

Print

Submitted on September 03, 04:08 PM for agu-fm09 Matthew Jungers Paid: \$30.00, Transaction #: 189754 Credit Card Type: American Express Credit Card Number: xxxxxxx1002

Your abstract appears below.

Please print a copy of this page for your records.

To return to the Submission Center and check your list of submissions; click "View Submissions" in the left menu.

Proof

CONTROL ID: 720661

TITLE: *In Situ*-produced vs. Meteoric ¹⁰Be in Hillslope Soils: One Isotope, Two Tracers, Different Stories **PRESENTATION TYPE:** Assigned by Committee

SECTION/FOCUS GROUP: Earth and Planetary Surface Processes (EP)

SESSION: Sediment Supply, Storage, and Delivery as Controlled by Hillslope-Channel Coupling (EP02)

AUTHORS (FIRST NAME, LAST NAME): Matthew C Jungers¹, Paul R Bierman², Ari Matmon³, Ronadh Cox⁴, Milan Pavich⁵, Robert C Finkel⁶

INSTITUTIONS (ALL): 1. Arizona State University, Tempe, AZ, USA.

- 2. University of Vermont, Burlington, VT, USA.
- 3. Hebrew University, Jerusalem, Israel.
- 4. Williams College, Williamstown, MA, USA.
- 5. USGS, Reston, VA, USA.
- 6. LLNL, Livermore, CA, USA.

Title of Team:

ABSTRACT BODY: *In situ*-produced and meteoric ¹⁰Be are both powerful tools for tracing the production and transport of hillslope sediment. *In situ*-produced ¹⁰Be is used to infer sediment production rates as well as investigate sediment sources and transport. Meteoric ¹⁰Be may also be useful for inferring sediment production and transport rates in some landscapes, especially those that lack the target minerals for *in situ*-produced ¹⁰Be. Few studies have investigated the insights gained by a comparing *in situ*-produced and meteoric ¹⁰Be inventories. We present a series of paired ¹⁰Be inventories from different climatic and tectonic regimes to illustrate both the value and the potential pitfalls of coupling these geomorphic tracers.

The mean *in situ* and meteoric ¹⁰Be near surface (within a meter) inventories for our field areas are as follows: Great Smoky Mountains, NC, USA: 3.6×10^7 atoms cm⁻² and 3.3×10^{10} atoms cm⁻²; Laurely Fork, PA, USA: 2.6×10^6 atoms cm⁻² and 3.0×10^9 atoms cm⁻²; Oregon Coast Range, OR, USA: no *in situ* data and 3.87×10^{10} atoms cm⁻²; North Island, New Zealand: no *in situ* data and 1.8×10^9 atoms cm⁻²; and Amparafaravola, Madagascar: 1.86×10^7 atoms cm⁻² and 8.0×10^9 atoms cm⁻². The associated inferred soil residence times, respectively, are: Great Smoky Mountains, NC, USA: 40.9 ky and 25.6 ky; Laurely Fork,

PA, USA: 2.9 ky and 2.3 ky; Oregon Coast Range, OR, USA: n/a and 30ky; North Island, New Zealand: n/a and 1.5 ky; and Amparafaravola, Madagascar: 21 ky and 6.2 ky. Soil residence times inferred from meteoric ¹⁰Be assume a global average delivery rate of 1.3×10^6 atoms cm⁻² yr⁻¹. These soil residence times are minimum values that assume that all *in situ* and meteoric ¹⁰Be is accounted for. Discrepancies between inferred soil residence times most likely highlight some error in assumptions regarding meteoric ¹⁰Be retention in the soil mantles that we sampled. For example, if meteoric ¹⁰Be is not retained at the near surface where we collected our samples, then significant amounts of ¹⁰Be are not being accounted for in our inventory calculations.

If meteoric ¹⁰Be is fully retained by a given landscape, soil residence times inferred from each type of ¹⁰Be should agree. However depth profiles and downslope transects from each field area show differing degrees of meteoric ¹⁰Be mobility. We compare meteoric ¹⁰Be concentrations from each of our field sites to trends in CBD-extractable AI and Fe oxides, bulk soil pH, and mean grain size. Meteoric ¹⁰Be mobility correlates positively to trends in mobile Fe and AI oxides and negatively to soil pH. These data suggest that a meaningful comparison between a landscape's *in situ*-produced and meteoric ¹⁰Be inventories requires a thorough understanding of the geochemistry of the sampled soil mantle.

INDEX TERMS: [1826] HYDROLOGY / Geomorphology: hillslope, [1150] GEOCHRONOLOGY / Cosmogenic-nuclide exposure dating.

(No Table Selected) (No Image Selected)

<u>Additional Details</u> Previously Presented Material: Scheduling Request:

> ScholarOne Abstracts® (patent #7,257,767 and #7,263,655). © <u>ScholarOne</u>, Inc., 2009. All Rights Reserved. ScholarOne Abstracts and ScholarOne are registered trademarks of ScholarOne, Inc. <u>Terms and Conditions of Use</u>