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[1] A novel data-driven artificial neural network (ANN) that quantitatively combines
large numbers of multiple types of soft data is presented for performing stochastic
simulation and/or spatial estimation. A counterpropagation ANN is extended with a radial
basis function to estimate parameter fields that reproduce the spatial structure exhibited in
autocorrelated parameters. Applications involve using three geophysical properties
measured on a slab of Berea sandstone and the delineation of landfill leachate at a site in
the Netherlands using electrical formation conductivity as our primary variable and six
types of secondary data (e.g., hydrochemistry, archaea, and bacteria). The
ANN estimation fields are statistically similar to geostatistical methods (indicator
simulation and cokriging) and reference fields (when available). The method is a
nonparametric clustering/classification algorithm that can assimilate significant amounts
of disparate data types with both continuous and categorical responses without the
computational burden associated with the construction of positive definite covariance and
cross-covariance matrices. The combination of simplicity and computational speed makes
the method ideally suited for environmental subsurface characterization and other Earth
science applications with spatially autocorrelated variables.
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1. Introduction

[2] Imaging, joint interpolation and inversion play impor-
tant roles in the discovery, characterization, simulation, and
performance evaluation for subsurface mineral, energy, and
environmental remediation projects. These methods are
used to combine information, whether qualitative or quan-
titative, into a composite site description to interpret and/or
predict responses of the geologic system. The oil and gas
exploration business routinely uses minimally invasive or
noninvasive data collection methods (e.g., three-dimensional
seismic analysis) to conduct three-dimensional geophysical
investigations producing enormous data sets that must be
managed and processed. As a result, imaging and inversion
of geophysical data have a long history (see Menke [1984]
for a good review of common practices).
[3] The environmental restoration business is turning,

with increasing frequency and commitment, to such methods
of collecting field data that can be easily and inexpensively
measured in situ [U.S. Environmental Protection Agency,
2000]. The cone penetrometer testing (CPT) methods, used
for certain soils investigations since the mid-1960s, have
been aggressively extended with new sensors, video cam-
eras, and probes for rapid collection of in situ data [Ballard
and Cullinane, 1998; Purdy and Beam, 1998; Gelb and
Wonder, 1998; Rossabi et al., 2000] (see also http://
www.cpeo.org/techtree/ttdescript/scaps.htm). A variety of

direct push groundwater sampling tools now provide con-
tinuous and densely discrete (subcentimeter spacing) vertical
data of solute concentrations in permeable, unconsolidated
deposits [Pitkin, 1998]. As a result, the number of data
types, the required spatial resolution, and the cost effective-
ness of these shallow in situ probes and sensors make them
an attractive alternative for site characterization, environ-
mental restoration, and long-term monitoring.
[4] The term ‘‘data fusion’’ has gained portent in the

Earth sciences community [Oldenburg et al., 1998]. This
process also goes by the names ‘‘joint data assimilation,’’
‘‘objective analysis,’’ ‘‘coinversion,’’ and ‘‘joint inversion.’’
In it, multiple signal types are interpreted as an ensemble to
draw inferences about parameters, experiments, and so on
[Hohmann and Raiche, 1987]. Numerous inversion meth-
ods, many of which are described by Yeh [1986], have been
developed to address these issues. Joint inversion methods
allow for the incorporation of secondary information and
have been employed extensively in the exploration and
recovery of oil and natural gas to incorporate geophysical
information [Kis, 2002; Bosch, 2004] and to estimate the
extent of subsurface contamination [de la Vega et al., 2003].
More recently, universal function approximators have
been used to perform inversion of groundwater modeling
parameters [Morshed and Kaluarachchi, 1998; Garcia and
Shigidi, 2006].
[5] Unfortunately, in the environmental sector, the ability

to collect and store large volumes of data has increased
dramatically over the last decade, but computational meth-
odologies for extracting useful information from these vast
and growing stores of data has lagged behind. Although it is
now widely recognized that effective assimilation of dispa-
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rate types of field data can both improve parameter esti-
mates [Vozoff and Jupp, 1975; Copty et al., 1993; Copty and
Rubin, 1995] and increase the efficiency of field sampling
programs, the production of high data acquisition rates has
led to data that are not fully being assimilated. One reason is
that in the environmental community, as opposed to man-
ufacturing control or the oil or gas industry, the cost of
collecting data is considered a cost of regulation. As a
result, collected environmental data have not been viewed,
in general, with the same eye for adding value as data
collected for manufacturing control. Another reason is that,
although geophysical data have been used sporadically in
the water resources community, interpretation of these data
have been left for geophysicists and the groundwater
community generally has not internalized these methods.
[6] The joint assimilation of tremendous amounts of data

and multiple signal types creates significant data manage-
ment and computational burdens. Solutions associated with
joint inversion or cokriging methods often become infeasi-
ble when incorporating increasingly large numbers of sec-
ondary variables. Although geostatistical methods are
excellent for estimating spatially distributed processes with
low-dimensional data (see Istok and Rautman [1996],
Goovaerts [1998, 2001], Goovaerts et al. [2005], Li and
Yeh [1999], Gloaguen et al. [2001], Patriarche et al. [2005],
and Mouser et al. [2005] for recent environmental applica-
tions involving a single type of secondary data), new
methods (e.g., nonparametric statistical methods, categori-
cal classification methods, data-driven artificial neural net-
works) are currently being developed to deal with the spatial
analysis of large numbers of multiple data types with both
continuous and categorical responses.
[7] In this paper (section 2), we introduce artificial neural

networks (ANNs), provide an overview of the original
counterpropagation algorithm as developed by Hecht-
Nielsen [1987] and the modifications and extensions needed
to use the algorithm for stochastic simulation of distributed
parameters that exhibit spatial autocorrelation. In section 3,
we present the simulation results and use two ANNs in
series to demonstrate the computational ease with which
this method can assimilate multiple data types.
[8] We compare and evaluate the method with traditional

geostatistical (kriging) methods because of their well-
developed theoretical foundation. However, our goal is to
find new robust, nonparametric methods capable of dealing
with large volumes and multiple types of environmental
data. Such environmental applications often consist of data
that are nonnormal and/or mixtures of categorical or con-
tinuous and discrete-valued variables that cannot be ana-
lyzed using the traditional geostatistical or categorical data
analysis techniques.

2. Methodology

2.1. Artificial Neural Networks

[9] Artificial neural networks (ANNs) are dynamic,
computational systems built from a large number of
interconnected processing units that interact in some pre-
scribed, parallel manner. Simply, they can be viewed as
universal approximators that map one space (the input space)
into some other space (the output space). The network
architecture is presented with a set of examples, called

training patterns (input vectors and corresponding output
vectors); while a training algorithm iteratively adjusts the
internal parameters to better simulate (or ‘‘learn’’) the desired
mapping. The training process is complete when the error
between the computed output and the desired output is
minimal for all patterns in the training set. Once trained,
the ANN may be used for classification or prediction. The
ability to retrieve the functional relationship between the
input and the output space through the presentation of data
patterns suggests that these data-driven ANNs may be useful
in cases where a clear understanding of the physics may be
lacking. The architecture of the interconnected processing
units, and how information is passed and updated between
processing units, defines different ANN algorithms. The
most popular algorithms include the feed forward back-
propagation network [Rumelhart and McClelland, 1988],
the Hopfield Network [Hopfield, 1982], the self organizing
map (SOM) [Kohonen, 1989], and the radial basis function
neural network [Azerman et al., 1964; Bashkirov et al.,
1964]. A comprehensive introduction to ANNs is provided
by Wasserman [1989].

2.2. Counterpropagation

[10] Hecht-Nielsen [1987] first introduced the counter-
propagation network, which sequentially combines the
Kohonen self organizing map (SOM) and the Grossberg
outstar structure. Although the networks listed in section 2.1
account for the majority (�95–99%) of all ANN applica-
tions, the counterpropagation ANN has found uses in a wide
range of applications including the classification of soil
samples [Fidencio et al., 2001], assessment of ecological
status and prediction of ecosystem water quality [Park et
al., 2003], modeling of nonlinear pH processes [Nie et al.,
1996] and prediction of spatial and temporal rainfall vari-
ation [Hsu et al., 1995, 1999]. Rizzo and Dougherty [1994]
and Rizzo [1994] introduce the concept of applying the
counterpropagation algorithm to develop maps of discrete
spatially distributed fields (e.g., log-hydraulic conductivity
fields given estimates of hydraulic conductivity from pump-
ing tests), and classifying soil lithology given soil sample
descriptions from drillers’ well logs [Rizzo et al., 1996].
Although details and pseudocode for this method have been
presented by Rizzo and Dougherty [1994], an overview is
provided in section 2.3.

2.3. Counterpropagation Algorithm

[11] The counterpropagation algorithm (Figure 1) is a
supervised learning algorithm that self-adapts to cluster data
and map a set of input vectors xn = (x1

n, x2
n, . . . xI

n) into a
prespecified number of classes represented by output vectors
yn = (y1

n, y2
n, . . . yK

n ), where n = 1, 2,. . .to the total number of
training patterns N. The counterpropagation algorithm
requires that the network output (parameter of interest) be
categorized into some prespecified number of classifications
(K), where the number of classes and corresponding accuracy
of estimation is defined by the user for the given process of
interest. Assume, for example, that K = 6 classes; then class
k = 1 may be represented by the classified output vector y =
[0, 0, 0, 0, 0, 1]. Likewise, k = 2 corresponds to y = [0, 0, 0,
0, 1, 0] and so on. This subtle feature of the network is
important in that this algorithm may be used to predict
categorical variables (i.e., soil lithology), as will be dem-
onstrated in the following example applications.
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[12] The counterpropagation architecture consists of an
input layer, a ‘‘hidden’’ Kohonen layer, and an output
Grossberg layer. Figure 1 shows a schematic of a counter-
propagation ANN with I input nodes, J hidden nodes, and K
output nodes. The arcs connecting the input and hidden layers
have internal parameters known as Kohonen weights, w.
The arcs connecting the hidden and output layers have
associated Grossberg weights, v. Dual subscripts (e.g., wij)
denote the weight connecting input node i and hidden node j.
Therefore each of the J hidden nodes have an associated
weight vector wj (single column of the Kohonen weight
matrix, w) comprising I components. Likewise, the Gross-
berg weight matrix v comprising J vectors, each with K
components.
[13] The counterpropagation algorithm is executed in two

phases: a training phase and an operational phase (classifi-
cation/prediction). Prior to training, the algorithm requires
the input vectors xn=1,2,. . .N be normalized such that each
vector will increase by one dimension, have an overall
vector length equal to 1.0, and lie on a unit hypersphere;
see Rizzo and Dougherty [1994] for pseudocode describing
the normalization procedure. The Kohonen and Grossberg
weights are initially set to random values between 0 and 1
and are renormalized for each iteration. This ensures that the
input vectors and the Kohonen weight vectors lie in the
same dimensional space.
2.3.1. Training Phase
[14] After normalization, the training patterns are sequen-

tially presented to the network. The nth input vector,
comprising I predictor variables, xn = (x1

n, x2
n, . . . xI

n), is
presented to the input layer and the corresponding classified
output (target) vector yn is simultaneously assigned to the
output layer; see Figure 1. The input vector xn passes to the
hidden layer where each hidden node computes a sum as
follows:

zn*j ¼
XI
i¼1

xni � wij

� �
for j ¼ 1; 2; . . . J ; ð1Þ

where n would equal 1 for the first training pattern. This dot
product, computed for each of the J hidden nodes, repre-
sents a measure of similarity between the input vector xn

and the weight vector wj associated with the j
th hidden node.

Since both the input vectors xn and the Kohonen weight
vectors wj have been normalized to kxk = 1 and kwk = 1;
the dot product of equation (1), by standard vector calculus,
zj
n* = kxnk � kwjk cosqj, reduces to zj

n* = cosqj, where qj is
the angle between xn and wj.
[15] Next, the product associated with each of the J

hidden nodes zj
n* is passed through a ‘‘winner-take-all’’

activation function such that the maximum component of
zn* (a.k.a. the winner) is assigned a value of 1 and all
other components are assigned a value of 0; see Figure 1.
The hidden node with the maximum value zj=winner

n* =
max(cosqj) is defined to be the winner, ensuring that the
vector wj associated with this winning hidden node is the
most similar, of all the hidden nodes, to the current input
vector xn (wj=winner has the smallest angle between wj and
xn).
[16] This winning Kohonen weight vector is then adjusted

(moved in the direction of the input vector xn) according to
the Widrow-Hoff rule [Widrow and Hoff, 1960]:

wnew
j ¼

wold
j þ a xn � wj

� �
if j ¼ winning node

wold
j otherwise j 6¼ winning node;

(
ð2Þ

where a 2 [0, 1] is a learning coefficient (for this work a =
0.7) that controls the magnitude of vector adjustment and
thus rate of convergence [Hecht-Nielsen, 1988]. The
Widrow-Hoff adjustment of equation (2) ensures that only
one Kohonen weight vector becomes more similar to the
input vector that caused it to become activated; all others
remain the same.
[17] The activation vector zn (the absence of the * super-

script indicates that the vector has been passed through the
winner-take-all activation function) passes to the Grossberg

Figure 1. General schematic showing (a) architecture and notation and (b) activation function of the
counterpropagation ANN.

W11409 BESAW AND RIZZO: STOCHASTIC SIMULATION AND SPATIAL ESTIMATION

3 of 14

W11409



output layer where a second dot product is computed
between zn and each of the Grossberg weight vectors vj.
The raw ANN output is computed as

yn*k ¼
XJ
j¼1

znj � vjk
� �

for k ¼ 1; 2; . . . K: ð3Þ

Therefore during training, the output yn* equals the Gross-
berg weight vector vj associated with the winning hidden
node. The Grossberg weight vectors are adjusted according
to:

vnewj ¼ voldj þ b yn � yn*
� �

if j ¼ winning node

voldj otherwise j 6¼ winning node;

(
ð4Þ

such that updated Grossberg weight vectors equal the old
Grossberg weight vectors plus some fraction, b, of the
difference between the raw output vector yn* and the desired
target vector yn (for this work the learning coefficient b =
0.1). A total of N training patterns (xn and the associated
classified target vectors yn for n = 1, 2, . . . N) are used to
train the ANN. Equations (2) and (4) iteratively adjust
the Kohonen and Grossberg weights so that subsequent
network output yn* more closely approximates the desired
target vectors yn. One passage of all N training patterns
through the ANN completes one training iteration. The root-
mean-square error (RMSE) is calculated for every training
iteration as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1

PK
k¼1 yn*k � ynk

� �2
N*K

vuut
and provides a single quantitative description of how well all
of the network outputs yn* match the known response
vectors yn. When the network RMSE converges to the
user-defined threshold (in this work 10�6), training is
complete and the ANN is ready for the classification/
prediction phase.
2.3.2. Classification/Prediction Phase
[18] Once trained, the Kohonen and Grossberg weight

matrices become fixed and the network may be used for
normal operation (classification/prediction). New input vec-
tors x1, x2, . . . xM are presented to the network to attain
predictions/classifications ŷ1, ŷ2, . . . ŷM where M is the total
number of predictions. This prediction phase produces a
raw output ŷm* for the mth input vector that is subsequently
passed through a winner-take-all activation function to
create a classified prediction, ŷm (e.g., ŷm* = [0.08, 0.20,
0.10, 0, 0.70, 0.01] would yield ŷm = [0, 0, 0, 0, 1, 0]).
[19] A number of modifications can be made to the

original counterpropagation algorithm of Hecht-Nielsen
[1987] that allow greater flexibility for predicting spatially
distributed parameters. Rizzo and Dougherty [1994] showed
that for the special case where the input vectors are
normalized to values between 0 and 1, and the Kohonen
weights are preprocessed to equal the normalized input
training vectors, an L2 normalization procedure can be
applied and the network acts as a nearest-neighbor classifier.
In this special case, the Euclidean distance may be used to
compute the similarity between the normalized input vector

and each of the normalized Kohonen weight vectors. The

minimum value of zj
n* =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI
i¼1 xnj � wij

� �2r
for j = 1, 2, . . . J

is then used to select the winning hidden node as opposed
to the dot product of equation (1). Preprocessing the
Kohonen weights in this manner eliminates the need to
generate initial random Kohonen weights by setting the
total number of hidden nodes J equal to the number of
input patterns N. Although, this alternative is convenient
when the input predictor variables have the same dimen-
sions (e.g., comprising only spatial locations), the strength
of the counterpropagation algorithm is the sequential
combination of the Kohonen (SOM) layer acting as a
nearest  k-means  classifier  and  the   Grossberg   layer ’s
ability to approximate a Bayes classifier that enables
the counterpropagation to statistically approximate the
nonlinear relationships inherent in the sample data [Rizzo
and Dougherty, 1994]. The k-means classifier is a rela-
tively flexible classifier (compared to discriminant analy-
sis and logit models) and does not require an assumption
of multivariate normality [Cover and Hart, 1967].
[20] In addition, an alternative to the single winner-take-

all activation function is to allow some select number of
nodes greater than one (say k) to become activated during
the prediction phase, and compute a network output based
on a weighted combination of the k winners to produce a
smoother estimation field (e.g., estimating values of con-
centration as opposed to classes of soil lithology).

2.4. Modifications/Extensions to the
Counterpropagation Algorithm

[21] The original counterpropagation algorithm, as pre-
sented by Hecht-Nielsen [1987, 1988], is a stochastic
estimation technique that is not well suited for applications
containing variables that exhibit spatial autocorrelation. One
of our goals was to modify the algorithm to generate
equiprobable realizations to capture the spatial structure
associated with the primary variable of interest. To accom-
plish this, we incorporate a radial basis function after the
training phase and prior to the prediction phase. This
modification involves an adjustment to the Grossberg
weights prior to the prediction phase and requires that the
spatial structure be analyzed a priori using traditional geo-
statistical methods (e.g., semivariogram analysis) to define
the range of spatial correlation. If the semivariogram is well
behaved and a pattern of anisotropy is identifiable from the
available geologic information (e.g., secondary variables),
one can incorporate the directions of maximum and mini-
mum continuity using directional semivariograms.
[22] We incorporate these concepts into the ANN by

centering a radial basis function over each of the winning
(trained) Kohonen vectors. The radial basis function is

defined as 8(d) = exp � d2

2s2


 �
, where d is a measure of

distance from the center of the function and s2 is the
variance and defines the spread of the function. In this
work, we let 8(d) equal the probability that ‘‘nearby’’
unused Kohonen weights (those not adjusted during the
training procedure) be assigned the same value (output
class) as with the winning Kohonen weight vector lying at
the center of the radial basis function. This results in a
probability of 8(d) = 1 when d = 0 and 8(d) = 1/K when d =
the range of decorrelation (a), where K is the total number
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of classifications predefined by the user. The latter ensures
that the classification, associated with untrained weights
located beyond the range of decorrelation, will be a random
outcome. Thus, by letting 8(d = a) = 1/K, one may solve the
radial basis function for the variance s2. With s2 defined,
the probability of classification 8(d) may be determined for
any distance of separation d. Figure 2 presents a semivario-
gram and corresponding radial basis function that will be
used in a later example.
[23] If evidence suggests the spatial continuity is not the

same in all directions, the radial basis function may be
rewritten to account for anisotropy along any perpendicular

axis as 8(d) = exp � 1

2

a2major axis

s2
major axis

þ a2minor axis

s2
minor axis

" # !
. Figure 2d

plots the radial basis function where the axes of maximum
(major axis) and minimum (minor axis) continuity are
defined as amajor axis = 0.65 and aminor axis = 0.25. The
directional variance terms are determined as presented
previously with recognition that the two axes are inde-
pendent (i.e., solve for smajor axis

2 by setting aminor axis = 0
and vice versa).
[24] Once defined, the radial basis function is used to

assign values (output classifications) to the Grossberg weight
vectors vj associated with Kohonen weight vectors that were
not adjusted during the training phase. One can think of the
radial basis function as a moving window centered on
successive activated Kohonen weights whose size is defined
by the spatial structure of the parameter of interest.

3. Results

[25] To investigate and test the ability of the modified
counterpropagation ANN to generate equiprobable realiza-
tions and estimate highly resolved spatially distributed
images using multiple data types, we use three types of
geophysical data collected on a slab of Berea sandstone.
Berea sandstone has been used by other researchers to
investigate spatial prediction methods and properties of
porous media. Tidwell and Wilson [1999, 1997] used it to
investigate the upscaling of permeability measurements.

Journel and Alabert [1989] used Berea sandstone to com-
pare multiple prediction methods including kriging, indica-
tor simulation and Gaussian simulation. Goovaerts [1999]
compared several conditional simulation techniques using a
limited number of air permeability measurements from a
slab of Berea sandstone.
[26] A 33 � 35 � 14.5 cm slab of finely bedded Berea

sandstone (Figure 3), from the Amherst quarry, Ohio, was
collected and analyzed for several geophysical properties.
Air permeability (milliDarcy, mD), compressional wave
velocity (m/s) and electrical resistivity (ohm-m) were mea-
sured at very fine resolution (�3 mm grid spacing) and are
displayed in Figures 3a, 3c and 3e. The corresponding cross
scatterplots are shown in Figures 3b, 3d and 3f. This high-
resolution data provides the unique opportunity to apply and
compare stochastic simulation and spatial estimations to
‘‘reality’’ (the observed measurements). For details of the
data collection methods, the reader is referred to G. N.
Boinott et al. (Physical based upscaling of heterogeneous
porous media: An illustrated example usingBerea sandstone,
submitted to Petrophysics, 2007) and New England Research,
Inc., http://newenglandresearch.com/pdf/NER_AutoSca-
nII.pdf.

3.1. Stochastic Simulation With Original
Counterpropagation

[27] As mentioned in subsection 2.3.2, Rizzo and Dougherty
[1994] showed that for the special case of J = N (e.g., the
number of hidden Kohonen weight vectors equals the
number of input training vectors), the counterpropagation
algorithm acts as a nearest-neighbor classifier. However,
when J > N, the counterpropagation algorithm, approxi-
mates a nearest k-means classifier for which the generation
of stochastic conditional simulations appears to be a natural
by-product. This is demonstrated on a simple two-dimen-
sional spatial approximation problem. Figure 4a depicts a
portion of the original electrical resistivity (ohm-m) field as
measured on the Berea sandstone (Figure 3e, region of
interest (ROI)). The measured values have been preclassi-
fied into K = 6 categories. Sixteen point observations, open
circles of Figure 4a, were selected randomly from the

Figure 2. (a) Experimental semivariogram and best fit Gaussian model generated with 16 classified
electrical resistivity observations of Figure 4a. Radial basis function with a = 0.65 shown in (b) cross-
sectional and (c) plan view. (d) Example of radial basis function with axes of maximum and minimum
continuity in the easting and northing directions, respectively (aeasting = 0.65 and anorthing = 0.25).
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classified electrical resistivity field to be used as training
patterns.
[28] For this example application, the network inputs

consist of two-dimensional, spatial coordinates (x1 = easting
and x2 = northing) normalized between 0 and 1 for each of the
16 point observations. The ANN architecture (Figure 4b),
comprising two input nodes (I = 2), 24 hidden nodes (J = 24),
and six output nodes (K = 6), is used for stochastic
simulation of the classified electrical resistivity. The two-
dimensional Kohonen weight vectors, associated with each
of the 24 hidden nodes have been initialized to random values
between 0 and 1 and are plotted (as crosses in Figure 5a)
along with the 16 point observations.
[29] During each training iteration, the set of 16 training

patterns are presented to the network in series to map the
relationship between spatial coordinates (x1, x2) and the
associated classified electrical resistivity. The initial and
final configuration of the Kohonen weight vectors are
displayed in Figures 5a and 5b, respectively. Note that only
14 of the 24 Kohonen weight vectors have been adjusted
(moved closer) to the 16 point observations.
[30] The first simulation (Figure 5c) shows the location of

the final 14 adjusted weight vectors and resulting classified
electrical resistivity field that respects the point observa-
tions. The 10 unadjusted weight vectors, located further

from the point observations, result in random estimates
when activated during the prediction phase. Different equi-
probable realizations (Figure 5d) are generated by changing
the initial random Kohonen and Grossberg weight matrices
and training the network as previously described. The
expected classified electrical resistivity field (Figure 5e)
was generated by averaging the estimates for each spatial
location over the (39 � 45) grid across 100 simulations. The
probability associated with each point being classified as
shown in Figure 5e, is provided in Figure 5f. The probability
is high (shown in blue) near the 16 point measurements and
decreases with distance from the point measurements (toward
red).
[31] The selection of the number of hidden nodes J plays

an important role in this stochastic estimation procedure. In
the example of Figure 5 (where J = 24), 14 of the 24 hidden
nodes are adjusted (moved) closer to the 16 point measure-
ments; and the remaining 10 unadjusted hidden nodes are
available to produce random estimates of classified electri-
cal resistivity. Increasing the number of hidden nodes (say
from J = 24 to J = 64), results in realizations that are less
correlated (more variable) in space because of the increased
number of unadjusted hidden nodes (those that produce
random estimates when activated). Although the resulting

Figure 3. Geophysical properties of Berea sandstone: (a) air permeability (mD), (c) compressional
wave velocity (m/s), and (e) electrical resistivity (ohm-m) along with the corresponding cross scatterplots
for (b) electrical resistivity–air permeability, (d) compressional wave velocity–air permeability, and
(f) electrical resistivity–compressional wave velocity.
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100 simulations have approximately the same frequency
distribution as the observed data (results not shown) and
honor the measured data values at known observation
points, individual realizations (e.g., Figure 5c) do not
exhibit the spatial structure associated with the observed

data (Figure 4a). Because of our focus on environmental
subsurface characterization and Earth science applications
that deal with spatially autocorrelated data, as well as, our
desire to eliminate the need for an a priori user-defined
number of hidden nodes, we have modified the original

Figure 5. Spatial configuration of the 16 randomly selected classified electrical resistivity observations
and the 24 Kohonen weight vectors (a) before and (b) after the training phase. (c) Single simulation
associated with the Kohonen weight configuration of Figure 5b. (d) Diagram showing that 100
simulations were generated to produce (e) the expected field. (f) Probability associated with each point
being classified as shown in Figure 5e.

Figure 4. (a) Magnified representation of the electrical resistivity region of interest (Figure 3c)
classified into six categories and (b) ANN architecture for performing stochastic conditional simulation.
The network contains 2 input nodes, 24 hidden nodes, and 6 output nodes.
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counterpropagation algorithm by incorporating the radial
basis function prior to the prediction phase.

3.2. Conditional Simulation Using the Modified
Counterpropagation

[32] We reuse the same 16 classified electrical resistivity
observations (Figure 4a) to demonstrate the ability of the
counterpropagation algorithm, modified with the radial
basis function, to perform stochastic conditional simulation.
A semivariogram analysis has been used to describe the
spatial structure of the classified data. The omnidirectional,
experimental semivariogram using the 16 classified point
observations and the best fit (R2 = 0.959) Gaussian model
with range a = 0.65, nugget = 0 and sill = 3.25 are shown in
Figure 2a. The 95% confidence limits are shown as dashed
lines.
[33] Figures 2b and 2c display the corresponding radial

basis function 8(d) in cross section and plan view, respec-
tively. The variance of the radial basis function is deter-
mined by substituting the range a = 0.65 for d and 8 = 1/K =
1/6 into the radial basis function equation and solving for
s2. After training, and just prior to the execution of the
prediction phase, this radial basis function is centered over
each of the adjusted Kohonen weight vectors (crosses
Figure 5b that have moved closer and become associated
with a known observation point). The function is used to
assign each of the unadjusted Kohonen weight vectors
(crosses in Figure 5b lying within the radial basis function
window) a probability value 8(d). The trained (mapped)
Grossberg weights vj associated with the unadjusted Koho-

nen weights (those not associated with a known observation
and shown as crosses) are assigned (with probability 8(d))
the same value (or class) as the observation at the center of
the radial basis function. This probability is based on the
distance d from the observation at the center of the function.
Weights located beyond the range of decorrelation will
produce random classifications.
[34] The modified counterpropagation algorithm was

used to produce an additional 100 equiprobable realizations,
where the total number of hidden nodes J for each of the
100 realizations was selected randomly from the range 2N
to 10N. Each equiprobable realization is the result of
different initial random weight vectors and subsequent
training and prediction. The resulting expected classified
electrical resistivity field (Figure 6a) and the associated
probability field (Figure 6c) are compared with those gener-
ated using sequential indicator simulation (SIS). Figures 6b
and 6d display the associated expected SIS electrical
resistivity and probability fields (across 100 realizations)
implemented using the geostatistical software GSLIB
(Geostatistical Software Library and User’s Guide, Statios,
WinGslib 1.4).
[35] Table 1 shows the global descriptive statistics (i.e.,

mean, median, standard deviation), residual correlation
coefficients (0.67 and 0.73) and RMSE values (1.1 and
1.0) to be similar for the expected ANN and SIS estimation
fields. In addition, we performed a comparison with a field
(image not shown) estimated using ordinary kriging (OK).
All three estimation fields honor the data at the observation
locations. We also quantified the spatial structure (e.g.,

Figure 6. Expected classified electrical resistivity fields produced by (a) ANN and (b) sequential
indicator simulation. Fields displaying the probability of classification as determined by (c) ANN and
(d) sequential indicator simulation.
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decorrelation lengths, variances and nuggets) for each of the
100 realizations to ensure they exhibit spatial structure
similar to that of the 16 observation data. The ANN and
SIS methods produce fields with a mean range of decorre-
lation of 0.72 ± 0.06 and 0.83 ± 0.12 respectively; while the
field estimated by OK has a range of decorrelation of 0.67,
which is most similar to the model describing the 16
observation data (a = 0.65).
[36] The expected ANN and SIS estimates in Figure 6 are

represented as real numbers. In practice, this may have little
physical meaning (i.e., for a categorical parameter such as
soil lithology); and one might round values to the nearest
integer. However, if the parameters are better represented by
real numbers (i.e., concentration), postprocessing is not
performed to preserve information. To evaluate bias with
the original quantized field, all fields were quantized (post-
processed by rounding, to the nearest integer) to represent
the same 6 classes of the original reality field. These fields
could be postprocessed into any number of classes depend-
ing on the application and the data at hand.
[37] An evaluation of bias between reality, the sampled

data, and the estimated OK, ANN, and SIS fields is reported
in Table 2. The 16 point observations that make up the
sampled field were chosen at random with no attempt to
reproduce the bias in the original reality field. As a result,
the sample field is biased toward electrical resistivity classes 1,
3, and 5 with less of classes 4 and 6 than are present in
the reality field. The OK estimate is biased toward classes 4
and 5 with fewer of class 1, 2 and 6 than the sample or

reality field. The SIS field is biased toward classes 2, 4 and
5 with fewer classes 1 and 6 than either the sampled data or
real field. The ANN shows less bias for 5 out of the 6
classes than either OK or SIS when compared to the
sampled field, and less bias for 4 of the 6 classes when
compared with the original reality field.

3.3. Spatial Estimation Using Multiple Data Types

[38] In this section, we show the ease with which the
counterpropagation ANN is able to estimate parameter
fields using multiple data types. In the first application,
we use all three types of geophysical data collected on the
slab of Berea sandstone and provide a comparison with the
method of ordinary cokriging. In the second application
(section 3.3.2), we showcase the ability of the ANN
methodology to assimilate a much larger number of data
types by estimating the extent of landfill leachate using a
total of seven data types.
3.3.1. Berea Sandstone
[39] We estimate the air permeability field associated with

the Berea sandstone (Figure 3a) using a limited subset of air
permeability measurements as the primary data and corre-
lated electrical resistivity and compressional wave velocity
as secondary data. To provide a realistic scenario of the
challenges associated with the unique spatial distribution of
data collected during real subsurface investigations (i.e.,
approximately continuous data in the vertical direction and
relatively sparse data in the horizontal direction), ten hypo-
thetical well borings were placed randomly along the cross
section of Berea sandstone, see Figure 7a. Measured air
permeability was assumed to be known only in the vertical
direction (at �3 mm intervals) along the well screens (black
bars of Figure 7a) for a total of 46 known observations.
Electrical resistivity and compressional wave velocity were
assumed to be known along the entire vertical length of the
well borings for a total of 380 measurements of each data
type. These secondary variables might be considered anal-
ogous to the more abundant (and perhaps less expensive)
information (e.g., descriptions of grain size or classifications
of soil lithology from drillers’ well logs). Error free measure-
ments of the primary and secondary data are assumed. The
autocorrelated and cross-correlated spatial structure of the
three data types were analyzed using semivariograms and
cross semivariograms.
[40] Two counterpropagation ANNs executed in series

were used to estimate a parameter field using these multiple
data. The estimates from the first network were used as the
input training data for the second network. The first ANN in
series, Figure 8b, is trained using the 46 air permeability
measurements collected along the well screens of Figure 8a.

Table 1. Global and Spatial Performance Measures for the

Classified Real Field of Figure 4a, 16 Point Observations, and

Fields Estimated Using the Method of OK, the Conditional

Simulation ANN, and the SIS

Reality 16 Observations OK ANN SIS

Global Measures
Mean 3.8 3.6 3.9 3.8 3.8
Median 4 3.5 4.1 4.1 4.2
Mode 4 5 5 5 5
Standard
deviation

1.4 1.6 1.1 1.3 1.1

Skewness �0.3 �0.3 �0.8 �0.6 �0.8
RMSE 0 NAa 1 1.1 1
Residual r NA NA 0.73 0.67 0.73

Spatial Measures
Range(a) 0.7 0.65 0.67 0.72 ± 0.06 0.83 ± 0.12
Sill 2.6 3.25 1.75 2.9 ± 0.2 3.0 ± 0.8
Nugget 0.09 0 0.02 0 0

Table 2. Evaluation of Bias for Quantized Estimated Electrical Resistivity Fields

Class

Reality 16 Observations OK ANN SIS

Count Percent Count Percent Count Percent Count Percent Count Percent

1 147 8.4 2 12.5 59 3.4 131 7.5 27 1.5
2 210 12.0 2 12.5 192 10.9 219 12.5 280 16.0
3 320 18.2 4 25.0 325 18.5 327 18.6 264 15.0
4 493 28.1 2 12.5 568 32.4 341 19.4 595 33.9
5 401 22.8 5 31.3 603 34.4 706 40.2 586 33.4
6 184 10.5 1 6.3 8 0.5 31 1.8 3 0.2
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These training patterns consist of the spatial locations (x1, x2)
and observed secondary variables (electrical resistivity and
compressional wave velocity) and the corresponding output
variable (air permeability). As a result, the architecture of
the first ANN consists of 4 input nodes, 46 hidden nodes
(Kohonen weights are preprocessed to equal the normalized
input vectors) and 511 output nodes. The 511 output nodes
correspond to the user-specified number of classifications
selected to represent air permeability. We selected 511
classifications (1) because the largest air permeability value
observed in the measured data set was 511 mD, and (2) to
demonstrate that the algorithm is not constrained to a small
number of output classes. In reality, we might expect the
user to prespecify a number of classifications that seems
reasonable for the problem and data type at hand (e.g., in the
case of hydraulic conductivity, the user may wish to have
significantly less output classifications as the distinction
between 18 and 28 cm/hr may not be meaningful). The
input data associated with the prediction phase of the first
ANN contain M = 380 vectors corresponding to the spatial
locations along the 10 well borings where x1, x2, electrical
resistivity and compressional wave velocity are known, and
predictions of air permeability are desired (unscreened
portion of the well boring). The resulting ANN estimates
of air permeability along the well borings are shown in
Figure 8c.
[41] The second ANN in the series is trained using the

380 estimates from the first ANN; and the corresponding
architecture (Figure 8d) comprised 2 input nodes (x1 and
x2,), 380 hidden nodes (Kohonen weights are again pre-
processed to equal the normalized input vectors) and 511
output nodes. Once trained to map the 380 spatial vectors to
the corresponding estimates of air permeability, the ANN
may be used to predict air permeability everywhere within
the sandstone boundaries (Figure 8e).
[42] The estimated ANN field is compared to a field

generated by the method of ordinary cokriging (Figure 8f)
in GSLIB (Geostatistical Software Library and User’s
Guide, Statios, WinGslib 1.4). The spatial structure of the
air permeability measurements was best fit (R2 = 0.83) by
an exponential model with range, a = 18 mm, nugget =
1,364 ohm2-m2 and sill = 6,075 ohm2-m2; see Figure 7b.

The 4:1 anisotropy ratio associated with the reality field
could not be discerned from the 46 measurements; however,
it was used with the method of cokriging to better estimate
the layering of the Berea sandstone. The semivariogram and
cross semivariogram analyses for the secondary data are not
shown. The residuals of the two fields (the ANN and
ordinary cokriging) with the reference field (measurements
minus the estimates) were computed and statistically exam-
ined for normality, central tendency (similar means) and
dispersion (similar variance). The residuals for each field
were found to be normally distributed and showed no
statistical difference with respect to measures of central
tendency and dispersion (type I error rate a of 0.05).
3.3.2. Banisveld Landfill
[43] To showcase the ability of the counterpropagation

ANN to assimilate large numbers of multiple data types, we
estimate the extent of leaking landfill leachate using elec-
trical formation conductivity as the primary data and six
additional secondary types of data from the Banisveld
landfill located outside of Boxtel, Netherlands. The landfill
is undergoing long-term monitoring and is equipped with
state of the art monitoring equipment. This site has well
characterized leachate plumes and has been sampled for
numerous microbiological and hydrochemical properties;
see Röling et al. [2000a, 2000b, 2001]; and Mouser et al.
[2005] for details. A principle components analysis was
used to reduce the dimensionality of the data from 24
hydrochemistry variables, 24 archaea variables and 29
bacterial variables to a total of six principle components
(2 for each data type) that explain 70%, 86% and 68% of the
total variance; see Mouser et al. [2005] for details. The
extent of the contamination using the first hydrochemistry
principle component and the observed 5:1 anisotropy ratio
is estimated along a cross section using the method of
ordinary kriging (Figure 9a). Two counterpropagation
ANNs used in series combine this state of the art microbial
information, hydrochemistry data and electrical formation
conductivity measurements (mS/m) into an estimate defin-
ing the extent of subsurface contamination, Figure 9b. The
training input vectors for the first ANN in series have
dimensions [8 � 13], where 8 is the number of components
in the input training vectors (comprising 2 spatial coordi-

Figure 7. (a) Measurements of air permeability (mD) on Berea sandstone and (b) semivariogram
describing spatial structure of the 46 air permeability observation at 3 mm intervals along the 10 vertical
well screens (black bars of Figure 7a).
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nates and the 6 above mentioned types of secondary data).
Only 27 locations contain both primary and secondary data.
Estimates are predicted for all 5,655 spatial locations at
which only secondary information exists. Thus input train-
ing vectors for the second ANN in series have dimensions
[2 � 5655], and estimates are predicted at 22,155 points in
space to generate the cross section of Figure 9b. The total
training time is �6 min. (All timings were performed on an
AMD Athlon 64 processor 3400+ (2.25 GHz) with 2.0 GB
of RAM.).

4. Discussion

[44] In section 3.1, we use the original counterpropaga-
tion ANN as developed by Hecht-Nielsen [1987, 1988] to
stochastically estimate maps of discrete spatially distributed
fields (e.g., classified electrical resistivity). An analysis of
the spatial structure revealed that the individual realizations
do not posses the observed spatial autocorrelation and
patterns of anisotropy associated with the primary variable
of interest. To remedy this, and eliminate the need for an a
priori user-defined number of hidden nodes, we modified

the original counterpropagation algorithm using a radial
basis function.
[45] The 100 realizations of electrical resistivity were

analyzed (section 3.2) to ensure that they approximate the
known spatial correlation as well as the frequency distribu-
tion associated with the measured data. The resulting
expected electrical resistivity field produced by averaging
the 100 realizations (Figure 6) was compared with the
methods of sequential indicator simulation and ordinary
kriging. Each averaged field and each of the 100 individual
realizations honors the measurement data at the known
observation locations. An evaluation (Table 1) of the global
statistics, spatial structure (section 3.2.) and bias (Table 2)
show favorable comparisons between the three methods. We
automated the process of best fitting the semivariograms for
each of the realizations using the nonlinear regression
platform in JMP 5.0.1.2. This method uses a least squares
regression method that weights all semivariogram points
equally instead of giving greater weight to points within the
range of decorrelation as might be done if best fit by an
expert. Despite this suboptimal method of fitting, the
difference between the semivariogram parameters is not

Figure 8. (a) Measured air permeability data from 10 randomly spaced well screens and (b) ANN
architecture used to map the relationship between x1, x2, electrical resistivity, compressional wave
velocity, and air permeability. (c) ANN predictions of air permeability at 380 spatial locations along the
length of the well borings at which secondary data is considered known. (d) ANN architecture trained
using predictions from first the ANN. Estimated air permeability fields (mD) using (e) sequential
counterpropagation ANNs and (f) method of ordinary cokriging.
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statically significant. The ANN field is biased toward class 5
(the most abundant class sampled) with fewer of class 6 than
the real or sampled field; however, it better captures the
distribution of classes 1, 2, 3 and 6 than either OK or SIS.
[46] To further compare the three estimated fields, resid-

uals (measurements minus the estimates) were computed
and examined for normality, central tendency (similar
means) and dispersion (similar variance). Normal probabil-
ity plots reveal that the residuals associated with the OK and
SIS fields were normally distributed, while the ANN field
was not. As a result, nonparametric statistical tests were
used to show that the residuals of the three estimation fields
are not statistically different with respect to measures of
central tendency (Wilcoxon Rank Sum test) and dispersion
(Levene’s and Brown-Forsyte tests) using a type I error rate
a of 0.05.
[47] In addition to performing conditional simulation, we

used two modified counterpropagation ANNs in tandem to
estimate spatially distributed fields using multiple data
types. The estimated air permeability field (Figure 8e),
generated with 46 measured air permeability data and 380
observations of compressional wave velocity and electrical
resistivity, respects the known data. In the vicinity of an
observation, the estimates closely resemble a nearest-
neighbor classifier, and the probability that a point will be
classified similarly to its nearest-mean Kohonen weight
vector decreases as the distance from the data approaches
the maximum range of decorrelation found in the primary
data variable. This estimated field compares well with the
method of ordinary cokriging (Figure 8f). Although the
limited number of observation data did not suggest the 4:1

anisotropy ratio or spatial structure observed in the reality
field, we used the known structure in the method of
cokriging to produce the best possible estimate for compar-
ison. Which method provides a ‘‘better’’ estimate may
depend on the type of data the user wishes to estimate.
Despite our inability to find any statistical difference in the
estimates provided by the two methods, the kriging esti-
mates appear superior when smoothing of the data is
preferred (e.g., concentration data). On the other hand, if
there is a preference for the primary variable to be layered or
blocky, the ANN estimates appear superior to the kriging
methods.
[48] In section 3.3.2, we estimate leaking landfill leachate

at the Banisveld landfill in Boxtel, Netherlands to demon-
strate the ease with which the ANNs in tandem can
assimilate large numbers of multiple data types. This
example involved the assimilation of multiple types of
hydrochemistry, microbiological and subsurface electrical
conductivity information (total of 7 data types) to delineate
the landfill leachate plume along a well characterized two-
dimensional cross section. Despite the recognition that the
assimilation of disparate field data can both improve
parameter estimates, we cannot say with any degree of
certainty whether the estimate of Figure 9b, which uses
matrix multiplication to incorporate 7 data types, is better or
worse than the ordinary kriging estimate using only the
hydrochemistry data. We were unable to assimilate 7 data
types with traditional geostatistical methods and present this
application to showcase the ease (e.g., the user simply adds
additional columns of data to the ANN input vector) with
which multiple data may be incorporated into the parameter

Figure 9. Cross-sectional estimate of landfill leachate contamination at the Banisveld landfill produced
using (a) first-principle component of hydrochemistry data and the method of ordinary kriging and
(b) first- and second-principle components of microbiological and hydrochemistry data and electrical
formation conductivity (mS/m) with the proposed sequential ANNs.
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estimate. Training times for these two ANNs in series were
on the order of �6 min.

5. Conclusions

[49] We present a novel method for performing stochastic
simulation using a modified counterpropagation algorithm.
The method is capable of estimating maps that (1) respect
the measured data at the known observations locations,
(2) have minimal conditional and/or global bias, and
(3) approximate the known spatial structure, as well as the
univariate statistical distribution (or frequency distribution
in the case of categorical variables) associated with the
primary data variable.
[50] In addition, a data-driven spatial approximation

method using two modified counterpropagation ANNs in
tandem has been introduced, applied and tested to show the
ease with which a method (using matrix multiplication) can
estimate spatially distributed fields directly from multiple
data types without the computational burden associated with
the construction and inversion of positive definite covari-
ance and cross-covariance matrices. The strength of the
proposed methodology lies in its ability to deal with large
numbers of multiple data types (amounts that prohibit the
use of traditional methods). The method does require the
spatial structure of the primary data be analyzed a priori
(e.g., semivariograms analysis); however, this structure is
usually well defined (and easy to compute for only one
variable type) when large amounts of data are available.
Comparison of the global statistics, spatial structure, and
bias with traditional kriging methods show no statistical
difference between the methods. The training times required
for the two-stage Berea sandstone estimation took on the
order of seconds (and less than a second for each of the
individual realizations in the conditional simulation sec-
tion), and our coding of the algorithm in MatLab V.
7.3.0.267 (R2006b) does not take full advantage of the
parallel nature of the ANN architecture. The method can be
readily applied in one-, two-, or three-dimensional map-
pings; and the combination of simplicity and computational
speed make the method ideally suited for performance
assessment, environmental site characterization, and other
Earth science applications that deal with spatially autocor-
related data.

Notation

xn nth input training vector of I components.
xi
n ith component of nth training vector.
yn target vector associated with the nth input training

vector.
N total number of training patterns.
I total number of nodes in the input layer.
J total number of nodes in the hidden layer.
K total number of nodes in the output layer.
w Kohonen weight matrix.
v Grossberg weight matrix.

wij Kohonen weight connecting ith input node and jth

hidden node.
zn* similarity vector comparing J hidden nodes and nth

input vector.
wj Kohonen weight vector associated with jth hidden

node.

a Kohonen weight learning coefficient.
zn similarity vector after activation function.
vj Grossberg weight vector associated with jth output

node.
b Grossberg weight learning coefficient.

xM Mth input predictor vector of I components.
ŷM Mth prediction/classification vector.
M total number of vectors for which an approximation

is desired.
8(d) probability of hidden nodes having similar output

classifications.
d distance between two Kohonen weights vectors.
s2 variance of radial basis function.
a semivariogram range of decorrelation.
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