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Green leaf phenology is known to be sensitive to climate variation. Phenology is also important because it ex-
erts significant control on terrestrial carbon cycling and sequestration. High-quality measurements of green
leaf phenology are therefore increasingly important for understanding the effects of climate change on eco-
system function and biosphere–atmosphere interactions. In this paper, we compare “near-surface” and satel-
lite remote sensing-based observations of vegetation phenology at four deciduous forest sites. Specifically,
we addressed three questions related to how observations of plant phenology measured by red–green–
blue (RGB) cameras mounted on towers above forest canopies are related to measurements of phenology
acquired by moderate resolution sensors on satellites. First, how are estimated phenophase transition
dates — or the observable stages in the life cycle of plants — influenced by the choice of vegetation index
(VI) measured by remote sensing? Second, are VIs and phenological metrics derived from near-surface and
satellite remote sensing comparable, and what is the nature and magnitude of covariation between near-
surface and satellite-remote sensing-based estimates of phenology at seasonal and interannual time scales?
Third, does near-surface remote sensing data provide a basis for validating satellite-derived land surface phe-
nology products and what are the requirements for achieving this goal? Our study provides substantial sup-
port for future efforts linking satellite and near-surface remote sensing. We show significant agreement
between phenological time series and metrics derived from these two data sources. However, issues of
scale and representation strongly influence the relationship between near surface and satellite remote sens-
ing measures of phenology. In particular, intra- and interannual correlation between time series from each
source are dependent on how representative the camera FOV is of the regional landscape. Further, our results
show that the specific VI used to monitor phenology exerts substantial influence on satellite VI derived
phenological metrics, and by extension, how they compare to VI time series and metrics obtained from
near-surface remote sensing. These results improve understanding of how near-surface and satellite remote
sensing complement each other. However, more work is required to develop formal protocols for evaluating,
calibrating and validating satellite remote sensing phenology products using near surface remote sensing at a
regional to continental scale.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Green leaf phenology, the study of seasonal leaf development,
senescence and abscission, is known to be an indicator of
climate change (Cleland et al., 2007; Kemp, 1983; Menzel et al.,
2006; Parmesan, 2007). In particular, phenology in temperate eco-
systems is strongly linked to seasonality in solar radiation
s).
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(photoperiod) and temperature and is therefore an effective integra-
tor of weather at weekly to seasonal time scales (Schwartz et al.,
2006). As a consequence, climate change at mid and high-latitudes is
affecting the phenology of temperate and boreal ecosystems, and cur-
rent estimates suggest that spring phenology has advanced by as
much as two days per decade over the last half-century (Parmesan &
Yohe, 2003).While some studies have noted heterogeneous responses
to climate warming (Zhang et al., 2007), most phenological assess-
ments based on remote sensing (Myneni et al., 1997; Bogaert et al.,
2002), field observations (Sparks & Menzel, 2002) or atmospheric
CO2 measurements (Keeling et al., 1996), suggest an earlier spring

http://dx.doi.org/10.1016/j.rse.2011.10.006
mailto:koen.hufkens@gmail.com
http://dx.doi.org/10.1016/j.rse.2011.10.006
http://www.sciencedirect.com/science/journal/00344257


308 K. Hufkens et al. / Remote Sensing of Environment 117 (2012) 307–321
onset and longer growing season overall (Badeck et al., 2004; Penuelas
et al., 2002).

Changes in phenology have important implications for ecosystem
function and biosphere–atmosphere interactions. Year-to-year vari-
ability in gross primary production and ecosystem respiration are
influenced by inter-annual variations in temperature. As a result,
variation in phenology exerts significant influence on carbon cycling
and sequestration (e.g. Richardson et al., 2009, 2010). Similarly, spa-
tial patterns in forest gross primary production correlate strongly
with growing season length (Baldocchi et al., 2005; Churkina et al.,
2005; Nemani et al., 2003). Finally, because changes in canopy prop-
erties affect surface meteorology, vegetation phenology also influ-
ences atmospheric boundary layer properties and dynamics
(Hollinger et al., 1999; Sakai et al., 1997). Thus, high-quality mea-
surements of green leaf phenology at landscape-scales are impor-
tant for a diverse array of questions related to the effects of
climate change on ecosystem function and biosphere–atmosphere
interactions.

Phenological events have been documented for centuries in Eu-
rope and Japan by hobbyists, generations of the same family, and
even by communal decree (Chuine et al., 2004; Fitter & Fitter,
2002; Sparks & Menzel, 2002). These historical records document
phenophase dates (the observable stages in the life cycle of a plant
or animals for important phenological events such as leaf-out, flow-
ering, or harvest), and have provided insight into long-term climate
trends (Sparks & Menzel, 2002). Recently, a number of initiatives in-
cluding the USA National Phenology Network (USA-NPN, Betancourt
et al., 2007), the “Global Learning and Observations to Benefit the
Environment” (GLOBE) science network, and the French “Réseau Na-
tional de suivi à long terme des ECOsystèmes FORestiers” (RENECO-
FOR) network have attempted to expand and extend these records.
However, data collected through these efforts are constrained by
one or more factors including limits to species ranges, local or re-
gional spatial extent, inconsistencies in observations among ob-
servers, or low observation frequency (Chuine et al., 2000; Menzel,
2002). High temporal frequency observations of vegetation phenolo-
gy, such as measurements obtained from above- and below-canopy
radiometric instruments provide detailed information related to
the phenology of forest canopies based on measurable biophysical
quantities (e.g., fAPAR; Jenkins et al., 2007). However, measurements
collected in this fashion are influenced by spatial heterogeneity,
and as a result, adequate sampling of landscape-scale phenological
dynamics is difficult.

Recently, near-surface remote sensing using conventional or net-
worked red–green–blue (RGB) cameras has been shown to provide
a cost effective way to monitor green leaf phenology (Graham et al.,
2009, 2010; Jacobs et al., 2009; Richardson et al., 2007, 2009). In par-
ticular, data retrieved from RGB cameras have been used to monitor
vegetation development and canopy CO2 fluxes (Ahrends et al.,
2009; Richardson et al., 2007, 2009). A key advantage of near-
surface remote sensing is that it allows phenological dynamics to be
monitored at high temporal frequency and over broader spatial ex-
tents relative to visual observations or above- and -below canopy ra-
diometric measurements (Wingate et al., 2008). Indeed, the
measurement scale of RGB cameras, which can vary from that of indi-
vidual trees to entire landscapes, opens new possibilities for bridging
the gap between ground and satellite-based phenology measure-
ments (Morisette et al., 2008; Richardson et al., 2007). While numer-
ous studies have explored the use of satellite remote sensing data for
monitoring terrestrial phenology at landscape to regional scales
(Fisher et al., 2007; Myneni et al., 1997; Soudani et al., 2008; White
et al., 2009), assessing the relationship between ground- and
satellite-based measurements of phenology remains a challenge.
Moreover, no study has previously attempted to carefully analyze
the relationship of near-surface remote sensing of canopy phenology
to corresponding measurements from satellite remote sensing.
In this paper, we present results from a study in which we com-
pare near-surface and satellite remote sensing-based observations
of vegetation phenology. Given the demonstrated utility of both
sources of information related to phenology, we address several out-
standing questions related to how observations of plant phenology
scale from the spatial resolution of individual plants and leaves mea-
sured by RGB cameras to the landscape resolution measured by satel-
lite sensors. Specifically, we address three main questions:

(1) How are estimated phenophase dates influenced by the choice
of vegetation indices (VIs) measured by remote sensing?

(2) Are VIs and phenological metrics derived from near-surface
and satellite remote sensing comparable, and what is the na-
ture and magnitude of covariation between near-surface and
satellite-remote sensing-based estimates of phenology at sea-
sonal and interannual time scales? and

(3) Does near-surface remote sensing data provide a basis for val-
idating satellite-derived land surface phenology products and
what are the requirements for achieving this goal?

2. Materials and methods

2.1. Near-surface remote sensing site selection

Near-surface remote sensing data was acquired from the Pheno-
Cam data repository (Richardson et al., 2007: http://phenocam.sr.
unh.edu). This repository includes time series of RGB camera imagery
frommore than 50 sites distributed across North America. Not all RGB
cameras within the repository are directly internet-connected. How-
ever, for consistency we will refer to all RGB cameras as webcams.
To support a careful and detailed analysis of the relationship between
satellite and near-surface data sets, we limited the number of sites
used in this study. Specifically, we selected sites based on two main
criteria: (1) the length of the available time series, and (2) qualitative
assessment of the quality of the available time series. Further, to en-
sure that selected sites had strong seasonal phenology, only decidu-
ous broadleaf forest sites were considered. After careful assessment
of imagery in the PhenoCam data repository we selected four sites
for inter-comparison. These sites included the Bartlett Experimental
Forest (44.06° N, 71.29° W, elev. 268 m asl.) located within the
White Mountain National Forest, Smoky Look in the Great Smoky
Mountains National Park (35.63° N, 83.94° W, elev. 739 m asl.), the
Green River valley in Mammoth Cave National Park (37.19° N,
86.10° W, elev. 226 m asl.) and the Dolly Sods Wilderness area in
the Monongahela National Forest (39.11° N, 79.43° W, elev. 1141 m
asl.). The Bartlett camera was installed specifically for phenological
observations; the latter three cameras were installed by federal agen-
cies for air quality monitoring.

Each of the cameras was installed using different configurations.
The camera located at Bartlett Experimental Forest is directed to-
wards the north inclined downward at 15° from the horizontal. The
field of view (FOV) of this camera is dominated by northern hard-
wood tree species (American beech, Fagus grandifolia; Sugar maple,
Acer saccharum and yellow birch, Betula alleghaniensis). The cameras
at Great Smoky National Park and the Dolly Sods Wilderness Area
are directed toward (and approximately leveled with) the eastern
and southern horizons, respectively, and both FOVs are dominated
by northern hardwood tree species (American beech, F. grandifolia;
Sugar maple, A. saccharum and yellow birch, B. alleghaniensis). The
camera at Mammoth Cave National park points north–northwest
and downward from the horizon, with Oak–Hickory forest (Quercus
sp., Carya sp.) dominating the FOV. An overview of the sites and
their characteristics is given in Table 1. To characterize spatial hetero-
geneity of land cover within and between MODIS pixels at each site,
we used the Multi-Resolution Land Characteristics Consortium 2006
National Land Cover Database (NLDC, Fry et al., 2011).

http://phenocam.sr.unh.edu
http://phenocam.sr.unh.edu


Table 1
Summary of PhenoCam site characteristics, including geographic location, camera type, source of data, time-span analyzed, and predominant vegetation type in the field of
view (FOV).

Site Location (latitude, longitude
in decimal degrees)

Elevation
(m)

Direction
of FOV

Camera Type Data source Years Vegetation type

Bartlett Experimental Forest 44.06, −71.29 268 N Axis211 PhenoCam network 2006–2010 Northern Hardwood Forest
Air quality camera,
Dolly Sods National Park

39.11, −79.43 1141 S Olympus D-360L US Forest Service 2004–2010 Northern Hardwood/
Red Spruce Forest

Air quality camera,
Mammoth Cave National Park

37.19, −86.10 226 NNW Olympus D-360L National Park Service 2002–2010 Oak, Hickory Forest

Air quality camera,
Great Smoky National Park

35.63, −83.94 793 E Olympus D-360L National Park Service 2000–2010 Northern Hardwood Forest
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2.2. Data sets

2.2.1. Near-surface remote sensing image acquisition and pre-processing
For each of the selected sites all available images were down-

loaded from the PhenoCam server. Because webcam images include
a mix of landscape, sky, and other features, images were manually
segmented and data were extracted for user-selected regions of inter-
est (ROI) within each webcam FOV (Fig. 1). Each ROI was selected to
provide high quality data representative of dominant vegetation
types in the scene. To this end, we attempted to select ROIs covering
multiple tree canopies located in the foreground of each image. Fur-
thermore, selection of a ROI located in the foreground minimizes
weather effects such as fog and clouds which could negatively influ-
ence the quality of phenological information that can be obtained
from webcams (Richardson et al., 2009).

Using digital number values for the red, green, and blue color
planes from each image, we calculated the average excess green
Fig. 1. Digital camera field of view and regions of interests (ROI) at each of the four sites (B
Cave National Park, Mc and Dolly Sods Wilderness, Ds).
index (ExGW) for each ROI. The excess green index has been previ-
ously used in agriculture to discriminate leaf cover from soil back-
ground (Woebbecke et al., 1995), and Richardson et al. (2009)
recently demonstrated its utility for monitoring forest canopy phe-
nology. This index is defined as:

ExGw ¼ 2 � G– R þ Bð Þ; ð1Þ

where R, G, and B the digital numbers of the red, green and blue chan-
nels in the ROI.

Each of the cameras acquired multiple images for each day at
different time intervals. Unlike previous studies (Ahrends et al.,
2008a,b; Richardson et al., 2009), we did not estimate daily values
using average midday images. Instead, moving-windows were used
to calculate the quantile for each ExGW value using a window size
of three days. The 90th percentile ExGW value for each 3-day period
was then used to produce time series with 3 day time steps for
artlett Experimental Forest, Bt; Look Rock in Smoky Look National Park, Sl; Mammoth
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each camera. This approach reduces day-to-day variability caused
by changing weather and illumination conditions (Sonnentag
et al., 2012).
2.2.2. Satellite remote sensing image acquisition and preprocessing
MODIS surface reflectance data were acquired for pixels corre-

sponding to the geographic location and duration of each near-
surface time series. MODIS data was downloaded from the Oak
Ridge National Laboratory Distributed Active Archive Center
(http://daac.ornl.gov/) for 5×5 pixel (~2.3×2.3 km) regions centered
over the location of each camera site (Table 1, column 2). All data
used for this analysis were based on the most recently available ver-
sion of MODIS land products (so-called Collection 5). For each pixel
we extracted: (1) 8-day MODIS nadir BRDF-adjusted surface reflec-
tance data values for MODIS bands one to four (and associated quality
assurance data), (2) MODIS Land Cover Type data, and (3) MODIS
Land Cover Dynamics (hereafter, MODIS phenology) data (Friedl
et al., 2010; Ganguly et al., 2010; Schaaf et al., 2002). MODIS reflec-
tance data that were contaminated by snow, classified as water,
urban, barren or snow/ice, or that were flagged as missing (e.g., due
Fig. 2. a–c. Schematics showing biases of modeled versus actual VI dynamics during spring
lines illustrate the effects of changes in logistic function parameters for (a) a change in ste
the curve but no change in the overall steepness, (c) a change in both steepness and phas
on the logistic fits are denoted with closed and open circles and squares, respectively. Pane
plitude comparing the results for the solid (x-axis) to the solid line (y-axis).
to clouds) were removed. The remaining pixels were averaged and
used to calculate three VIs:

(1) the Enhanced Vegetation Index (EVI; Huete et al., 2002):

EVI ¼ G � NIR−RED
NIRþ C1 � RED−C2 � BLUE þ L

; ð2Þ

(2) the Normalized Difference Vegetation Index (NDVI; Tucker,
1979):

NDVI ¼ NIR−RED
NIRþ RED

; ð3Þ

and (3) the Excess Green Index (ExGM):

ExGM ¼ 2 � GREEN– REDþ BLUEð Þ; ð4Þ

where RED, GREEN, BLUE, and NIR correspond to MODIS band 1
(620–670 nm), band 4 (545–565 nm), band 3 (459–479 nm),
using logistic models. The black lines show reference logistic models, and the dashed
epness but no change in the phase in the logistic curve, (b) a change in the phase of
e. Phenological metrics indicating the timing of greenness onset and maximum based
ls on the right display the phenological metrics as 5 percent intervals of the total am-

http://daac.ornl.gov/
image of Fig.�2
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and band 2 (841–871 nm); and L, C1, C2 are aerosol resistance co-
efficients (equal to 1, 6, 7.5, respectively); and G is a gain factor
(=2.5) (Huete et al., 2002). Note that the ExGM index was includ-
ed to provide the most direct comparison between MODIS and the
camera data. Example time series of the MODIS VI's for all sites are
shown in Fig. 2.
3. Overview of different dynamics displayed by the various VIs at each the four site
c: Look Rock in Smoky Look National Park, Sl; and d: Dolly Sods Wilderness, Ds. an
els show the unprocessed raw excess green digital camera data (ExGW, gray dots)
). The bottom panels show the enhanced vegetation index (EVI, black line), the norma
) from MODIS. The full gray vertical lines, from left to right, denote the timing of
othed ExGW and MODIS EVI data, respectively. The black arrow in panel a) indicates
t in 2007.
2.3. Estimating and comparing phenological metrics

2.3.1. Logistic model fits
Following an approach that is widely used in the phenology scien-

tific community (Fisher et al., 2006, 2007; Richardson et al., 2006,
2009; Schwartz & Hanes, 2010; Zhang et al., 2003), we used a logistic
s of interest (a: Mammoth Cave National Park, Mc; b: Bartlett Experimental Forest,
d e: an overview of the complete Bartlett Experimental Forest time series. The top
and processed data after applying the moving window quantile approach (black

lized difference vegetation index (NDVI, dashed line) and excess green (ExGM, dotted
greenness onset, maximum, decrease and minimum (Gin, Gmax, Gdec, Gmin) for the
early onset of the growing season and subsequent die-back due to a severe spring

image of Fig.�3
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equation to model spring and autumn dynamics in webcam and
MODIS-derived VIs as a function of time:

VIðtÞ ¼ aþ b
1þ e c−d�tð Þ ; ð5Þ

where t is time (in days), c and d are coefficients that determine the
timing and speed of canopy development (or senescence), respec-
tively, and a and b control the lower and upper limits of the function,
respectively. For this work, we estimate values for b, c and d by non-
linear least squares fits to the data, and a is assigned the median VI
value during the first and last two months of the time series (i.e., dur-
ing the winter, dormant phases). The logistic equation presented
above was fit separately to spring and autumn webcam and MODIS
VI time series at each site, with parameters optimized separately for
each year of data. To model spring dynamics we used data spanning
day of year (DOY) 1–185. For autumn dynamics, we used data from
DOY 185–365.

Using this framework, we estimated DOY phenophase transition
dates (hereafter, phenological metrics) using the method described
by Zhang et al. (2003). Phenological metrics considered here include
the dates of onset for VI increase, VI maximum, VI decrease, and VI
minimum (hereafter Gin, Gmax, Gdec and Gmin respectively, see
Fig. 3a). Further, the duration of greenup (Gmax–Gin) and senescence
(Gmin–Gdec) periods were calculated, which provide information
about the speed at which leaves develop during spring and senes-
cence during autumn. We also recorded the DOY at 5 percent inter-
vals between 5 and 95% of the amplitude for each estimated logistic
fit. These metrics were used to compare characteristics of models
fitted to data from the webcams with those fitted to MODIS data. Fi-
nally, for each of the sites we retrieved values for corresponding phe-
nological metrics from the MODIS phenology product (Ganguly et al.,
2010). Although the procedure described above is similar to the algo-
rithm used in the MODIS product generation, different methods were
used to pre-process the webcam RGB digital number data and MODIS
surface reflectance data (specifically, to fill gaps and remove noise).
As a result, some differences between the phenological metrics esti-
mated in this work and those from MODIS and the standard NASA
product arise from differences in pre-processing. However, these dif-
ferences should be modest. A full description of the MODIS phenology
algorithm and product is provided by Zhang et al. (2006) and Ganguly
et al. (2010).

2.3.2. Comparing near-surface and satellite-based remote sensing
phenological metrics

To quantify the logistic model fit, we report the root mean squared
error (RMSE) and the coefficient of variation (CV) separately for the
spring and autumn for each site. Mean and standard deviations for
phenological transition dates (Gin, Gmax, Gdec and Gmin), and greenup
and senescence durations were also calculated for each site and year.
These metrics provide information about relationships among pheno-
phase transition dates derived from the different data sources and
VIs. In this context, it is important to note that variance in phenolog-
ical indicators across years reflects inter-annual variation in the esti-
mated phenological metrics. We also calculate the mean absolute
error (MAE) between the ExGW and MODIS VI-based phenological
metrics. Finally, Spearman rank correlations (Spearman, 1904) were
used to quantify covariation across years between the ExGW and
MODIS VI based metrics. This test provides a non-parametric way to
quantify how two measurements covary. Correlation values were
considered significant for pb0.05.

As part of our analysis we also assess the logistic fits for biases in
either phase (d) or slope (c). To do this, we identify three scenarios
in which phenological dynamics during greenup and senescence
measured by different sources might diverge from one another
(Fig. 2). For the sake of illustration, we focus on spring phenology
only. In the first case, models fit to different input data have the
same phase, but different slopes or rates of change (Fig. 2a). In the
second case, different models have similar rates of change, but their
phase is different, thereby shifting the position of one curve relative
to the other (Fig. 2b). Finally, in the third case, differences in both
the slope and phase are present (Fig. 2c).

To summarize results from this analysis we computed an index we
call the “bias ratio” (BR), which is designed to quantify the nature and
magnitude of bias in logistic fits based on the satellite VIs relative to
the logistic fits based on the ExGW data:

BR ¼
Xn

i¼1

ei= eij j; ð6Þ

where ei is the deviation between the logistic fit for the satellite
date relative to the webcam data, and n is 19, corresponding to 5
percent increments in the amplitude of each fit from 5 to 95%. The
value of this metric indicates whether model fits to the satellite
VIs are generally positively biased (~1), negatively biased (~−1)
or display a more complex pattern including a change in steepness
and bias (~0) relative to the ExGW data. A perfect agreement be-
tween logistic fits will result in a BR value of 0. To provide further
insight into differences in phenological dynamics we plot the devia-
tions between the satellite data and the webcam data at 5 percent
increments.

3. Results

3.1. Near-surface and satellite remote sensing time series and
phenological metrics

Day-to-day variability caused by changing weather and illumina-
tion conditions was reduced by the running quantile method and
the resulting VI time series were relatively noise-free. To illustrate,
Fig. 3 shows sample time series for each of the sites and an over-
view of the complete time series of Bartlett Forest (Fig. 3e). This fig-
ure shows both the raw data and the time series after removing
day-to-day variability using the method described in Section 2.2.
All of the time series display pronounced asymmetric seasonal phe-
nology. Spring greenup is characterized by a rapid rise in ExGW,
while autumn dynamics are less abrupt and generally display
more gradual change. In addition, and most notably at the Dolly
Sods and Smoky Look sites, a pronounced peak is evident in ExGW

early in the season before it levels off and becomes stable until
the onset of senescence (Fig. 3c–d). Both of these sites display
faster increase in ExGW during spring relative to more gradual
rates of increase at both the Bartlett Forest and Mammoth Cave
sites (Fig. 3a–b).

Removing MODIS reflectance data contaminated by snow, classi-
fied as water, urban, barren or snow/ice resulted in MODIS time-
series that were relatively noise-free. However, distinct differences
in the phenological dynamics represented by MODIS EVI, NDVI and
ExGM time series are clearly evident (Fig. 3). Both the NDVI and
ExGM show rapid increase and decrease during spring and autumn
relative to more gradual dynamics evident in EVI values. Although
not as pronounced as in the camera data, the ExGM data also exhibit
a peak during late spring. Further, asymmetry between spring and
autumn phenology noted in the ExGW data is also present in both
the ExGM and EVI time series. The NDVI data, on the other hand,
displays a more symmetric profile and the general shape is similar
to a piecewise linear function characterized by uniform increase
and decrease in VI values during spring and autumn, with relatively
stable values during much of the growing season. In this context, it
is important to note that land cover at each of the sites included a
mixture of vegetation and land use, but was dominated by decidu-
ous or mixed forest types (Fig. 4). As a result, some of the



Fig. 4. An overview of the National Land Cover Database (NLCD) land cover heterogeneity within the 5×5 MODIS pixel windows, as marked by dashed black lines, surrounding the
near-surface remote sensing camera sites for a: Bartlett Experimental Forest, Bt; b: Mammoth Cave National Park, Mc; c: Look Rock in Smoky Look National Park, Sl; and d: Dolly
Sods Wilderness, Ds. The percentage land cover (%) is plotted as a color coded bar chart at the top of every panel.
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differences between the webcam and MODIS time series likely arise
from land cover heterogeneity within and across MODIS pixels at
each site.

Inspection of statistical metrics for logistic fits to the different VIs
shows that RMSEs are lowest for the ExGw and MODIS VI based
models (Table 2, top). Average RMSE values for MODIS VI data
are slightly lower (0.009–0.007) than those for ExGw data, with
spring and autumn RMSE values of 0.018 and 0.016, respectively.
Coefficients of variation, however, present a more balanced picture
of the errors with very similar values across all VIs (Table 2,
bottom).
Table 2
Root Mean Squared Error (RMSE) and the Coefficient of Variation (CV) across all sites
for the logistic model fits. Values are reported separately for spring and fall data.

Index Spring Fall

RMSE ExGW 0.018 0.016
EVI 0.004 0.006
NDVI 0.009 0.007
ExGM 0.014 0.008
MCD12Q2 / /

CV ExGW 0.455 0.358
EVI 0.358 0.280
NDVI 0.724 0.347
ExGM 0.343 0.219
MCD12Q2 / /
Visual interpretation of phenological dynamics in ExGW and
MODIS VI data are consistent with observed patterns in the estimated
phenological metrics. However, comparison of metrics derived from
the camera data with metrics derived from MODIS VIs reveal impor-
tant patterns and differences. On average, values for the date of in-
crease in ExGW (Gin) are later relative to metrics based on EVI, NDVI
and ExGM data (Table 3); Similarly, the date of onset of maximum
VI (Gmax) is generally earlier for NDVI and ExGM, and later for EVI
and the MODIS phenology product values. Patterns among metrics
derived from different VI time series in the autumn are consistent
with those in spring, where ExGW, NDVI and ExGM show later onset
of VI decrease, but earlier onset of VI minimum. In contrast, the
slow rate of change in autumn MODIS EVI results in earlier estimates
of the onset of VI decrease and later estimates for the onset of green-
ness minimum. This pattern is also present in the MODIS phenology
product data.

Differences in estimated greenup and senescence periods are
caused by systematic patterns in estimates of the timing of VI in-
crease, maximum, decrease and minimum (Table 3). As a conse-
quence, observed patterns in these quantities are generally
consistent with patterns in the individual metrics described above.
For example, the average greenup period from the ExGW, NDVI
and ExGM for the Mammoth Cave site is 25, 23 and 15 days, respec-
tively. In contrast, estimates based on EVI and the MCD12Q2 have pe-
riods of 32 and 43 days, respectively. A similar trend is present in the
estimated senescence periods, where again, senescence is almost
twice as long for EVI and the MODIS phenology product (77,

image of Fig.�4


Table 3
Mean and standard deviation in day of year for phenological metrics: DOY for onset of greenness increase, maximum, decrease, minimum (Gin, Gmax, Gdec and Gmin respec-
tively). In addition, mean and standard deviation in greenup and senescence periods are reported (in days). Results are reported for each of the four sites examined (Bartlett
Experimental Forest, Bt; Look Rock in Smoky Look National Park, Sl; Mammoth Cave National Park, Mc and Dolly Sods Wilderness, Ds) and for both near-surface (ExGW) and
satellite based (EVI, NDVI and ExGM) estimates including the MODIS MCD12Q2 product. Values are rounded to the nearest integer. N refers to number of years of data at each
site.

Index ExGW EVI NDVI ExGM MCD12Q2

Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev

Bt Gin 120 2 111 6 114 9 116 3 124 15
(N=4) Gmax 137 9 143 7 135 7 125 7 156 2

Gdec 237 27 239 5 255 8 248 6 223 5
Gmin 273 3 293 1 275 7 285 5 298 3
Greenup 17 7 32 9 21 12 9 7 32 13
Senescence 36 27 54 4 20 12 37 9 75 2

Sl Gin 107 6 94 7 98 6 95 5 90 7
(N=9) Gmax 126 8 129 7 117 6 107 7 142 8

Gdec 288 15 250 5 282 6 276 9 221 6
Gmin 306 9 315 7 305 8 304 8 331 8
Greenup 19 8 35 10 18 6 12 6 51 10
Senescence 19 14 65 8 23 7 28 8 110 10

Mc Gin 96 8 91 6 92 6 90 8 92 6
(N=8) Gmax 121 15 123 9 115 9 105 9 135 8

Gdec 261 25 235 9 274 8 269 11 204 8
Gmin 309 5 312 7 307 7 304 6 321 8
Greenup 25 18 32 10 23 11 15 13 43 11
Senescence 48 20 77 11 33 8 35 10 116 15

Ds Gin 128 5 113 3 111 9 115 7 117 7
(N=6) Gmax 142 6 156 12 152 7 142 6 169 7

Gdec 241 23 225 10 255 11 234 12 220 7
Gmin 303 8 295 15 287 8 284 3 297 5
Greenup 15 4 43 14 42 10 26 10 52 8
Senescence 62 25 69 10 32 16 50 14 77 6
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116 days) compared to estimates based on ExGW, NDVI and ExGM

data (48, 33 and 35 days). This trend is observed across all sites,
with average greenup and senescence periods that are consistently
shorter for estimates based on ExGW, ExGM and NDVI data relative
Table 4
Mean absolute error (MAE) and minimum and maximum values for the difference betwee
increase, maximum, decrease, minimum (Gin, Gmax, Gdec and Gmin respectively, in Doy). Mea
(in days). Data are provided for four different sites (Bartlett Experimental Forest, Bt; Look R
Wilderness, Ds). Values are rounded to the nearest integer.

Index Mean absolute error (min–max)

EVI NDVI

Bt Gin 9 (5–17) 9
(N=4) Gmax 5 (1–10) 4

Gdec 11 (3–18) 8
Gmin 19 (17–22) 4
Greenup 15 (9–22) 9
Senescence 30 (20–39) 17

Sl Gin 15 (12–24) 10
(N=9) Gmax 4 (0–12) 10

Gdec 38 (6–56) 12
Gmin 9 (0–15) 3
Greenup 19 (9–29) 4
Senescence 47 (9–66) 14

Mc Gin 6 (1–17) 7
(N=8) Gmax 6 (1–16) 9

Gdec 35 (13–55) 19
Gmin 4 (0–9) 5
Greenup 12 (2–25) 9
Senescence 36 (13–64) 21

Ds Gin 15 (7–23) 17
(N=6) Gmax 13 (4–25) 10

Gdec 18 (0–45) 22
Gmin 9 (1–19) 17
Greenup 29 (15–47) 27
Senescence 23 (1–46) 36
to those derived from MODIS EVI data and the MODIS phenology
product.

To assess systematic biases among values based on different
input data relative to the webcam data, we computed the mean
n the ExGw and satellite based phenological indicators for: DOY of onset in greenness
n and standard deviations for spring greenup and fall senescence periods are reported
ock in Smoky Look National Park, Sl; Mammoth Cave National Park, Mc and Dolly Sods

ExGM MCD12Q2

(5–13) 4 (1–11) 10 (3–27)
(1–8) 12 (8–18) 16 (14–17)
(1–13) 3 (1–7) 26 (20–33)
(0–7) 12 (7–15) 25 (22–28)
(4–16) 8 (6–17) 18 (13–21)
(1–50) 20 (11–49) 51 (42–60)
(4–18) 13 (6–23) 18 (13–27)
(0–22) 20 (9–36) 15 (9–27)
(1–30) 12 (0–29) 67 (28–88)
(0–11) 5 (1–8) 24 (16–34)
(1–13) 10 (2–23) 33 (23–46)
(1–41) 11 (2–30) 91 (48–112)
(2–11) 7 (0–20) 7 (2–15)
(1–13) 16 (7–52) 17 (7–30)
(7–69) 17 (3–65) 59 (4–93)
(0–12) 6 (0–15) 12 (4–20)
(3–18) 11 (2–32) 21 (2–40)
(1–62) 19 (0–60) 71 (23–113)
(7–26) 12 (1–18) 12 (4–19)
(0–26) 3 (2–8) 26 (17–38)
(1–42) 21 (4–49) 21 (4–48)
(1–32) 19 (4–26) 8 (3–15)
(16–44) 14 (7–20) 38 (24–57)
(3–61) 29 (5–49) 20 (1–48)
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absolute error (MAE) between the ExGw and each of the MODIS VI
based phenological metrics (Table 4). In general the MAE for metrics
derived from EVI and MODIS phenology data are larger than those
derived from NDVI and ExGM data. Further, both the Dolly
Sods and Smoky Look sites have slightly larger MAE values than
the Bartlett Forest and Mammoth Cave sites. Given the rapid in-
crease (spring) and decrease (autumn) in the ExGW time series for
both Smoky Look and Dolly Sods, this is expected because the 8-
day temporal sampling of MODIS is not able to capture these rapid
transitions. In contrast, dynamics in phenology at Mammoth Cave
and Bartlett Forest data are more gradual, which leads to better
fits, better correspondence between the different VI time series
Fig. 5. a–d. Phenological indicators for the Mammoth Cave National Park (Mc) site cov-
ering the complete data series (2002–2009). Greenness increase (a), maximum (b), de-
crease (c) and minimum (d) for the ExGW (red line, dot), MODIS EVI (black short
dashed line, square), MODIS NDVI (green dotted line, star) and MODIS ExGM (blue dot-
ted dashed line, cross) are shown. All values were estimated using a logistic model es-
timated by non-linear least squares. For visual comparison values from theMODIS Land
Cover Dynamics product (MCD12Q2) are also shown (orange long dashed line,
triangle).
and the derived phenological indicators, and by extension, lower
the MAE for both sites. (Table 4). It is interesting to note that MAE
values at the Mammoth Cave site show relatively consistent patterns
across metrics, the only exception being Gdec, which was influenced
by missing data and/or outliers in 2009. When data from 2009 are
excluded, MAE values are 4–9 and 6–16 for the NDVI and ExGM

based metrics (Table 4).

3.2. Interannual covariance among phenological indicators

Visual assessment of year-to-year covariation among phenolog-
ical metrics suggests that VI data derived from MODIS and the
cameras capture consistent patterns of interannual variation, presum-
ably attributable to climate forcing (Fig. 5). For example, at the Mam-
moth Cave site, which has the longest time series of camera data,
covariance among phenological indicators is visible in Fig. 5. In addi-
tion, the effects of early spring warming and a late frost event in
2007 are clearly evident (i.e., early onset of leaf growth, but delayed
canopy maturity), and are consistent with previous work that docu-
mented pronounced vegetation response to unusual spring weather
conditions in the central and eastern United States in 2007 (Gu et al.,
2008).

More specifically, Spearman rank correlations among the various
metrics (Table 5) vary significantly across sites. Smoky Look and
Mammoth Cave are the only sites with large proportion of significant
correlations between ExGW and the MODIS VI based metrics; specifi-
cally, metrics derived from ExGW were significantly correlated with
the timing of increase across all MODIS phenology metrics (signifi-
cant correlations ranging from ρ=0.59 to 0.78, pb0.05). Among the
metrics derived from MODIS, those based on EVI for the timing of
greenness maximum showed high positive and significant correla-
tions with the webcam data for all but the Mammoth Cave site
(ρ=0.9, 0.85 and 0.79, pb0.05 for Bartlett Forest, Smoky Look and
Dolly Sods respectively). The timing of VI decrease for the Mammoth
Cave site exhibited low to negative correlations with estimates based
on ExGW andMODIS VI data, suggesting especially high uncertainty in
the estimated dates of this phenological metric. This result is consis-
tent with the MAE values presented above. Because phenological
metrics for both greenup and senescence values are derived from
greenness increase and maximum or greenness decrease and mini-
mum, respectively, negative correlation among phenological metrics
will negatively influence test statistics. A consistent significant corre-
lation is seen for greenness increase and minimum on the Smoky
Look site; otherwise, the Dolly Sods site shows low covariance be-
tween estimated phenological indicators greenness decrease and
minimum.

3.3. Dynamics in greenup and senescence

Comparison of phenological dynamics captured by the different
VIs reveal that each VI and data source provides slightly different in-
formation related to canopy dynamics during leaf development and
senescence. Fig. 3 illustrates different responses within and between
sites, with rapid changes in both greenup and senescence captured
by the ExGW data at both Smoky Look and Dolly Sods, and more grad-
ual changes at Mammoth Cave and Bartlett Forest. Temporal dynam-
ics measured by the satellite data are more gradual. At all four sites
MODIS EVI time series show evidence of asymmetry between and
within spring and autumn periods. At the Bartlett Forest and Dolly
Sods sites, spring canopy dynamics are relatively symmetric, with
transitions located around the ~50th percentile and relatively low
BR values of 0.55 and 0.11, respectively (Table 6). Also note the
rapid development of the canopy at Bartlett Forest in 2010 due to ex-
ceptionally warm spring temperatures (Hufkens et al., 2011). Autumn
dynamics are less symmetric and are positively biased, with BR values
of 0.91, 1 and 0.83 at the Mammoth Cave, Dolly Sods and Smoky Look
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Table 5
Spearman rank correlations between phenological indicator dates for DOY onset of greenness Increase, maximum, decrease, minimum (Gin, Gmax, Gdec and Gmin respectively),
greenup and senescence periods for four different sites (Bartlett Experimental Forest, Bt; Look Rock in Smoky Look National Park, Sl; Mammoth Cave National Park, Mc and
Dolly Sods Wilderness, Ds). Statistically significant values (pb0.05) are denoted with *.

Index Increase Maximum Decrease Minimum Greenup Senescence

Bt EVI 0.67 0.90* −0.15 0.46 0.76 −0.60
(N=5) NDVI 0.34 0.56 0.70 0.57 0.41 0.90*

ExGm 0.23 0.50 0.30 0.92 0.00 0.30
MCD12Q2 0.26 0.80 0.00 0.74 −0.33 −0.26

Sl EVI 0.74* 0.85* 0.49 0.87* 0.59* 0.22
(N=10) NDVI 0.72* 0.68* 0.40 0.85* 0.43 −0.33

ExGm 0.59* 0.35 0.90* 0.83* −0.10 0.61*
MCD12Q2 0.71* 0.56 −0.09 0.87* 0.38 0.03

Mc EVI 0.77* 0.62 −0.07 0.82* −0.16 −0.58
(N=9) NDVI 0.73* 0.67* 0.13 0.54 0.45 −0.51

ExGm 0.78* 0.76* 0.23 0.49 0.72 −0.18
MCD12Q2 0.68* 0.47 −0.48 0.65 −0.05 −0.45

Ds EVI −0.28 0.78* 0.19 0.36 0.70* 0.04
(N=7) NDVI 0.74* 0.16 0.21 −0.39 −0.31 0.20

ExGm 0.83* 0.80* 0.07 −0.36 0.39 −0.02
MCD12Q2 0.76 −0.09 0.52 0.27 −0.38 0.14
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sites, respectively. Bartlett Forest has a BR of−0.48, which suggests a
negative bias in the satellite-based model fits compared to the web-
cam date (Fig. 6a, top panel). The autumn BR value of Smoky Look
is approximately 1, suggesting that some of the differences among
the logistic fits are associated with different phases between model
fits. This interpretation is confirmed by visual inspection of the VI
profiles (Fig. 6c) and was consistent throughout.

Dynamics in NDVI show positive bias for all sites in spring
(Table 6), with BR values close to 1.0 for the Bartlett, Smoky Look,
and Mammoth Cave sites. Positive values indicate earlier increase in
VI relative to the timing of increase in ExGw fromwebcam data. More-
over, for those sites with BR values close or equal to 1, the logistic fit
based on MODIS NDVI data consistently reaches its maximum before
that of ExGW, which suggests that the main difference that is associat-
ed in the time series is related to a phase shift rather than a difference
in slope. BR values in autumn are negative for Bartlett and Mammoth
Cave (Fig. 6a–c, center panel). In contrast, both Dolly Sods and Smoky
Looks sites exhibited positive BR values in the autumn (Fig. 6b–d,
center panel). The more condensed plots along the 5 percent incre-
ments suggest a faster development of NDVI compared to the autumn
results of EVI (Fig. 6, autumn top and center panels) and corroborated
by visual interpretation of Fig. 3.

For ExGM, we note that both Smoky Look and Dolly Sods show
similar patterns with large positive BR values in both spring and au-
tumn. This result is the product of earlier onset in the timing of VI de-
crease and minimum at the Smoky Look and Dolly Sods sites for ExGM

(Gdec DOY 276 and 234; Gmin DOY 304 and 284) relative to those from
ExGW (Gdec DOY 287 and 241; Gmin DOY 306 and 303). The timing of
Table 6
Bias ratios (BR) quantifying the nature and magnitude of bias in logistic fits based on
the satellite VI's relative to logistic fits based on the ExGW data. The value of this metric
indicates whether model fits to the satellite VIs are positively biased (~1), negatively
biased (~−1) or display a more complex pattern including a change in steepness rela-
tive to the ExGW data.

Bartlett Dolly Sods Look Rock Mammoth Cave

Spring Fall Spring Fall Spring Fall Spring Fall

EVI 0.55 −0.48 0.11 1 0.84 0.83 −0.36 0.91
NDVI 1 −0.98 0.46 0.16 1 1 1 −0.90
ExGM 1 −0.91 0.98 1 1 1 1 −0.39
ExGM for Bartlett Forest and Mammoth Cave is slightly different,
with a large positive bias during spring and negative bias during au-
tumn. This pattern is reflected in the mean values for Gin, Gmax,
Gdec, Gmin and both greenup and senescence periods in Table 3. Sim-
ilar to the NDVI autumn results a fast development of ExGM compared
to the values as estimated for EVI during autumn is recorded for all
sites.
4. Discussion

Several recent studies have successfully linked near-surface re-
mote sensing data to canopy flux measurements (Graham et al.,
2006; Jenkins et al., 2007; Richardson et al., 2007, 2009). At coarser
spatial scales satellite remote sensing has been used for over two de-
cades to study and monitor ecosystem properties, phenology and
fluxes. In this study, we assessed if and how phenological time series
and metrics derived from near-surface remote sensing compare to
those derived from satellite remote sensing. Our results suggest that
while there is clear correlation between near surface and satellite re-
mote sensing quantities, the relationship depends on a number of dif-
ferent factors.

Recent work has shown that RGB camera images acquired during
high illumination clear-sky conditions provide the best basis for mon-
itoring canopy phenology (Sonnentag et al., 2012). Based on this re-
sult, we developed a moving-window technique that effectively
smoothed the web camera time series data and removed variance as-
sociated with illumination conditions. The more data that are avail-
able within each window (i.e., the more images acquired each day),
the more reliable the results tend to be (Fig. 3a–c). Because sampling
frequency influences the efficacy of this method, results will vary
from site to site, depending on the sampling frequency of image
acquisition.

Differences among estimates of phenological metrics and the
quality of logistic fits can be attributed to differences in seasonal dy-
namics in phenology captured by the different VIs (Fig. 2). Phenolog-
ical metrics based on logistic model fits tend to bias estimates for
timing in the spring onset in VI increase from MODIS data early rela-
tive to the camera data, which is consistent with previous results
from other studies that have used MODIS products (Jenkins et al.,
2007; Soudani et al., 2008; Turner et al., 2005, 2006). Several factors
have been previously suggested to explain this pattern, including
early understory development (Ahl et al., 2006; Schwartz et al.,
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2002), spatial integration over areas with significant topography
(Fisher et al., 2007), and snow melt (Delbart et al., 2006). This lat-
ter issue causes NDVI and EVI values to increase, leading to spuri-
ous estimates for the timing of canopy development (Delbart et
al., 2006; Kobayashi et al., 2007). In this study, we limited the influ-
ence of snow by screening and removing snow-contaminated
MODIS data. More importantly, the large FOV of satellite-based sen-
sors such as MODIS integrate surface reflectances over substantially
larger areas than those measured by near-surface remote sensing
cameras, which confounds the comparison. Further, the temporal
resolution of the MODIS products (8-day) used here, which is dic-
tated by the frequency of missing data caused by clouds in many
parts of the world, does not support precise characterization of
phenology in canopies characterized by rapid leaf emergence and
development during spring (Ahl et al., 2006). As a consequence, it
is not realistic to expect MODIS data to exactly replicate data
from cameras.

Results from this work show that comparisons of near surface
and satellite remote sensing-based estimates of phenology are af-
fected by the bands used to compute VIs from each data source. Al-
though some patterns were consistent for MODIS relative to results
from the cameras (e.g., earlier spring increase in VIs), seasonal dy-
namics among the various MODIS VIs were often markedly different.
The different responses of EVI and NDVI to increasing leaf area
Fig. 6. a–d. Deviation between the logistic fits for satellite data (VI) relative to the digital cam
y-axis denotes the satellite based estimates (DOY), x-axis denotes the ExGW based estimat
using different characters with an open triangle, plus sign, x, asterisk, black square, black t
2010 respectively. Data is presented for the four sites of interest (Bartlett Experimental Fo
Sods Wilderness).
index (LAI) is well-documented (Huete et al., 2002). Similarly,
NDVI is known to saturate before the EVI, which contributes to dif-
ferences in their seasonal profiles. As a consequence, the seasonal
profile of EVI tends to be less steep than NDVI during spring, with
maximum values occurring later compared to both the NDVI and
ExGM. Differences in the slope of EVI-based logistic fits and resulting
patterns in the timing of VI increase and VI maximum were consis-
tent across all sites (Fig. 6a–d top panel). Because the slope of logis-
tic fits based on ExGW, ExGM and EVI tend to be lower than those for
NDVI, estimates for phenophase transition dates based on these VIs
differ from those estimated using NDVI data because the transitions
are much more gradual. Consistent with the results of Fisher et al.
(2007), correlation in temporal dynamics between MODIS EVI and
ExGW was highest at roughly 50% of the seasonal amplitude in
each VI. Unfortunately, the ecological meaning of this metric
(“half-maximum greenness”) is unclear, and so the utility of this re-
sult is uncertain.

Comparison of autumn phenological metrics estimated from
MODIS data with metrics based on ExGW data showed similar pat-
terns to those in spring. The slow rate of change (low slope) in au-
tumn VI data produced early estimates for Gdec and late estimates
for Gmin in metrics based on MODIS data relative comparable esti-
mates from the camera data. Distinct differences were also noted in
the timing of NDVI dynamics among sites. Specifically, NDVI values
era data (ExGW) at 5 percent increments in the amplitude of each fit from 5 to 95%. The
es (DOY) both at 5 percent increments between 5 and 95%. Different years are plotted
riangle, black circle, open circle, open diamond and an open square for years 2001 to
rest, Look Rock in Smoky Look National Park; Mammoth Cave National Park and Dolly
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tended to start decreasing earlier at both Dolly Sods and Smoky Look,
but later at Bartlett Forest and Mammoth Cave. This site-to-site vari-
ability is explained by the slow rate of VI decrease in the autumn. Be-
cause the rate of change in VI tends to be more gradual in autumn,
estimates of phenological metrics is more challenging relative to
spring.

The degree to which interannual variation in phenology is de-
tectable from satellite remote sensing is a central methodological
question in phenology research. Although visual inspection of phe-
nological metrics suggests year-to-year correlations, statistical co-
variance between metrics estimated from ExGW data and those
retrieved from MODIS VI data was relatively weak. In particular,
interannual covariance in the estimated timing of VI increase and
minimum was statistically significant only at the Mammoth Cave
site. Phenological metrics at the other sites showed either no covari-
ation or weak covariation. A key factor that influences these results
is the length of time series at each site. Specifically, because the
time series are quite short, it is not surprising that the statistical sig-
nificance of results is low (critical values for N=5 at p=0.05, 0.01,
0.001 are 0.878, 0.959, 0.991 respectively). The results for the Mam-
moth Cave site, which provided the longest time series in the Phe-
noCam archive, support this inference.

A confounding factor, which probably contributes to these re-
sults, is that variability in phenological characteristics within the
ROI of individual cameras has been shown to influence estimations
of phenophase transitions by up to a week (Richardson et al.,
2009). The camera ROI at Mammoth Cave is quite large, and pro-
vides good representation of landscape-scale phenological dynamics
and less variance introduced by species-specific phenology. Con-
versely, the smaller ROI at the other sites may explain the relatively
low covariance between the satellite and camera data, because VIs
extracted from these images reflect a small set of individual trees,
but not the phenology of the larger landscape. In this context it is
important to note that phenological dynamics in the autumn can
vary substantially across species, with differences in transition
dates as large as two weeks within the same ROI (Richardson
et al., 2009). In this work, we found that the smaller ROI at Dolly
Sods and Smoky Look significantly influenced autumn ExGW values.
The ROIs for both these sites had fewer trees relative to the ROIs
for Bartlett and Mammoth Cave, and were therefore more sensitive
to species-specific phenological dynamics within the camera ROIs.
These results suggest that the camera field of view and ROI used
for analysis can significantly influence the character of camera VI
time series, and that in order for data from cameras to be used as
a basis for calibration and validation of satellite-derived phenology
products, it is critical for the camera FOV to include a representative
sample of the landscape and not simply focus on a few individual
trees.

5. Conclusions

As described by Richardson et al. (2010) and Fisher et al. (2007),
two research paradigms are currently being pursued within the phe-
nology science community. One paradigm uses ground observations;
the other uses satellite-based observations. Ground observations
have the advantage of being able to provide information related to
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specific plants and species, but are subjective, labor intensive, and dif-
ficult to extrapolate over large scales. Satellite observations, on the
other hand, provide synoptic to global coverage at coarser spatial
and temporal resolutions. In this context, near-surface phenology
measurements derived from commercial cameras have emerged as a
valuable tool for characterizing phenology at local scales.

While the results from our study provide significant support for
future efforts linking satellite and near-surface remote sensing, our
analysis also reveals that substantial care must be devoted to ensure
that camera VIs and ROIs are representative of and comparable to
satellite-derived data. Specifically, results from our study show signif-
icant agreement between phenological time series and metrics de-
rived from these two data sources. However, issues of scale and
representation in near-surface remote sensing data can significantly
affect measurements, and specifically, the degree to which camera
data are representative of the larger landscape is highly dependent
on the camera FOV. To help account for and characterize small-scale
variability within and outside of the camera FOV, high resolution sat-
ellite imagery could be used to better understand how representative
camera ROIs are relative to satellite sensor FOV (e.g., Baccini et al.,
2007; Morisette et al., 2002). Further, our results show that the spe-
cific VI used to monitor phenology exerts substantial influence on sat-
ellite derived VI time series (and associated phenological metrics),
and by extension, how they compare to VI time series and metrics
obtained from near-surface remote sensing. As a result, not all near-
surface remote sensing camera data will be suitable for comparison
or fusion with satellite data. The work presented in this paper helps
to bridge the divide between near-surface and satellite remote
sensing. However, more work is required to develop formal protocols
for evaluating, calibrating and validating satellite remote sensing
phenology products using near surface remote sensing at a regional
to continental scale.
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