COSMOGENIC ^{10}Be ANALYSIS OF RIVER SANDS PROVIDES BACKGROUND EROSION RATES FOR MADAGASCAR

COX, Rónadh¹, BIERMAN, Paul R.², PERRY, Emily O.¹, and RAKOTONDRAZAFY, Amos Fety Michel³, (1) Geosciences, Williams College, Williamstown, MA 01267, rcox@williams.edu, (2) Geology Department and School of Natural Resources, University of Vermont, Burlington, VT 05405, (3) Département des Sciences de la Terre, Université d'Antananarivo, Antananarivo, 101, Madagascar

Madagascar is considered one of the world's most ravaged landscapes, with inferred erosion rates 100-1000 m/m.y. Lavakas—saprolite gullies of the central highlands—are cited as evidence of catastrophic anthropogenic degradation. But this picture is based on few data, mostly from bare-plot runoff and short-term estuary sedimentation records. There are no long-term (>1 yr) stream-sediment gauge data. Cosmogenic ^{10}Be in quartz sand from rivers provides quantitative constraints on regional erosion rates at millenial timescales for specific geomorphologic settings.

Data from 32 rivers spanning Madagascar from W to E indicate basin-scale erosion rates of 3-76 m/m.y. (^{10}Be concentrations 18.5-0.5 x 10^5 atoms/g). In contrast to other studied regions (e.g. Sri Lanka and Europe), the highest rates (50-76 m/m.y.) are associated with some of the smallest (3-26 km2) and lowest-lying (mean elevations 35-535 m) watersheds. Three of the highest erosion rates (49-75 m/m.y., i.e. 0.7-0.5 x 10^5 atoms/g) are measured in small basins (3-26 km2) on the western coastal lowlands. The single highest rate (76 m/m.y., 0.6 x 10^5 atoms/g) comes from a 10 km2 mountain drainage on the eastern escarpment. In contrast, the largest (2500-19,000 km2) and highest basins (mean elev. 725-1500 m), draining the steep and deeply weathered central uplands, yield rates of only 6-16 m/m.y. (^{10}Be of 5.0-2.8 x 10^5 atoms/g).

The results challenge conventional interpretations of the role of lavakas in Malagasy erosion. For lava-bearing watersheds, cosmogenic erosion rates are correlated with lavaka density ($R^2=0.8$, $p<0.0001$). That we see this trend in the well buffered ^{10}Be system suggests that these are long-term, natural denudation rates, and the effect of lavakas pre-dates the ≈2000 k.y. arrival of humans in Madagascar. Perhaps more surprising is the result that rates from lava-hosting watersheds are all <20 m/m.y. In strong contrast, the 6 highest erosion rates (30-76 m/m.y.) are all measured from zero-lavaka watersheds: i.e. high natural erosion rates occur in the absence of lavakas.

These data provide a time-integrated background from which to interpret erosion in Madagascar's varied environments, and show that erosion—although most dramatically expressed in the lavaka-bearing highlands—may be greatest in coastal lowlands.