Hop Botany, Cultivation, and Breeding

- Importance of hops.
- Basic botanical information.
- Crop development and cultivation.
- Impact of hop varieties.
- Variety development.
The Importance of Hops
Regional Economic Importance

- U.S. Production centered in the PNW.
 - 77% in WA.
 - 16% in OR.
 - 7% in ID.
- 2008 value (US) = $319.8 million
- Annually Top 12 in crop value for Washington
Humulus spp. Overview

- Family: Cannabaceae
 - Cannabis
 - C. sativa
 - Humulus
 - H. lupulus
 - H. japonicus
 - H. yunnanensis

(Neve 1991)
Humulus lupulus

- “Hops”
- Dioecious, perennial, climbing vine
- Indigenous to the Northern Hemisphere
 - Origins in Europe:
 - *H. lupulus var. lupulus*
 - Origins in Asia (mainly Japan):
 - *H. lupulus var. cordifolius*
 - Origins in North America:
 - *H. lupulus var. pubescens*
 - *H. lupulus var. neomexicanus*
 - *H. lupulus var. lupuloides*
Hop Basics

- Genetically complex.
- Annual above ground.
- Perennial below.
 - Allows for clonal propagation.
- Climbing vine requiring a support system.
- Photoperiod sensitive
- Dioecious (male and female plants).
 - Male-no commercial value
 - Female-Produces the valued strobiles, “cones”
Hop Cytology / Genetics

- \(2n = 2x = 20\)
 - Variation in chromosome morphology
 - Normal bivalent formation during meiosis
- Dioecious
 - Sex determined by X any Y Chromosome interaction
- Out Crossing
 - Large amount of variation
Is it an annual or a perennial?

- The above ground portion of the stem is annual.
 - Dies off at dormancy.
- The root is perennial, can survive low winter temps.
 - Requires a dormant period.
- The plant also produces rhizomes (below ground stems).
 - Buds become new spring growth.
 - Easily propagated from cuttings.
Clonal Propagation

- Propagation of hops purely vegetative
 - Root cuttings
 - Layering
 - Softwood cuttings
- Resulting plants genetically identical to parent material
Climbing Vines

- In the wild-usually found climbing on companion species.
 - In cultivation, trellis is used.

Typical Field Setup:
- Trellis 18’ high
- Plant spacing at 3.5’ x 14’ or 7’ x 7’.
 - Result is 889 plants per acre
 - Anchored twine is used to support plant growth.

- Alternative systems: several variations, low trellis

- The vine wraps clockwise around string.
- Function of phototropism and thigmotropism (Light and Touch).

- Rapid growth: The hop plant will grow a foot or more a day under ideal conditions. 18-25’ in a season.
Dioecious Plants

- Separate male and female plants
- Commercial value derived from the strobiles or “cones” of the female plant
- Male plants utilized only for hybridization
- Pollination results in:
 - Unwanted seeds
 - Increased cone size
Male and Female Inflorescence
The “Cones”

- These are the manufacturing unit of the commercial hop plant.
 - The cones contain lupulin glands (actually modified vine hairs).
 - These glands contain the chemistry we are after:
 - Essential oils: well over 100 compounds, contribution to aroma.
 - Soft resins: beta acids, and the all important alpha acids.
 - Lupulin accounts for 20 – 30 % of cone weight.
Lupulin Glands

Mature Female “Cones”

Male flowers at anthesis
The hop plant goes through numerous stages of growth throughout the year.

- Each stage has its own unique characteristics.
- Therefore each stage of growth requires its own unique management scheme.

Main Stages of Growth:
- Dormancy
- Spring regrowth
- Vegetative Growth
- Reproductive Growth
- Preparation for Dormancy
Dormancy: October through February

- October through February:
 - Late summer the plant allocates photosynthetically derived starches to storage roots
 - The starch is converted into soluble sugars.
 - These sugars are the energy needed to commence spring regrowth.
Dormancy: October through February

- What's going on in the field? Not a whole lot.
 - Compost applications.
 - Working the ground.
 - Prepping new yards.
The end of dormancy is signaled by increasing day length and increasing temperatures in the spring.

- The plant utilizes the soluble sugars as energy to emerge from dormancy and commence regrowth.
- The initial regrowth occurs rapidly producing vines unsuitable for crop production.
- The plant relies on the energy reserves of the root until the end of May, at which time the starches and soluble sugars reach their lowest points of the year.
- To maximize plant health, supplemental nutrient management will be needed.
Spring Regrowth March through May

- What's happening in the field?
 - Spring pruning - March-April
 - Effort to maximize consistency for training
 - Weed control
 - Applications of dry fertilizer
 - Twining
 - Training - one of the most important aspects of crop production.
 - Timing is varietal specific and critical.
 - Generally target 3 vines per string.
 - Irrigation begins
Photoperiod Sensitive

- Hops are a short day plant.
 - Under a critical number of light hours (more accurately it is the length of the dark period)-floral initiation.
 - Also node dependant.
 - Over the critical amount, vegetative growth.
 - In shorter day areas, flowering occurs as soon as the node requirement in met-yield not maximized.
 - In longer day areas-vegetative growth is maximized prior to shortening days of mid to late summer.
Vegetative Growth

- The vegetative growth stage, for the purposes of crop production, occurs from the end of May through the end of July.
- It can be separated into two phases:
 1. From May to the end of June/early July: Plant growth is mainly found in the main vine and leaves.
 2. July: The bulk of the above ground growth occurs in lateral production.
Vegetative Growth

- What is happening to the vine during vegetative growth?
 - At 3’ of growth the apical bud already contains the initial cells for numerous laterals.
 - At 12’ the apical buds of the vine and the laterals have produced cells predetermined for flowering branches.
 - At 16’ The cone branches have been fully determined in the laterals.
Vegetative Growth

- This is a critical period:
 - The plants reserves are used up.
 - The plant, even now, is already determining how much it is going to yield.
 - We need to manage plant health aggressively during this stage of growth.
 - The goal should be to maximize the health of the plant, while managing growth-this is tricky.
Vegetative Growth

- The importance of controlled growth:
 - Internode length (the distance between lateral producing nodes on the vine) plays a key role in crop development.
 - Too long of internodes results in less laterals and a brushy top crop.
 - Shorter internodes results in the maximization of lateral number and more even distribution of the crop.
- How does one control growth:
 - Proper training
 - Proper nutrient management
 - Unfortunately, we cannot control the weather.
Vegetative Growth

- What’s Happening in the field?
 - Monitor, monitor, monitor.
 - Pest/Disease/Weed control
 - Irrigation
 - Fertility
Reproductive Growth

- By the end of July floral production has commenced.
- The plant shifts its growth energy into production of cones.
- Vegetative production is greatly diminished.
- Photosynthetic capacity of the plant is maximized.
- By the time the cone matures, they can equal up to 50% of the above ground dry matter.
- Cannot increase cone #. Focus should be on maintaining plant health to maximize cone weight and resin/oil production.
 - Water management
 - Nutrient management
Preparation for Dormancy: Preparation for Dormancy: End of August to beginning of September:

- While not really a stage of growth, it is important in the development of the crop for next year.
 - Photosynthetic production of carbohydrates exceeds the needs of plant development.
 - The excess is transported to the roots for storage in the form of starch.
 - Both the dry weight of the roots as well as starch content has peaked by October.
 - The shortening days of late summer signal this transition, followed by cold October temperatures—Dormancy starts.
Preparation for Dormancy:
End of August to beginning of September:

- What's Happening in the field?
- Harvest commences.
Harvest

- Vines are cut and transported to picker.
 - Alternatively, use field strippers
- Material is ran through stationary machine, cones are separated.
- Cones dried for 8-12 hours to 10% moisture.
- Dried cones are cooled (ambient) for 12 to 24 hours.
- Baled and transported immediately to cold storage.
Harvest

- Mechanization is key.
- Cones are mechanically sorted from the leaves and vine.
- Cones are dried in forced air (50 cfm/ft²) at 130 to 150 degrees F.
- Cones are compressed into 200 lb bales at 10-12 lb/ cu. ft.
- Each bale requires 5.5 yards of burlap cloth.
Final Comments on Development

- The stages of hop plant growth need to be understood to properly manage the crop.
- Each stage of growth has its own unique characteristics and therefore unique management requirements.
- Yield is already being determined as early as April and May.
- To complicate things further: Much of this is variety dependant.
Varietal Impact

- Physiology and development are impacted by variety.
- Crop management is varietal dependant.
- There is a strong genetic x environmental interaction.
- The goal: Realize the maximum genetic potential.
- The problem: Maximum genetic potential cannot be reached in all environments.
- The solution: Breeding varieties to match the environment.
Yields of New U. S. Aroma Varieties

2500 Lbs. per Acre

2000

1500

1000

500

0

Noble
Ultra
Vanguard
Liberty
Crystal
Santiam
Sterling
Mt. Hood
Glacier
Palisade

2005, Probasco, G., et. al.
How important is this?

- Hop Supply Chain: Each link on the supply chain affects subsequent links.
 - The efficiency of a hop has a corresponding impact on the chain.

Breeding
Program
New Varieties

Farm
Cost/Acre
Yield
Harvest Alpha
Return to grower

Processing
Storage
Pellet Recoveries
Extract Recoveries
Shipping

Breweries
Efficiency
Quality
Flavor
Cost
In other words...

- Breeding objectives based on the needs of the WHOLE industry.
 - Objectives meant to provide brewers with hops/hop products which enhance their brews, while being agronomically efficient.
 - Performance of a variety at every level, from the farm to the brewery, adds to the overall health of the industry.
Developing Objectives

- The hop trade consists of two distinct markets:
 - Alpha/Bitter
 - Processed hops.
 - Yield measured in Kg. Alpha per acre.
 - Typically high alpha varieties, increasingly aroma.
 - Aroma
 - Minimal processing.
 - Yield measured in lb. acre.
 - Typically aroma varieties, some high alphas.
- This is an important consideration when setting objectives.
Specific Objectives

- High yielding high alpha cultivars.
 - Super
 - Varietal
- High yielding aroma cultivars.
 - Improvements on the classics
 - Specialty / dual purpose
 - Organic
- Goal is to combine the above with:
 - Pest and disease resistance.
 - Good storage stability.
 - Desirable brewing characteristics (i.e. low cohumulone, specific oil components).
Hop Breeding Scheme

- Parental selection and crossing
- Early selection
- Intermediate selection
- Advanced selection
- Cultivar release
Parental Selection

- Remember - Hops are dioecious.
 - Distinct male and female plants.
 - Obligate out-crossers, cannot self pollinate.
 - High level of diversity (heterozygosity).
 - Hybrid vigor (Heterosis).
 - Seed propagation not possible.
- Easily clonally propagated - traits can be “fixed” in single generation.
 - Each new variety results from a single plant.
 - Millions from one.
Crossing

Left: Collection of male flowers for isolation of pollen.
Above: Application of pollen to a bagged receptive female.
The Selection Process

- After crossing, resulting plants are entered into a 10 year selection process.
- Separated into three stages:
 1) Early (seedling, single hill)
 2) Intermediate (Yield trials)
 3) Advanced (Elite plots)
Early Selection: Years 2,3,4

- FAIL FAST: 80 – 90% of original seedling population eliminated in year 1.
- The crowns of the remaining plants are dug and planted in the single hill plots.

Typical seedling crown
Intermediate Selection: Years 5, 6, 7

- Yield Trials
 - Selections from the single hill are expanded to larger plots (10 – 100 hills).
 - Off-station plots often used to assess adaptability of selections to varying environments.
 - Evaluated for the same agronomic and quality traits (plus oils)
 - Pilot brew trials possible.
 - Analysis: Individual performance, genetic gain, comparison to commercial controls.
 - Use value models as a selection index.
Advanced Selection: Years 8, 9, 10

- **Elite lines:**
 - Selected from yield trials.
 - .5 to 1 acre (0.2-0.4 ha) commercial sized plots.

- **Purpose:**
 - Confirm performance under commercial conditions.
 - Assess stability of the selection.
 - Pilot/Medium scale brewer trials.
 - Evaluated for agronomic and quality traits including oil composition.
Cultivar Release: Year 11

- After 8 - 10 years of evaluation, release is considered.
- The work is far from over, success is dependant on:
 - Continued agronomic success.
 - Grower acceptance, usually short term.
 - Brewer acceptance, long term.
Organic Hop Breeding: Conventional vs Organic, same variety example:
Organic Hop Breeding: Conventional vs Organic, Same Variety

Hop Yield and Cost per Acre Conventional vs Organic

<table>
<thead>
<tr>
<th></th>
<th>Yield (lb/acre)</th>
<th>Cost ($/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>6000</td>
<td>1000</td>
</tr>
<tr>
<td>Organic</td>
<td>4000</td>
<td>0</td>
</tr>
</tbody>
</table>

![Graph showing Hop Yield and Cost per Acre](image)
Selected progeny exceed “commercial” control
Agronomic success is evident, but can we market them?
The Final Challenge: Marketing

- Hops are listed in NOP section 205.606, which allows their use in organic products.
 - Non-organic hops can be used to brew “organic” beer.
 - Conventional hops are easy to come by in most any variety.
 - Above all they are cheaper.
 - The result is, most “organic” beers are not made with 100% organic hops.
 - Despite availability, organic hops difficult to sell profitably.
 - This may determine the fate of organic hops in the U.S.

- Question: Is this an indicator of TRUE demand for: “Buy Local” and “Sustainably Produced” campaigns?
CONVENTIONAL Challenges: Season Average Price of Hops (U.S.)

Average price from 1991 - 2006 = $1.80

Cost of production @ 2800 lb/acre ~ $1.80, prices are back at this level, profit?

(source: NASS)
Parting Thoughts: Overcoming Challenges

- Do your homework.
 - Know your plant, environment.
 - Know your market.
 - Organic? Local? Sustainability?
 - Hops as a commodity, does not work.
- Developing relationships is key.
Conclusion

- Hops are complex, high cost crop.
 - Not necessarily high value.
 - Knowledge of the growth stages is critical.
- Hop breeding is a necessary, functional step in the hop supply chain.
 - Supplies the varieties which decrease costs in subsequent steps.
 - It is a long complex process which demands commitment.
- Marketing is critical.
THANK YOU!