
and then used to predict reach-scale geomorphic condition on 19
contiguous reaches along the Middlebury River. Five geomorphol-
Table 2
Reach-level condition ANN input parameters: degradation, aggradation, widening,
and plan-form change.

Reach-level condition Input code Geomorphic condition scores

Poor 1 0–0.34
Fair 2 0.35–0.64
Good 3 0.65–0.84
Reference 4 0.85–1.0
ogy experts classified geomorphic condition for the 39 reaches
using field data collected at the site-level (e.g., field-inspection of
geomorphic features, channel slopes, soil types, cross-sections,
and pebble counts). The data was aggregated to the reach level
to determine a dominant and subdominant channel adjustment
for each reach, choosing from among four processes: degradation,
aggradation, widening and plan-form change. The experts’ geomet-
rically-averaged process scores were used as inputs to the ANN.
The corresponding output data were the expert derived (averaged)
geomorphic condition ratings. The experts’ output ratings were
grouped into quadrants of unequal real-value ranges and coded
on a scale of 1–4 (Table 2). The ranges are skewed such that Good
and Excellent (Reference) condition scores are more difficult to
achieve. Outputs were geometrically averaged and errors were
quantified using fuzzy set membership functions (Doris, 2006; Za-
deh, 1965). Error bars, reflecting the variance in expert opinion
(minimum and maximum geomorphic condition scores) were
computed by averaging the fuzzy set membership functions.

Inherent vulnerability ANN
Input data for testing and validating the inherent vulnerability

ANN (Fig. 1f) was compiled by VTANR for all 789 reaches using
available topographic, orthophotography, soils, geologic, and land
use/land cover GIS data layers (Phase 1 protocols). These were then
verified during the Phase 2 field surveys. Training data included the
Rosgen stream classification indicators, Fig. 1f, modified to incor-
porate basin characteristics and boundary condition data (e.g., val-
ley confinement, valley and channel slope, sediment regime
characterization, boundary conditions, surficial geologic features,
and degree of channel entrenchment). Input variables were contin-
uous real numbers with the exception of the channel bed material
and number of channel threads (coded as integers).

The ANN was trained on the data structure generated by the if–
then–else rules of the modified Rosgen–Montgomery and Buffing-
ton classification system. Stream reaches were classified into one
of ten inherent vulnerability categories that best represent
VTANR’s fluvial hazard mapping needs. Ten categories were used,
compared with the 94 categories of the Rosgen classification sys-
tem. Once trained, the ANN was used to predict the inherent vul-
nerability of 789 expert evaluated stream reaches.

The unsupervised self-organizing map

A two-dimensional SOM (Figs. 1 and 3g) was used to cluster the
789 stream reaches into groups of stream sensitivity. Training in-
put vectors, x, consisting of n variables (x1, x2, . . . , xn) are passed
sequentially to the SOM nodes. In this work, we used the experts’
Fig. 3. Generic SOM with a 2-D nodal lattice. Input vectors comprised of n variables
(x1, x2, . . . , xn) are presented to each node (grey circles) in the network. A best
matching unit (BMU – node shown in black) is defined as the node whose weights
are most similar to the input vector. The SOM is trained by iteratively updating n
weights (m1, m2, . . . , mn) associated with each node within the neighborhood (Nc) of
the BMU.
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VTANR Phase 2 protocols of inherent vulnerability and geomorphic
condition (e.g., n = 2), rather than generating scores with the coun-
terpropagation ANN. A 30 � 30 square 2-D lattice topology was se-
lected for the SOM with each lattice node having eight neighbors
(Nc in Fig. 3). A hexagonal (rather than square) topology is typically
used in SOMs when conditional bias exists between the input vari-
ables (Kohonen, 2001); however, prior statistical analysis verified
unbiased data in this application. Each 2-D lattice node (Fig. 3)
has a vector, m, of n weights (m1, m2, . . . , mn) associated with it.
The weights are initially set to random values near the centroid
of the input space. Therefore, weight vectors and input vectors
are defined in the same dimensional space (Rn).

SOM training is an iterative process. For each lattice node, a dis-
tance metric is computed between its associated weight vector, m,
and a given input vector, x. The node whose weight vector is most
similar to the input vector is called the best matching unit (BMU).
Several training stages with various sized SOM lattices were per-
formed to minimize the quantization and topographic error met-
rics. Quantization error reflects the average distance between
training vectors and their BMUs; while the topographic error is
the percentage of input patterns for which the first and second best
matching units are not adjacent on the SOM map. The 30 � 30
node lattice minimized the quantization and topographic errors
(9.4 � 10�4 and 0.084), respectively.

During training, the weights associated with the BMU, and the
nodes in some neighborhood (Nc) of the BMU, are iteratively ad-
justed to be more similar to the input vectors. The neighborhood
size, Nc, was initially set to 15 nodes and linearly decreased to
one over the duration of training. The magnitude of adjustment
is a function of the training coefficient, a, which was decreased lin-
early during training from 0.9 to 0 (e.g., larger a produces larger
adjustment). The reduction of Nc and a over the training duration
ensures that a global data structure is established in the early
phases of training and more local refinement is established in the
latter stages. The passage of all training input vectors to the SOM
defines a single training iteration. A total of 1000 iterations were
run with the 30 � 30 SOM to cluster the stream sensitivity data.
Details of the SOM algorithm can be found in (Kohonen, 1990,
2001). Although several commercial SOM packages exist, the
SOM used in this work was written in MatLab V. 7.4.0.287
(R2007a).

Once training was complete, the number of SOM clusters or
groups were identified using the unified-distance matrix (U-ma-
trix) formulated by Ultsch and Siemon (1990). The U-matrix tech-
nique involves computing the average distance between each SOM
node and its eight neighbors (Fig. 3) and plotting the values asso-
ciated with nodes in grey-scale. Groups of nodes with similar
weight vectors (smaller average distances) are plotted in lighter
shades of grey while those dissimilar weights vectors are plotted
as darker shades.

After training, the SOM was used in several ways. Firstly, the in-
put training patterns were identified/labeled and superimposed
onto the U-matrix (results not shown) by mapping each label to
its BMU. This allowed us to visualize which training vectors were
most similar to each other (i.e., belong to similar clusters). Sec-
ondly, the individual scalar components associated with the vec-
tors were mapped separately onto 2-D lattices, resulting in n = 2
‘‘component planes”. Mapping the input properties alongside of
and in the same space as the clusters allowed experts to further ex-
plore and/or validate the resulting stream sensitivity clusters.

Evaluation criteria

Numerous mathematical measures are available to describe
agreement of model predictions with available observations (Kra-
use et al., 2005). Two metrics, the coefficient of determination
and the coefficient of efficiency, were used to compare the predic-
tive capabilities of the ANN models with expert opinions.

The coefficient of determination, r2, is the square of the sample
correlation coefficient calculated as:

r2

Pn
i¼1ðOi � OÞðPi � PÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðOi � OÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðPi � PÞ2
q

0
B@

1
CA

2

;

where O represents measured observations (expert opinion in our
case), P represents predictions, and n is the total number of obser-
vations. The coefficient describes the percentage of observed vari-
ance explained by the model and ranges from 0 to 1. A value of 0
implies no correlation, while a value of 1 implies that the model
can explain all of the observed variance.

The coefficient of efficiency, E, compares the predictive abilities
of the model with respect to the observed mean. It is calculated as:

E ¼ 1�
Pn

i¼1ðOi � PiÞ2Pn
i¼1ðOi � OÞ2

;

where again, O represents measured observations, P represents the
model predictions and n is the total number of observations (Nash
and Sutcliffe, 1970). E ranges from 1 (perfect fit) to �1, where val-
ues less than zero indicate that the observation mean would be a
better predictor than the model.
Results and discussion

We chose to structure individual ANNs in a hierarchy, rather
than creating a single ANN because it allowed us to (1) leverage
the most appropriate computational tools for the specific problems
at hand (e.g., classification ANNs for geomorphic condition and
inherent vulnerability, and clustering ANN for grouping reaches
into stream sensitivity), and (2) provide decision makers with
intermediate pieces of information needed for informed wa-
tershed-management decisions. The individual ANNs are capable
of accommodating quantitative and qualitative data (e.g., continu-
ous and categorical) more efficiently than traditional methods (e.g.,
site specific physics-based models, parametric statistical methods),
allowing them to fill in gaps of qualitative stream assessment. The
data-driven nature of these algorithms also eliminates the need for
constructing traditional if–then–else rules associated with expert
systems.
Stream geomorphic condition ANN

A proof-of-concept comparison between the ANN predicted
geomorphic condition (classified into four categories: 1-poor, 2-
fair, 3-good and 4-reference) and the experts’ averaged classifica-
tions (with error bars) is provided in Fig. 4. The ANN predictions
matched the experts for 15 of the 19 reaches (coefficient of deter-
mination r2 = 0.86, coefficient of efficiency E = 0.85). Only one (out
of 19) geomorphic condition predictions differ significantly from
the experts’ classification (reach 13, Fig. 4). And in this reach, the
classification varied widely among experts from different geo-
graphic locations. (Further inspection identified reach 13 as having
a culvert, viewed by some experts as a grade control and by others
as a potential problem). These 39 reaches (20 for training and 19
for prediction) represent only a small subset of streams types with-
in Vermont, rather than covering the entire spectra. Additional
training data, with a broader range of training patterns is needed
to predict geomorphic condition for all reaches within the entire
state of Vermont.

The variability in the experts’ classifications (error bars in Fig. 4)
reflects differences in the experts’ weighting of the four adjust-



Fig. 4. Reach classifications of geomorphic condition determined by experts and geomorphic condition ANN (error bars indicate average expert minimum and maximum
scores).
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ment processes and the subjective nature of assigning overall
reach-scale geomorphic condition scores. No quantitative ap-
proach was taken by any of the experts to average the four adjust-
ment process scores. Additional reasons why the experts weighted
these processes differently may include differences in training,
experience, exposure to rivers in various geographic settings, and
preconceived notions about conceptual models applicable to the
watershed in question. For example, experts supportive of
Schumm’s channel evolution model might weigh incision more
heavily than widening, aggradation, or plan-form change.
Fig. 5. Stream sensitivity U-matrix (a) without and (b) with nine delineated clusters us
component planes.
Stream inherent vulnerability ANN

The counterpropagation ANN (Fig. 1f) successfully predicted
stream inherent vulnerability. The predictions matched the ex-
perts’ classifications in 86.4% of the 789 assessed reaches with a
coefficient of determination r2 = 0.50 and coefficient of efficiency
E = 0.44.

Reasons for misclassification of the remaining 13.6% (or 107)
reaches were attributed to (1) data entry errors, i.e., errors incurred
in transcribing field notes to the computer (54 of the 107 misclas-
ing SOM inputs of stream (c) geomorphic condition and (d) inherent vulnerability



Table 3
SOM clusters of stream sensitivities for 789 reaches.

SOM cluster Existing VTANR ratings of stream sensitivity

Very low Low Medium High Very high Extreme

I 8 0 0 1 0 0
II 0 2 20 2 1 0
III 0 0 29 32 3 0
IV 0 1 2 35 8 0
V 0 2 36 192 70 1
VI 0 0 0 4 4 0
VII 1 0 1 13 203 1
VIII 0 0 1 5 22 19
IX 0 0 0 5 21 45

Table 4
New stream sensitivity labels for the nine SOM clusters.

Group Sensitivity category

I Very low–low
II Medium
III Medium–high
IV High
V High–very high
VI High–very high
VII Very high
VIII Very high–extreme
IX Extreme
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sifications), (2) idiosyncratic differences between experts (9 out of
107 misclassifications), or (3) inherent ambiguity in the Rosgen
stream classification system (41 out of 107 misclassified reaches).
For example, a stream with an entrenchment ratio of 1.4, width/
depth ratio greater than 12, and a sinuosity greater than 1.2 may
be classified as either type F or B in the Rosgen classification sys-
tem. Similarly, differences between experts in their decision-mak-
ing logic and use of field observations not yet identified in the
existing dataset were found to be important. These causes of mis-
classification provide opportunity for experts to further define
their field observations and document their classification
reasoning.

The counterpropagation ANN operates as an easy-to-modify ex-
pert system. Traditional expert systems are implemented using
extensive if–then–else rules. These rules can be cumbersome and
difficult to update (i.e., modifications due to recent progress and
understanding in watershed/channel systems). The data-driven
nature of the counterpropagation algorithm enables it to be readily
Fig. 6. SOM stream sensitivity U-matrices and corresponding clusters with (a) inherent v
weighted equally.
modified simply by changing input–output training data files with-
out modifying or constructing new if–then–else rules.

The process of defining stream type (inherent vulnerability) and
dominant adjustment process (geomorphic condition) on the basis
of Phase 1 and Phase 2 geomorphic assessments does involve
inherent uncertainty. Field data are collected by a variety of proto-
col practitioners, e.g., consultants, Regional Planning Commissions,
non-profit groups; some experts repeatedly visit stream reaches,
while others rely on observations from a single point in time. Be-
cause ANNs are data driven, their predictions are only as good as
the information provided to them. For example, the current ANN,
trained to map VTANR geomorphic condition, is not immediately
applicable to different geographic regions (e.g., North Western
US). New data would need to be gathered and used to train the
ANNs. The real value of using ANNs in stream classification appli-
cations may be in their role to systematically articulate and docu-
ment how experts weigh various factors in their own decision-
making.

Stream sensitivity SOM

Geomorphic condition (deduced by stream experts) and stream
inherent vulnerability (deduced by the counterpropagation ANN)
were used as equally weighted inputs to the SOM ANN to cluster
streams into groups of sensitivity. The grey shading (Fig. 5a and
b) represents the U-matrix associated with the 30 � 30 SOM lattice
and delineates the clusters of sensitivity. In the grey-scale plot,
white plateaus represent nodes with similar features forming clus-
ters or subgroups, whereas dark ‘‘ravines” separate or delineate
groups. A total of nine stream sensitivity clusters (outlined for bet-
ter visualization in Fig. 5b) have been identified by the 30 � 30
SOM.

Fig. 5c and d plots the components of the trained SOM weight
vectors in 2-D space (on a 30 � 30 lattice). Each panel represents
the SOM weight associated with stream geomorphic condition
and inherent vulnerability, respectively. The grey scale in panel
(c) reflects the geomorphic condition score from 1 (reference) to
0 (poor). The 10 categories of inherent vulnerability, ranging from
1 (stream types A1, A2, B1 and B2) to 10 (D3, D4 and D5), are pro-
vided in the legend of panel (d) based on a modified Rosgen–Mont-
gomery and Buffington system developed by the VTANR (see
Background). To illustrate the interpretation of the SOM U-matrix
and the component planes, a point is plotted at SOM node
(10, 10) in all four panels of Fig. 5. The particular stream reach
associated with this point has a geomorphic condition rating of
good (panel c) and an inherent vulnerability associated with cate-
ulnerability weighted 5-fold more heavily than geomorphic condition and (b) inputs
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gory eight (modified Rosgen stream types A3, A4, A5, G3 or F3) (pa-
nel d). This particular stream reach has been clustered with similar
reaches by the SOM into group V.

Since the SOM is an unsupervised ANN (with no predetermined
output or classifications), it is common to subsequently ask experts
to identify similar attributes or properties within clusters and pro-
vide names/labels for the clusters. In this work, we were in a un-
ique situation, since experts at the VTANR (using their biological
neural nets) had previously assigned stream sensitivity ratings to
each of the 789 reaches without the aid of statistical clustering
tools. The protocols had already distinguished a total of six stream
sensitivity ratings: very low, low, medium, high, very high and ex-
treme. For comparison purposes, we list the nine newly-derived
SOM clusters with the six existing VTANR stream sensitivity classi-
fications (Table 3) and provide new labels for the nine SOM-gener-
ated sensitivity ratings (Table 4). In Table 3, the sensitivity ratings
that dominate a particular group have been highlighted in bold and
are used to generate the new labels in Table 4. The point plotted in
Fig. 5 falls into sensitivity cluster V and has a SOM sensitivity rat-
ing of High–very high. As with the reach-scale geomorphic condi-
tion scores, there is some natural variability of stream sensitivity
within each group (e.g., group VII contains 203 out of 219 reaches
with very high sensitivity ratings, 1 extreme, 13 high, 1 medium
and 1 very low sensitivity ratings).

Given these results, we may use the SOM either to increase the
number of classes in VTANR’s current classification system or ex-
tract additional information from the experts to create an algo-
rithm that would classify the data into the existing VTANR
sensitivity classes. The results in Table 3 suggest that increasing
the number of stream sensitivity classes could be achieved by sim-
ply stretching the scale over which the sensitivity ratings are cur-
rently ranked. What is most significant about the two groupings is
how well they correlate despite being derived from different
methodologies.

The SOM framework also provides for a truly adaptive manage-
ment tool by allowing the experts to weight the relative contribu-
tion or importance of the inputs (if known), and customize the
groupings based on these expert weightings. Fig. 6 shows the effect
of weighting the stream’s inherent vulnerability input 5-fold more
heavily than the geomorphic condition. The resulting U-matrix is
grouped into eight clusters and denoted with lower case Roman
numerals: i, ii, . . . , viii. For comparison purposes, the U-matrix
using equally weighted inputs (Fig. 5b) is repeated in Fig. 6b. The
result of this weighting is a stream sensitivity clustering system
that closely maps to the stream’s inherent vulnerability. Including
additional predictor variables or selecting a different threshold for
the U-matrix would result in slightly different groupings.
Conclusions

This study demonstrates the usefulness of two artificial neural
network algorithms used in tandem to assist decision makers in
classifying stream sensitivity to adjustment for watershed man-
agement purposes. A series of supervised counterpropagation algo-
rithms trained with expert knowledge, offers great potential for
QA/QC of existing expert-derived stream assessments. In this
study, the predicted reach-scale stream geomorphic condition
and inherent vulnerability were used, in turn, as inputs to the
unsupervised SOM algorithm to cluster 789 reaches into a stream
sensitivity classification system. The methodology allows for the
adjustment or weighting of the input variables. This provides flex-
ibility and allows experts to fine-tune the SOM results and better
document the similarities and differences among expert opinions.
A related advantage of these ANNs is the creation of a consistent,
repeatable process for classifying susceptibility to channel adjust-
ment. It is important to note that the VTANR stream sensitivity
groupings, in use today, evolved with the development of the pro-
tocols (from 2001 to 2007). And in fact, three different sets of if–
then–else rules were developed over this period. Since the ANNs
are data-driven, these algorithms circumvent the re-coding of if–
then–else rules typically associated with traditional expert classifi-
cation systems. While stream classification is arguably a subjective
process, utilizing many qualitative values and rankings, the use of
classification ANNs ensures that the process will be consistent
from watershed to watershed and observer to observer.

The value in training and testing the hierarchical ANNs to clas-
sify reach-level stream sensitivity is multi-fold. The process: (1)
elicits valuable information about the relative significance of gov-
erning factors in the overall determination of stream sensitivity;
(2) helps articulate and document how different experts weigh
various parameters in the classification of inherent vulnerability,
geomorphic condition, and sensitivity; (3) provides a standardized,
expert-trained approach for classifying sensitivity of river net-
works in various contexts (erosion hazard mitigation, habitat res-
toration and conservation) that saves time and resources; and (4)
is sufficiently flexible and simple to modify, enabling a truly adap-
tive management approach. In addition, the method of developing
and training supervised ANNs would be the same across geo-
graphic regions; providing the potential for geographic indepen-
dence. However, each geographic region, given unique
climatologic (e.g., droughts or extreme flood events) and geologic
settings, would likely vary somewhat in their input parameters.
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