CARPCO MODEL
MIH(13)111-5 LABORATORY
HIGH-INTENSITY INDUCED-ROLL
MAGNETIC SEPARATOR

Revision: 03-2

SERIAL NUMBER

221-06

University Of Vermont

USA

June 2006

OUTOKUMPU TECHNOLOGY, INC.
Physical Separation Division
6100 Phillips Highway Jacksonville, Florida U.S.A. 32216
telephone (904)353-3681 fax (904)353-8705
TABLE OF CONTENTS

1.0 SAFETY WARNINGS.. 2

2.0 INSTALLATION.. 4
 2.1 Drawings.. 4
 2.2 General... 4
 2.3 Electrical Connections ... 4

3.0 SPECIFICATIONS.. 5
 3.1 Principle of Operation .. 5
 Figure 1: Principle of Operation ... 5
 3.2 Standard Equipment Features ... 5
 Figure 2: Magnetic Field vs Field Current in Magnet Gap 6
 3.3 Optional Equipment Features .. 7

4.0 OPERATING INSTRUCTIONS... 8
 4.1 Suggested First Trial.. 8
 4.2 Establish Settings .. 8
 4.2.1 Tail and Nose Gap Adjustment... 8
 4.2.2 Roll Speed.. 8
 Table 1: Suggested First-Trial Settings... 9
 Figure 3: Velocity Feeder... 10
 4.2.3 Feeding the Separator.. 11
 4.2.4 Splitters .. 13
 4.2.5 Magnet Coil Current ... 13
 4.2.6 Roll Brush... 13
 4.2.7 Adjustable Splitters... 14

5.0 MAINTENANCE ... 15
 5.1 Belts.. 15
 5.2 Brush... 15
 5.3 Ventilation ... 15
 5.4 Spare Parts ... 15
 5.5 Motor Maintenance ... 15
 5.6 Other Components.. 15

APPENDIX A: Separation Characteristics of Selected Minerals
APPENDIX B: Laboratory Worksheet
APPENDIX C: Feed Rate Conversion Chart
APPENDIX D: Spare Parts Listing
APPENDIX E: Component Manufacturer’s Data
APPENDIX F: General Arrangement Drawing #4-776
 Electrical Schematic #3-4037
1.0 SAFETY WARNINGS

SAFETY WARNINGS MUST BE READ BEFORE INSTALLING AND OPERATING THIS MACHINE!

- Have a qualified electrical maintenance technician install, adjust, and service this equipment. Follow the National Electrical Code and all other applicable electrical and safety codes, including the provisions of the Occupational Safety and Health Act (OSHA) when installing and operating equipment.

1) LIFTING

- Caution: Lift with care using hoist bar inside cabinet, which is attached to magnet blocks.

- Attention: Remove the hoist bar before operating the separator.

- Caution: Move and locate this machine with caution. This machine weighs approximately 425 pounds (193 kilograms). Proper care should be taken in mounting this unit to avoid unstable and potentially dangerous situations.

2) ELECTRICAL

- Reduce the chance of an electrical fire, shock, or explosion by proper grounding, over current protection, and thermal protection.

- Connect an adequate external grounding strap between the separator and a water pipe or similar earthing. This external grounding strap may be omitted in installations where reliable, tested earth or ground connection is made via a proper three-pin plug or permanent wiring in accordance with local electrical codes.

- Check to insure that all electrical connections and voltage requirements are in agreement with the electrical schematic shown in Appendix F prior to energizing the separator.

- Warning: Voltages encountered within this separator/controller are dangerous and can be fatal. This separator/controller is designed to prevent accidental shock when properly used. However, no engineering design can render safe a device, which is used carelessly. Therefore, the instructions contained in the operating manual must be followed whenever this separator/controller is used.
3) GENERAL

- Caution: When working with any dusty materials, care should be taken to provide operator(s) of laboratory or industrial separating devices with protective masks. Particular care should be taken when the materials are known to be hazardous or toxic, i.e., positive draft ventilation should be considered.

Warning/cautions tags are attached to the separator prior to shipment and precaution should be taken as specified to insure the safety of the personnel installing and operating this machinery.
2.0 INSTALLATION

2.1 Drawings

Refer to the general arrangement drawing and electrical schematic included in Appendix F of this operating manual before installing and operating this equipment.

2.2 General

A carbon steel lifting handle is bolted to two eye bolts on the magnet blocks inside the separator cabinet. This handle should be used when moving the separator in conjunction with proper lifting equipment. Total static load: 425 pounds (193 kilograms).

Note: This handle should be removed (unbolted) once the separator has been permanently installed to eliminate magnetic flux leakage which can occur through the carbon steel lift assembly.

2.3 Electrical Connections

Input Voltage: 115 VAC, 60 Hz, Single Phase

Caution: Check to insure that all electrical connections and voltage requirements are in agreement with the electrical schematic included in Appendix F prior to energizing separator.

Grounding: Connect an adequate external grounding strap between the separator and a water pipe or similar earthing. This external grounding strap may be omitted in installations where reliable, tested earth or ground connection is made via a proper three-pin plug or permanent wiring in accordance with local electrical codes.
3.0 SPECIFICATIONS

Carpco Model MIH(13)111-5 Laboratory High-Intensity Induced-Roll Magnetic Separator is a top-fed laboratory/pilot-plant dry high-intensity electromagnetic separator designed to separate paramagnetic (weakly magnetic) materials from non-magnetic materials. This compact model is used extensively for bench and pilot-scale testing of granular materials, production control in plants using industrial high-intensity magnetic separators and for applied mineral research.

3.1 Principle of Operation

This separator places all materials in contact with the highest magnetic field at the zones of steepest magnetic gradient and utilizes magnetic force and gravity to capture weakly magnetic materials. A turning magnetic roll used to transport materials through the active area provides an opposing centrifugal force for separation of magnetic and nonmagnetic materials. An illustration of the principle of operation is shown in Figure 1.

![Figure 1: Principle of Operation](image)

3.2 Standard Equipment Features

- **Components and controls** are built into a compact console so that the operator can easily observe and control separation simultaneously.

- A 62 in³ (1016 cm³) polished stainless steel **velocity feed hopper** equipped with vibratory assist is used to control the rate of material being separated.

- A **three-way product hopper** of polished stainless steel construction permits collection of magnetic, middling and nonmagnetic products.
• A 1/4-horsepower D.C. motor drive permits continuously variable roll speeds from 0 to 300 rpm.

• The separating roll is 5 inches (127 mm) in diameter by 2 inches (50 mm) wide employing laminated magnetic/nonmagnetic materials of construction.

• Continuously variable input coil current (0-3 amperes) using solid-state D.C. rectification to an air-cooled magnet coil permits the magnetic field intensity of the separator to be adjustable as indicated in Figure 2 for varying gap settings.

![Figure 2: Magnetic Field vs Field Current in Magnet Gap](image)

• Both chrome-plated nose and tail pole pieces are adjustable to accommodate a wide range of particle sizes and magnetic field requirements.

• Fuses are installed in the major power circuits of the separator for the protection of the associated components. They are easily accessible on the front panel and may be replaced by hand if an over current condition should occur.
3.3 Optional Equipment Features (only if applicable)

A Carpco Model MIH(13)111-5CX incorporates other optional features not included in the standard design of induced-roll separator.

- This variation of the standard design incorporates a *modified magnet coil*, which provides for cooling via a heat exchanger (provided separately) to reduce magnetic field variation that occurs due to changes in electrical resistance as heat builds up in the magnet coil.

- A *constant current controller* is provided to maintain a constant magnetic field during prolonged operation. Additional details about this controller are included in the Other Manufacturer’s Information section of this operating manual.

- A *heat exchanger* is provided separately to provide the liquid cooling required to properly operate the modified magnet coil and constant current features. Additional details about this heat exchanger are included in the Other Manufacturer’s Information section of this operating manual.
4.0 OPERATING INSTRUCTIONS

4.1 Suggested First Trial

Before operating the separator, the operator must determine what settings are needed to effectively separate the material based on particle size, shape and density. Table 1 shows some suggested first-trial settings for paramagnetic and ferromagnetic materials. The settings shown correlate with the industrial scale-up of this model [Carpco Models MIH(13)221-100 and MIH(13)231-100]. A sample test data sheet is included in Appendix B for recording the operating conditions and test results.

4.2 Establish Settings

4.2.1 Tail and Nose Gap Adjustment

A set of 1 mm (red) and 0.5 mm (white) feeler gauges is supplied to aid in setting the pole gaps.

Nose Gap: Loosen the two ½-inch hex-head bolts holding the nose block. Insert the appropriate number of feeler gauges into the pole gap to measure the distance. Set the gap to its desired position and firmly retighten the ½-inch hex-head bolts. Re-check the gap after tightening the bolts to ensure the block did not slip.

Tail Gap: Loosen the two ½-inch hex-head bolts holding the bearing support plate. Insert the appropriate number of feeler gauges into the pole gap to measure the distance. The factory setting is a 2 mm gap. Set the tail gap to the desired distance. Firmly retighten the ½" hex-head bolts. Re-check the gap after tightening the bolts to ensure the block did not slip.

4.2.2 Roll-Speed

Rotations per minute (rpm) are controlled by the variable roll speed control knob in the upper left-hand corner. RPM is displayed on the front panel meter, if the switch below is moved to the extreme right-hand side. Higher roll speeds must be used with fine materials to reduce fines entrapment of the roll. Lower speeds are generally used with coarser material to help reduce scattering and bounce.
Table 1: Suggested First-Trial Settings

<table>
<thead>
<tr>
<th>Expected Response of Magnetic Particle</th>
<th>Particle Size</th>
<th>Tail Block Gap (mm)</th>
<th>Nose Block Gap (mm)</th>
<th>Roll Speed (rpm)</th>
<th>Feed Rate (lbs/hr/in) (kg/hr/cm)</th>
<th>Magnet Current (amps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paramagnetic (Weakly Magnetic)</td>
<td>Coarse Particles -6+28 mesh (-3+0.6 mm)</td>
<td>2</td>
<td>4-9</td>
<td>70-140</td>
<td>50-150 12-27</td>
<td>Up to 3.0</td>
</tr>
<tr>
<td></td>
<td>Fine Particles -28+200 mesh (-0.6+0.074 mm)</td>
<td>2</td>
<td>3-9</td>
<td>100-180</td>
<td>100-220 24-40</td>
<td>Up to 3.0</td>
</tr>
<tr>
<td>Ferromagnetic (Highly Magnetic)</td>
<td>Coarse Particles -6+28 mesh (-3+0.6 mm)</td>
<td>2</td>
<td>9</td>
<td>70-140</td>
<td>50-150 12-27</td>
<td>0.1-0.3</td>
</tr>
<tr>
<td></td>
<td>Fine Particles -28+200 mesh (-0.6+0.074 mm)</td>
<td>2</td>
<td>9</td>
<td>100-180</td>
<td>100-220 24-40</td>
<td>0.1-0.3</td>
</tr>
</tbody>
</table>

Notes: (1) Refer to Carpco's Electrostatic and Magnetic Separation Characteristics of Selected Mineral Chart for a guide as to paramagnetic or ferromagnetic characteristics of minerals (Appendix A). (2) Feed rate of laboratory separator is based on 1-1/2 inches (38.1 mm) effective feed width.
Figure 3 Velocity Feeder
4.2.3 Feeding the Separator

4.2.3.1 Setting Feeder Position/Drop Height: Before setting the feed rate, the total drop height of the velocity feed chute should be adjusted. For fine material, the longest drop height is required. A shorter drop height is appropriate for coarser materials. The following guidelines describe checking and adjusting the drop height and feeder position.

The first dimension to establish is the total drop height W (Figure 3). Once this has been decided, loosen the two thumbscrews on the sides of the hopper and move the hopper to the dimension desired. If necessary, swing the feed chute out of the way. The drop height may be measured easier with the help of a pair of calipers or dividers.

Next, the dimensions X and Y are both adjusted by means of the slotted clamp and thumbscrew shown in Figure 3. The dimension X (Figure 3) should be 1/4" - 3/8" (6-10mm) or at least large enough to pass the feed at the maximum rate desired without material piling up. The dimension Y (Figure 3) should be about 1/16" - 1/8" (1.5 - 3.0mm). It is very important when setting the feed chute that the back of the chute is set at an angle of 6 degrees from the vertical. This angle is built into the chute so that the falling stream of feed material is properly diverted and presented to the roll at the correct angle. Setting the chute at any other angle will upset the operation of the chute and defeat the advantages gained by its rise. Loosen the thumbscrew while holding the feed chute. The position of the chute may be moved in any direction horizontally or vertically by moving the thumbscrew along the slot provided and/or turning the slotted clamp (Figure 3) with the hand to enable movement in the direction desired. Always maintain the 6-degree angle of tilt on the back of the chute. The chute is clamped in its new position by tightening up the thumbscrew. Re-check dimensions X and Y and the 6 degree tilt after clamping. Turn on the roll momentarily to check adequate clearance Y.

The final adjustment allows movement of the whole hopper and feeder assembly horizontally so that the feeder lip is positioned at the correct point on top of the roll. Usually a setting with the lip directly on top of the roll is used (at TDC; Top Dead Center). Any other setting is measured as an angle from TDC which is called BTDC (Before Top Dead Center); thus, positive angles BTDC shows a lip position in advance of the top of the roll (feeder lip to the left of top), and negative angles show a lip position after top dead center. The actual position may be selected while feed is flowing from the feeder by observing the degree of scattering and bounce produced by each position, then
doing a trial separation. Angles too negative (after top dead center) may throw the feed over the roll without ever contacting it properly. Angles too far positive (before top dead center) may cause excessive impact with the roll.

Tighten the four thumbscrews involved in this adjustment after each setting.

4.2.3.2 Setting Feed Rate: Once the feeder position and drop height have been set, the feed rate should be set as follows:

Equipment Needed: Stopwatch, sample of feed, collection pans and gram scale.

Note that the feed rate is controlled by both the feed gate adjustment and the variable vibrator control setting on the front panel. The feed gate adjustment is used for initial adjustment and the variable vibrator control is used to fine-tune the settings.

The feed gate must be opened further than the largest dimension of the material in the feeder to allow free flow. If part of the flow is blocked during feed tests, then increase the gate opening. Be aware of the possibility of other contaminants such as brush hairs, trash or oversize pieces of material present in the feed. Screening prior to separating may be used to deal with these problems.

To set the feed rate, follow the steps below:

1) Move the feed gate adjustment knob so that there is the correct gap between the feed gate and the vibratory feed tray as follows:

 Free Running Sand: 1/8"(3mm)
 Coarse Material: 1/4"(6mm)
 Ultra-fine Powders: 3/8"(9.5mm)

 This is a starting point. Further adjustment may be made later while running to insure smooth feeding. Place pans under the product hoppers. Place the sample into the hopper, starting very gently so that sand does not spill from the feeder. Adjust the front panel feed rate control to about 50% (or other setting depending on previous tests or experience)

2) With stopwatch in hand, switch on the feeder for 10 seconds and collect the sample.
3) Weigh the sample in grams and multiply this figure by 0.529 (0.0945) to obtain pounds/hour/inch (kg/hr/cm); or refer to Appendix C, Feed Rate Conversion Chart.

4) Repeat procedures 2 and 3, adjusting the feed rate controls for each test until the desired rate is achieved. It is important to set the feed rate as high as possible to realize the full capacity of the industrial machine, while also being consistent with requirements of separation quality.

5) Once all adjustments have been set, feeding may be stopped and started at will by the front panel toggle switch. This will enable timed runs to be accurately made, also when changing pans, without upsetting any of the rate adjustments mentioned above.

6) To simulate full-scale production units, feed rates should be 100-200 lb/hr/in (22.3-35.7 kg/hr/cm). Do not exceed 225 lb/hr/in (40 kg/hr/cm).

4.2.4 Splitters

After establishing all the previous settings, reload the material into the feed hopper. While the material is flowing, and with the magnet coil current off, set the right-hand splitter so that all material will just pass over this splitter into the nonmagnetic product bin. This setting is made using the locking adjustment knob on the front of the hopper.

4.2.5 Magnet Coil Current

Turn the magnet coil current on slowly and increase to the desired setting.

Note: The magnetic circuit is saturated at 3.0 amps and the current need not be set higher than this. The roll speed may vary when setting the magnet coil current; be sure to re-check this setting.

After establishing all the above settings, the separator should be allowed to warm up a few minutes prior to test work.

4.2.6 Roll Brush

It is good practice to empty the entrained particles from the roll brush after every test run. Lift the brush lever and slide the brush out of its holder. Tap the brush on the side of the pan holding the magnetics fraction. Use a 1" (2.5 cm) natural fiber (Chinese bristle) paintbrush to clean all three compartments of the product hoppers and brush holder assembly between tests.
4.2.7 Adjustable Splitters

The splitters are fitted with adjustable height blades. To adjust for initial setup, loosen the thumbscrew on the nearest edge of the splitter and adjust to new height; retighten the thumbscrew. Measure the height of the top edge of the blade above the top of the splitter pivot bushing. To be equivalent to the industrial machine, this height should be 3-1/2" (89 mm) for both splitters. Operators may find, however, that better results may be obtained if the left-hand splitter (between middlings and magnetics) is lowered to 2-3/4" (70 mm). This will enable better performance where a middlings stream is desired while separating either coarse or extra fine material. This length splitter will also enable it to meet the roll at a lower position than would otherwise be obtained. Be aware that where only one splitter is used (e.g. after scalping or after first high-intensity separation) that the middlings and magnetics products are combined as a magnetics fraction and the only splitter used is the right-hand one. For convenience, the left-hand splitter may be parked up against the right-hand splitter thus shutting off the middlings fraction.
5.0 MAINTENANCE

5.1 Belts

Caution: Before any maintenance on the belts is performed, be sure to disconnect all power from the machine.

Belts are accessed from the back of the separator. The motor-to-jackshaft belt can be adjusted by loosening the two bolts on the vertical of the jackshaft assembly. The jackshaft-to-roll belt is adjusted by loosening the two bolts on the horizontal of the jackshaft assembly. Be sure to firmly retighten all bolts after adjusting the belts.

5.2 Brush

The roll brush should be properly spring-loaded against the roll by the brush holder mechanism. Do not operate without a brush, as this will not only damage the roll but will also give poor separation. The brush should be cleaned after every test run. Worn brushes should be replaced with genuine Carpco bristle roll stock.

5.3 Ventilation (applicable on standard MIH(13)111-5 only)

A fan is provided to remove heat from inside the separator. After extended continuous use, the separator will get rather hot and this may result in reduced magnet current and possibly a tripped circuit breaker. If this occurs, turn the machine off and open the top door of the cabinet. Allow the machine to cool this way for ½ to 1 hour. Operation may then be resumed.

5.4 Spare Parts

The recommended spare parts listing for this separator is included in Appendix D.

5.5 Motor Maintenance

Lubrication and maintenance of the motor should follow guidelines given in Appendix E, Component Manufacturer’s Data.

5.6 Other Components

Appendix E contains the manufacturer’s data for various components that are included in this separator.
APPENDIX A

Separation Characteristics of Selected Minerals
APPENDIX B

Laboratory Worksheet
APPENDIX B

INDUCED-ROLL MAGNETIC SEPARATOR DATA SHEET

TECHNICIAN:______________________________ DATES TESTED:______________________

PROJECT NAME:_________________________ PROJECT NO.____________

<table>
<thead>
<tr>
<th>TEST #</th>
<th>STREAM NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAGNETICS</td>
</tr>
<tr>
<td></td>
<td>NONMAGNETICS</td>
</tr>
<tr>
<td></td>
<td>FEED</td>
</tr>
<tr>
<td></td>
<td>MAGNETICS</td>
</tr>
<tr>
<td></td>
<td>NONMAGNETICS</td>
</tr>
<tr>
<td></td>
<td>FEED</td>
</tr>
<tr>
<td></td>
<td>MAGNETICS</td>
</tr>
<tr>
<td></td>
<td>NONMAGNETICS</td>
</tr>
<tr>
<td></td>
<td>FEED</td>
</tr>
<tr>
<td></td>
<td>MAGNETICS</td>
</tr>
<tr>
<td></td>
<td>NONMAGNETICS</td>
</tr>
<tr>
<td></td>
<td>FEED</td>
</tr>
</tbody>
</table>

OBSERVATIONS/COMMENTS:

OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>OPERATING CONDITIONS</th>
<th>TEST</th>
<th>TEST</th>
<th>TEST</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEED RATE (LBS/HR/IN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROLL SPEED (RPM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEED SPEED, oF (oC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INNER SPLITTER (INS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTER SPLITTER (INS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOSE GAP (MM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAIL GAP (MM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C

Feed Rate Conversion Chart
APPENDIX C

FEED RATE CONVERSION CHART

MODEL MIH(13)111-5

<table>
<thead>
<tr>
<th>SAMPLE WEIGHT (g/10 sec)</th>
<th>FEED RATE (lbs/hr/in)</th>
<th>SAMPLE WEIGHT (kg/hr/cm)</th>
<th>FEED RATE (g/10 sec)</th>
<th>FEED RATE (lbs/hr/in)</th>
<th>FEED RATE (kg/hr/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.4</td>
<td>20</td>
<td>4.8</td>
<td>236</td>
<td>125</td>
<td>22.3</td>
</tr>
<tr>
<td>63.0</td>
<td>25</td>
<td>6.0</td>
<td>246</td>
<td>130</td>
<td>23.2</td>
</tr>
<tr>
<td>75.6</td>
<td>30</td>
<td>7.1</td>
<td>255</td>
<td>135</td>
<td>24.1</td>
</tr>
<tr>
<td>88.2</td>
<td>35</td>
<td>8.3</td>
<td>265</td>
<td>140</td>
<td>25.0</td>
</tr>
<tr>
<td>100.8</td>
<td>40</td>
<td>9.5</td>
<td>274</td>
<td>145</td>
<td>25.9</td>
</tr>
<tr>
<td>113.4</td>
<td>45</td>
<td>10.7</td>
<td>284</td>
<td>150</td>
<td>26.8</td>
</tr>
<tr>
<td>125.9</td>
<td>50</td>
<td>11.9</td>
<td>293</td>
<td>155</td>
<td>27.6</td>
</tr>
<tr>
<td>138.5</td>
<td>55</td>
<td>13.1</td>
<td>302</td>
<td>160</td>
<td>28.6</td>
</tr>
<tr>
<td>151.1</td>
<td>60</td>
<td>14.3</td>
<td>312</td>
<td>165</td>
<td>29.4</td>
</tr>
<tr>
<td>163.7</td>
<td>65</td>
<td>15.5</td>
<td>321</td>
<td>170</td>
<td>30.3</td>
</tr>
<tr>
<td>176.3</td>
<td>70</td>
<td>16.7</td>
<td>331</td>
<td>175</td>
<td>31.2</td>
</tr>
<tr>
<td>188.9</td>
<td>75</td>
<td>17.9</td>
<td>340</td>
<td>180</td>
<td>32.1</td>
</tr>
<tr>
<td>201.5</td>
<td>80</td>
<td>19.0</td>
<td>350</td>
<td>185</td>
<td>33.0</td>
</tr>
<tr>
<td>214.1</td>
<td>85</td>
<td>20.2</td>
<td>359</td>
<td>190</td>
<td>33.9</td>
</tr>
<tr>
<td>226.7</td>
<td>90</td>
<td>21.4</td>
<td>369</td>
<td>195</td>
<td>34.8</td>
</tr>
<tr>
<td>239.3</td>
<td>95</td>
<td>22.6</td>
<td>378</td>
<td>200</td>
<td>35.7</td>
</tr>
<tr>
<td>251.9</td>
<td>100</td>
<td>23.8</td>
<td>388</td>
<td>205</td>
<td>36.6</td>
</tr>
<tr>
<td>264.5</td>
<td>105</td>
<td>25.0</td>
<td>397</td>
<td>210</td>
<td>37.5</td>
</tr>
<tr>
<td>277.1</td>
<td>110</td>
<td>26.2</td>
<td>406</td>
<td>215</td>
<td>38.4</td>
</tr>
<tr>
<td>289.7</td>
<td>115</td>
<td>27.4</td>
<td>416</td>
<td>220</td>
<td>39.3</td>
</tr>
<tr>
<td>302.3</td>
<td>120</td>
<td>28.6</td>
<td>425</td>
<td>225</td>
<td>40.1</td>
</tr>
</tbody>
</table>

CONVERSION FACTORS

1) To convert g/10 sec to lbs/hr/in, multiply by 0.529.
2) To convert g/10 sec to kg/hr/cm = multiply by 0.0945.
APPENDIX D

Spare Parts Listing
APPENDIX D

RECOMMENDED SPARE PARTS FOR 1-2 YEARS’ OPERATION
MODEL MIH(13)111-5

<table>
<thead>
<tr>
<th>SP PART NO.</th>
<th>QUANTITY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ELECTRICAL PARTS</td>
</tr>
<tr>
<td>2954</td>
<td>2</td>
<td>PILOT LIGHT</td>
</tr>
<tr>
<td>CONTROL-DC-1001</td>
<td>1</td>
<td>MM23001C CONTROLLER DC MOTOR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MECHANICAL PARTS</td>
</tr>
<tr>
<td>2958</td>
<td>2</td>
<td>ROLL BEARINGS, SEALED</td>
</tr>
<tr>
<td>2959</td>
<td>1</td>
<td>MOTOR-JACKSHAFT BELT</td>
</tr>
<tr>
<td>3029</td>
<td>1</td>
<td>JACKSHAFT BELT</td>
</tr>
<tr>
<td>2961</td>
<td>2</td>
<td>ROLL BRUSH</td>
</tr>
<tr>
<td>3026</td>
<td>6</td>
<td>RUBBER BUSHINGS</td>
</tr>
<tr>
<td>3002</td>
<td>1</td>
<td>VIBRATOR DRIVE UNIT</td>
</tr>
<tr>
<td>3027</td>
<td>2</td>
<td>KNOB</td>
</tr>
<tr>
<td>3028</td>
<td>1</td>
<td>FEEDER CONTROL COMPLETE</td>
</tr>
</tbody>
</table>
APPENDIX E

COMPONENT MANUFACTURER’S DATA

- Vibrator (FMC)
- Digital Panel Meter (Datel)
- D.C. Motor and Speed Control (Minarik)
- D.C. Tach Generator (Madison)
- Optional Constant Current Controller
 (applicable on Model MIH(13)111-5CX only)
- Optional Heat Exchanger
 (applicable on Model MIH(13)111-5CX only)
Thank you for buying your equipment from FMC. This service instruction manual will help you to understand how your equipment operates and what is required to maintain peak performance. Please read it thoroughly and keep it on file for reference.

Your satisfaction is very important to us. Please direct any comments, questions or concerns to our Marketing Communications Department.

Date Purchased:

Serial No.:

Factory Order No.:

INTRODUCTION

The Syntron® Electromagnetic Vibrator, Model V-2-B applies vibration to bulk material, keeping the particles agitated and in a free flowing condition. The vibrator can be operated directly from an AC power supply with or without a standard control.

INSTALLATION

The Syntron V-2-B vibrator may be installed in any position, horizontal or vertical. The mounting bar is provided with a 13/32-inch diameter mounting hole. Tighten the bolt securely with the locknut and lockwasher provided. Check frequently to see that this bolt remains tight. The current supply must be the same as the rating designated on the nameplate.

OPERATION

NOTE: If the vibrator is installed on a hopper, do not operate the vibrator while the hopper is closed; vibratory action will compact hopper contents.

To operate the vibrator, simply connect the leads to the power supply. If a control is furnished, connect the vibrator to the control terminals and the control to the power supply. Use of a control permits the output to be
controlled by turning the rheostat knob. Turn the knob clockwise to increase output, and counterclockwise to decrease output.

AIR GAP ADJUSTMENT

Caution: If current draw is excessive (higher than nameplate 115V/.3 amps, 230V/.18 amps), adjust the air gap.

If the armature assembly strikes the core assembly (indicated by loud rapping noise) an adjustment of the air gap is necessary. Too narrow of an air gap will cause an excessive current draw. Loosen the locknut on top of the vibrator and adjust the armature by turning the adjustment screw until the striking stops. Tighten the locknut. Check the current draw of the vibrator, it must not exceed current requirements as designated on the vibrator nameplate.

TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibrator Operates Below Capacity</td>
<td>Loose Hardware</td>
<td>Repair</td>
</tr>
<tr>
<td></td>
<td>Defective Magnet</td>
<td>Replace*</td>
</tr>
<tr>
<td>Vibrator Does Not Run</td>
<td>Loose Connections in Control</td>
<td>Repair</td>
</tr>
<tr>
<td></td>
<td>Defective Rheostat</td>
<td>Replace*</td>
</tr>
</tbody>
</table>

*Replace only with parts supplied or recommended by FMC
PARTS LIST

![Diagram of a machine part with labels A to J.](image)

PARTS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>Cap Screw. Soc. (1/4"-20x1/2")</td>
<td>H0416500</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Plainwasher (1/4")</td>
<td>H0112845</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>DriveScrew, (#6x1/4")</td>
<td>H0438400</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>Mounting Bar</td>
<td>A-161019-1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>Disc</td>
<td>A-161018-1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Mach. Screw, Rd. Hd (#6-32x3/16")</td>
<td>H0200501</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>Core, Coil and Cable Assembly (115V/50-60 Cy)</td>
<td>C-172844-A</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Core, Coil and Cable Assembly (only 230V/60 Cy)</td>
<td>C-172844-B</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>Armature Assembly</td>
<td>A-62757</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>Cap Assembly</td>
<td>A-161201-A</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Compression Nut</td>
<td>102X040</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Grommet</td>
<td>102X041</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Washer</td>
<td>102X042</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Lockwasher #10</td>
<td>H0112404</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Mach. Scr. Pan Hd, Br (10-32 x 3/16")</td>
<td>H0215602</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Caution Label</td>
<td>A-125694</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>Nameplate</td>
<td>A-164432-1</td>
</tr>
<tr>
<td>J</td>
<td>1</td>
<td>Hex Nut (5/16"-24)</td>
<td>H0102601</td>
</tr>
</tbody>
</table>

- Do not remove or paint over safety labels. Should safety labels require replacement, contact FMC Corporation, Material Handling Equipment Division, Homer City, PA 15748 (724) 479-4300 for additional supply free of charge.
DM-3100B
AC-Powered, 3½ Digit LED Digital Panel Meter

FEATURES
- Dual Voltage Power - 115/230 VAC, pin-selected
- Low Cost —
- Balanced Differential Inputs, 80 dB CMR Noise Rejection
- Autozeroing, Ratiometric Reference for Drift Correction
- 1000 MΩ CMOS High Impedance Inputs
- Display - 56” High Numerals
- Red LED
- Compact, Short Depth Case - 3.00”W x 2.15”D x 1.76”H (76.2 x 54.6 x 44.7 mm)

APPLICATIONS
- Ammeter - Accepts user-supplied shunts for ±20 µA to ±2A Full Scale Ranges
- Voltmeter - Accepts user-supplied attenuators for ±2V to ±1 kV Full Scale Ranges
- Ohmmeter - 200n to 10MΩ Full Scale Range

DESCRIPTION
The DM-3100B is a very low cost, dual AC-powered Digital Panel Meter. Analog voltages over the range of ±1.999 Vdc are displayed with 3½ digits of resolution. The DM-3100B is powered from the AC line: 115 or 230 VAC is pin-selectable. The unit can provide ±5V and -5 Vdc (100 milliamps and 5 milliamps respectively) to power customer-supplied external circuitry.

The DM-3100B uses a self-illuminated red LED display with 56” high numerals. It is clearly visible from many feet away in normal or dim light.

Inputs to the DM-3100B are balanced differential (80 dB Common Mode Rejection) so the meter will accurately display small signals in electrically noisy industrial environments. CMOS circuitry results in an extremely high input impedance (1000 Megohms, typically) and a very low bias current of 5 picoamps - inputs with a source impedance as high as 100 kilohms can be displayed with accuracy. The input circuitry will also safely tolerate over-voltages up to ±250 Vdc (155 VRMS). Inputs are sampled and displayed about four times per second.

Autozeroing and a ratiometric reference in-out loop permit the DM-3100B to be used for drift correction in bridge-type measurement systems. Meter accuracy is adjustable to ±1/10% (±1 count). Temperature drift of zero is ±1 count from 0 to 50°C, while temperature drift of gain runs typically ±50 ppm of Reading/°C.

The AC-powered DM-3100B was designed for installations where existing dc supplies are noisy, inaccessible, or overloaded. This meter may be used wherever a voltage, or a unit which can be made proportional to voltage, must be displayed with accuracy and clarity. The basic input range of ±1.999 Vdc can be expanded with a simple voltage divider to display voltages up to ±1kV or up to ±2A using current shunts. Blank pads on the meter’s circuit board can accept user-supplied voltage attenuator resistors, current shunts, or digital ohmmeter components.

The DM-3100B is supplied in Datel’s standard short depth black polycarbonate case, measuring only 3.00”W x 2.15”D x 1.76”H. All connections are made on the back panel to an optional 18-pin edge connector. Cutout dimensions are 1.812”H x 3.062”W (46.0 x 77.8 mm), minimum.

Note: DPM’s are supplied without bezel labels and logos.
ANALOG INPUT

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>True, balanced differential bipolar</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>5 pA typical, 50 pA maximum</td>
</tr>
<tr>
<td>Displayed Accuracy @ +25°C</td>
<td>Adjusts to ±0.1% reading, ±1 count</td>
</tr>
<tr>
<td>Resolution</td>
<td>1 mV</td>
</tr>
<tr>
<td>Temperature Drift of Zero</td>
<td>Autozeroed ±1 count over 0 to +50°C</td>
</tr>
<tr>
<td>Temperature Drift of Gain</td>
<td>±50 ppm of Reading/°C typ. ±100 ppm of Reading/°C max.</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>100 Megohms, minimum</td>
</tr>
<tr>
<td>Input Overvoltage</td>
<td>±250 Volts dc, ±15 VRMS continuous max. ±300 Volts intermittent max.</td>
</tr>
<tr>
<td>Common Mode Rejection</td>
<td>100 dB, DC to 60 Hz, 1 Kiloohm unbalance</td>
</tr>
<tr>
<td>Common Mode Voltage Range</td>
<td>Within +Vs – 5V and –Vs +1V where +Vs is the positive rail (Pin B9) and –Vs is the negative rail (Pin A7). –Vs is approximately equal to –5V below PWR. COM. (Pin A9)</td>
</tr>
<tr>
<td>Warm-Up Time</td>
<td>Within 10 minutes</td>
</tr>
<tr>
<td>Reference</td>
<td>Internal, referred to the negative rail (–Vs). External, user-supplied reference optional for ratioimetric operation</td>
</tr>
<tr>
<td>External Ref. Range</td>
<td>+100 mV to 2V, referred to –Vs</td>
</tr>
<tr>
<td>Ramp-up Time (Integration Period)</td>
<td>83.3 ms</td>
</tr>
</tbody>
</table>

DISPLAY

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Digits</td>
<td>3 decimal digits and most significant “1” digit (3½ digits)</td>
</tr>
<tr>
<td>Decimal Points</td>
<td>Selectable decimal points are included for scale multipliers</td>
</tr>
<tr>
<td>Display Type</td>
<td>Red, light-emitting diode (LED) self illuminated</td>
</tr>
<tr>
<td>Display Height</td>
<td>0.56 inches (14.2 mm)</td>
</tr>
<tr>
<td>Overscale</td>
<td>Inputs exceeding the full scale range blank the display, leaving a “1” MSD and sign</td>
</tr>
<tr>
<td>Autopolarity</td>
<td>A minus sign is automatically displayed for negative inputs, and may also be blanked</td>
</tr>
<tr>
<td>Sampling Rate</td>
<td>Factory set at 3 conversions per second. May be rewarmed up to 20 conversions/second</td>
</tr>
</tbody>
</table>

I/O CONNECTIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog HI Input (Pin A3)</td>
<td>Differential input voltages are connected between these inputs. A bias current path to POWER COMMON (if ±5V-powered) or ANALOG RETURN from both these inputs must be externally provided. External circuits must constrain these inputs to be within the common mode voltage range.</td>
</tr>
<tr>
<td>Analog LO Input (Pin A2)</td>
<td>Connected in series through R1 (Optional attenuator resistor) to Analog HI in (Pin A3). Supplied with a jumper in place of R1.</td>
</tr>
<tr>
<td>Attenuator IN (Pin A4)</td>
<td>This pin may be used as a low-noise bias current return for some floating inputs. If not possible, inputs may be referenced to POWER COMMON (if ±5V-powered). Analog Return is approximately –2.8V below +Vs and can sink 30 mA to –Vs Normally, REF. IN and REF. OUT should be jumpered together. An external floating source referred to EXT. REF. LO (Pin A7) may be substituted for ratioimetric operation.</td>
</tr>
<tr>
<td>Analog Return (Pin A1)</td>
<td>Connect selected pin to DECIMAL POINT COMMON (Pin B6)</td>
</tr>
<tr>
<td>Display Test (Pin A5)</td>
<td>Connect this input to +5 Vdc (Pin B9) to light all display segments. Ground this input to Pin A9 to automatically display a minus sign for negative inputs.</td>
</tr>
<tr>
<td>Polarity Enable (Pin A8)</td>
<td>This connection is used in the ohmmeter configuration, otherwise do not use.</td>
</tr>
<tr>
<td>Ohms Lo (Pin B7)</td>
<td>For 115 VAC input (parallel both windings) 1. Connect AC LINE HI A (Pin B18) to AC LINE HI B (Pin B14). Connect both to the hot side of the AC line (mains). 2. Connect AC LINE LO A (Pin A16) to AC LINE LO B (Pin A12). Connect both to the neutral side of the AC line (mains). For 230 VAC input (series both windings) 1. Connect AC LINE HI B (Pin B14) to AC LINE LO A (Pin A16). Make no other connections to these two leads. 2. Connect AC LINE HI A (Pin B18) to the hot side of the AC line (mains). 3. Connect AC LINE LO B (Pin A12) to the neutral side of the AC line (mains). DC Power Ground (Pin A9) may be connected to earth ground if input circuits permit. For DC-Power Only: A bipolar ±5V power supply or two isolated single supplies are required Connect –5V to Pin B9, –5V to Pin A7 and Power Ground to Pin A9</td>
</tr>
</tbody>
</table>

POWER REQUIREMENTS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Power</td>
<td>115 or 230 VAC, ±10%, 47 to 440 Hz, 4 watts typical</td>
</tr>
<tr>
<td>DC Power</td>
<td>+5V ±0.25 Vdc ±250 mA typical</td>
</tr>
<tr>
<td>(Users will normally power from AC-only.) DC-only power is optional.</td>
<td>400 mA max. and ±5 Vdc ±5 mA typ. 25 mA max. Logic spikes must be less than 50 mA. Bypass supplies externally if necessary. A multturn screwdriver pot adjusts the full scale reading (gain). Zero is automatic (autozeroing). Suggested recalibration in stable conditions is 90 days.</td>
</tr>
</tbody>
</table>

PHYSICAL-ENVIRONMENTAL

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-Depth Case</td>
<td>Interchangeable with other Datel cases</td>
</tr>
<tr>
<td>Outline Dimensions</td>
<td>3.00"W x 2.15"D x 1.76"H (76.2 x 54.6 x 44.7 mm)</td>
</tr>
<tr>
<td>Cutout Dimensions</td>
<td>1.8125"H x 3.0625"W (46.0 x 77.7 mm)</td>
</tr>
<tr>
<td>Mounting Method</td>
<td>Through a front panel cutout secured by (4) 4-40 front access screws which are concealed by the bezel</td>
</tr>
<tr>
<td>Weight</td>
<td>Approximately 5 ounces (142g)</td>
</tr>
<tr>
<td>Connector</td>
<td>Double-sided edgeboard PC type, solder tab, gold-plated fingers, Dual 18-pin, 0.100" centers, Datel #58-2075010, (not included)</td>
</tr>
<tr>
<td>Mounting Position</td>
<td>Any</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>–25 to +85°C</td>
</tr>
<tr>
<td>Altitude</td>
<td>0 to 15,000 feet (4600m)</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>20% to 80% non-condensing</td>
</tr>
</tbody>
</table>
Some versions of the DM-3100B have solder gaps on the bottom of the converter board, rather than a jumper at R1. Before attenuating resistors can be added to the DM-3100B, this solder gap must be opened with a soldering iron.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>QUANTITY (1-9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM-3100B</td>
<td>DPM, AC-Powered</td>
<td></td>
</tr>
<tr>
<td>58-2075010</td>
<td>Dual 18-pin connector, .100" ctrs., solder-tabs (not included)</td>
<td></td>
</tr>
</tbody>
</table>
The internal power supply of the DM-3100B can be used to power external circuitry. The drawing below shows an op amp—user-supplied—in a single-ended configuration to provide gain for a low level input. Power is from the +5V and -5V power in connections (B9 and A7, respectively) on the DM-3100B. Where low level signals will be amplified, it is important to pay attention to ground routing. A single common ("Mecca") ground point, as indicated in the diagram, is recommended.

USER-SUPPLIED CIRCUITRY

DM-3100B

GAIN:

ICL 7613

GROUND

SIGNAL IN

115 VAC POWER

LOW-CURRENT, ±5V – POWERED OP AMP.
APPLICATIONS
RATIOMETRIC CONNECTIONS
WITH BRIDGE INPUTS

The DM-3100B has a reference in-out loop which makes possible ratiometric measurements. Representative connections are illustrated below. Ratiometric operation eliminates changes in the DPM reading due to voltage variations in the Bridge’s external excitation source. The input gain on the DM-3100B varies inversely with voltage at Reference In — as REF IN voltage increases, meter gain decreases. Meter input gain thus can be made to compensate for variations in the bridge excitation source voltage. (The DPM is set for unity gain when REF IN V equals +1V as referred to -Vs).

For all applications, \(V_{IN} = 2V_{REF} \) at full scale (199 counts). For small values of \(V_{REF} \) (100 mV or lower), increased display noise, nonlinearity, rollover and CMRR errors will be apparent. Avoid \(V_{REF} \) inputs beyond about 2V to prevent integrator saturation with full scale inputs. Variable \(V_{REF} \) is not intended for wide gain changes as in multimeter applications. Instead, it should be used for drift correction, scaling to engineering units, or for modest amounts of gain.

A note on grounding: The DM-3100B’s internal voltage reference source is biased against the internal negative supply rail (-Vs). Note that this is not the same electrical connection as the 5V Power Common connection. Refer to the Simplified Block Diagram.

Because of this configuration, external reference sources should be isolated from the 5V Power Common and should have the Reference Lo Output from the external source connected to the negative supply rail.

DIGITAL OHMMETER CONNECTIONS

The digital ohmmeter circuit uses the DM-3100B’s ratiometric capability. An external reference resistor of known resistance, accuracy, and temperature drift is connected in series with the unknown resistance. A constant, stable voltage from the DPM’s internal reference diode is applied to the resistor pair to produce a constant current. This current develops two voltage drops across the resistors which are proportional only to the ratio of the resistances since the current through them is identical.

The chart below lists recommended \(R_{REF} \) and \(R_{LIMIT} \) resistance values corresponding to different ohmmeter ranges. Values of \(R_{LIMIT} \) were selected to limit the current through \(R_{REF} \) and \(R_x \) to 1 milliampere maximum.

<table>
<thead>
<tr>
<th>RANGE</th>
<th>(R_{LIMIT})</th>
<th>(R_{REF})</th>
<th>DECIMAL POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.99 M(\Omega)</td>
<td>10 k(\Omega)</td>
<td>22 M(\Omega)</td>
<td>10 M(\Omega)</td>
</tr>
<tr>
<td>1.999 M(\Omega)</td>
<td>1 k(\Omega)</td>
<td>3.6 M(\Omega)</td>
<td>1 M(\Omega)</td>
</tr>
<tr>
<td>199.9 k(\Omega)</td>
<td>100 (\Omega)</td>
<td>360 k(\Omega)</td>
<td>100 k(\Omega)</td>
</tr>
<tr>
<td>19.99 k(\Omega)</td>
<td>10 (\Omega)</td>
<td>36 k(\Omega)</td>
<td>10 k(\Omega)</td>
</tr>
<tr>
<td>1.999 k(\Omega)</td>
<td>1 (\Omega)</td>
<td>6.2 k(\Omega)</td>
<td>1 k(\Omega)</td>
</tr>
</tbody>
</table>
THE FORCE IN DPM'S.

ULTRA-LOW COST OEM
Tiny 2" x 3.5" single-board with .62" panel depth
Accepts components for 2 to 200V, 20 µA to 2A, and digital ohmmeter ranges
Noise-rejecting balanced differential inputs
5 Vdc power @ 280 mA
DM-31, Stock to 2 weeks

MICROPOWERED
.75"-HIGH LCD
2" x 4" single-board with .56" panel depth
Battery-powered 5 Vdc @ 3.5 mA
Large, easy-to-read .75" digits
Balanced differential, low noise input
Autozeroing, ratiometric for drift correction
DM-LX3, Stock to 4 weeks

LOW-COST 4½ DIGITS
1000 Megohms input impedance,
5 pA bias current
Autozeroing, ratiometric for drift correction
4½ digits for large-scale indications
Example: 15,000 pounds full scale
Accepts components for 2V to 200V, 20 µA to 2A ranges
DM-4100L, Stock to 4 weeks

MINIATURE AC-POWERED
Dual Power 115/230 VAC, pin-selected
Low-noise Balanced Differential Inputs
Autozeroed, ratiometric drift correction
3½ LED Digits, ±2V basic range
1000 Megohm input impedance,
5 pA bias current
DM-3100B, Stock to 4 weeks

LOW-COST MULTIRANGE
Accepts user-installed components for:
1. Any voltage range ±2V to ±200V
2. Any current range ±20 µA to ±2A
3. Digital Ohmmeter 200Ω to 10MΩ FS
4. Offset pot for 4-20 mA and others Noise-rejecting balanced differential input
5 Vdc power @ 280 mA
DM-3100N, Stock to 4 weeks

MICROBUSSABLE 3-STATE BCD
4½ digit data gated out in 4-bit nibbles, full parallel selectable
Connects directly to shared microprocessor busses
1000 Megohm input impedance,
5 pA bias current
Autozeroed, ratiometric to correct drift
5 Vdc power @ 500 mA
DM-4100D, Stock to 4 weeks

Datel-Intersil has a dozen DPM's for instrument makers. All prices are 1 to 9 quantity.
Contact Datel-Intersil for generous OEM quantity discounts.

Printed in U.S.A. Copyright © 1981 Datel-Intersil, Inc. All rights reserved.
11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL. (617)339-9341/ TWX 710 346-1953/TLX 951340
• Des Plaines, IL (312)827-3535 • Santa Ana, CA (714)835-2751 • Sunnyvale, CA (408)733-2424
• Los Angeles, CA (213)933-7256 • Houston, TX(713)939-7271 • Dallas, TX (214)241-0651
OVERSEAS, INTERSIL DATEL (UK) LTD-TEL. BASINGSTOKE (0256) 57361 • INTERSIL DATEL SARL-TEL. 602 57 11 •
INTERSIL DATEL GmbH-TEL. (089)30741 • DATEL KK TOKYO-TEL. 793-1031

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

11/81 BULLETIN DMBBJ05111
MODIFYING THE METER'S INPUT RANGE

All DATEL DPM's are shipped with a standard input range configuration of ±2V dc. It is quite easy to change the input range by installing an attenuation resistor and shunt resistor. DATEL DPM's have pads on the circuit board for the installation of these two resistors. Install an attenuation resistor (R_A) in series with the ANALOG HIGH input, and a shunt resistor (R_s) across ANALOG HIGH and ANALOG LOW. For higher voltage input ranges, a solder gap (SG1) must be opened in conjunction with the installation of R_A.

The figure below shows the resistor and solder gap configuration. For most meters, the exact locations of the resistor pads and solder gap are shown in the meter's Data Sheet. In some cases this information is missing or incorrect. See the reverse of this page for updated information.

![Resistor and solder gap configuration](image)

<table>
<thead>
<tr>
<th>Range</th>
<th>R_A</th>
<th>R_s</th>
<th>SG1</th>
</tr>
</thead>
<tbody>
<tr>
<td>±2V dc</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>±20V dc</td>
<td>10 MΩ</td>
<td>1.1 MΩ</td>
<td>OPEN</td>
</tr>
<tr>
<td>±200V dc</td>
<td>10 MΩ</td>
<td>100 KΩ</td>
<td>OPEN</td>
</tr>
<tr>
<td>±200 mA</td>
<td>10Ω, 1W</td>
<td>100Ω</td>
<td>CLOSE</td>
</tr>
<tr>
<td>±2 mA</td>
<td>-</td>
<td>1 KΩ</td>
<td>CLOSE</td>
</tr>
<tr>
<td>±200 μA</td>
<td>-</td>
<td>10 KΩ</td>
<td>CLOSE</td>
</tr>
<tr>
<td>±20 μA</td>
<td>-</td>
<td>100 KΩ</td>
<td>CLOSE</td>
</tr>
</tbody>
</table>

For input ranges not shown, use the general equation: Where: 50 KΩ < R_A + R_s < 10 MΩ

\[
\frac{R_s}{R_A + R_s} \text{ Multiplied by Range } = 2.0
\]

IMPORTANT:

1. Use 1%, 1/4W metal-film resistors (except where noted).
2. R_A and R_s values may be different, as long as the proportions shown in the table above are maintained.
3. With a few exceptions, R_A is designated as R1 on component layouts and R_s as R2. The solder gap is generally labeled "SG1" and is located on the wiring side of the printed circuit board. Consult individual product Data Sheets.
4. Change the decimal point location for correct readout of nonstandard input ranges. Consult the meter's Data Sheet.
5. After installing resistors, recalibrate the meter according to the procedures described in the meter's Data Sheet.
RESISTOR AND SOLDER GAP LOCATIONS
(If your meter is not pictured, consult Data Sheet)

DM-3100B

DM-4200

DM-3100U2/U3

DM-4101D

DM-4105

WARNING: DATEL panel meters contain sensitive CMOS devices which are easily damaged. Meter modifications should only be attempted by skilled technicians.
DM-3100B

AC-Powered, 3 1/2 Digit LED Digital Panel Meter

FEATURES
- Dual Voltage Power - 115/230 VAC, pin-selected
- Low Cost —
- Balanced Differential Inputs, 80 dB CMR Noise Rejection
- Autozeroing, Ratiometric Reference for Drift Correction
- 1000 MΩ CMOS High Impedance Inputs
- Display - 56” High Numerals
- Red LED
- Compact, Short Depth Case - 3.00”W x 2.15”D x 1.76”H
 (76.2 x 54.6 x 44.7 mm)

APPLICATIONS
- Ammeter - Accepts user-supplied shunts for ±20 μA to ±2A Full Scale Ranges
- Voltmeter - Accepts user-supplied attenuators for ±2V to ±1 kV Full Scale Ranges
- Ohmmeter - 200Ω to 10MΩ Full Scale Range

DESCRIPTION

The DM-3100B is a very low cost, dual AC-powered Digital Panel Meter. Analog voltages over the range of ±1.999 Vdc are displayed with 3 1/2 digits of resolution. The DM-3100B is powered from the AC line; 115 or 230 VAC is pin-selectable. The unit can provide +5V and -5V (100 milliamps and 5 milliamps respectively) to power customer-supplied external circuitry.

The DM-3100B uses a self-illuminated red LED display with 56” high numerals. It is clearly visible from many feet away in normal or dim light.

Inputs to the DM-3100B are balanced differential (80 dB Common Mode Rejection) so the meter will accurately display small signals even in electrically noisy industrial environments. CMOS circuitry results in an extremely high input impedance (1000 Megohms, typically) and a very low bias current of 5 picoamps - inputs with a source impedance as high as 100 kilohms can be displayed with accuracy. The input circuitry will also safely tolerate overvoltages up to ±250 Vdc (155 VRMS). Inputs are sampled and displayed about four times per second.

Autozeroing and a ratiometric reference in-out loop permit the DM-3100B to be used for drift correction in bridge-type measurement systems. Meter accuracy is adjustable to ±1/10% (±1 count). Temperature drift of zero is ±1 count from 0 to 50°C, while temperature drift of gain runs typically ±50 ppm of Reading/°C.

The AC-powered DM-3100B was designed for installations where existing dc supplies are noisy, inaccessible, or overloaded. This meter may be used wherever a voltage, or a unit which can be made proportional to voltage, must be displayed with accuracy and clarity. The basic input range of ±1.999 Vdc can be expanded with a simple voltage divider to display voltages up to ±1kV or up to ±2A using current shunts. Blank pads on the meter's circuit board can accept user-supplied voltage attenuators or current shunts, or digital ohmmeter components.

The DM-3100B is supplied in Datel's standard short depth black polycarbonate case, measuring only 3.00"W x 2.15"D x 1.76"H. All connections are made on the back panel to an optional 18-pin edge connector. Cutout dimensions are 1.812"H x 3.062"W (46.0 x 77.8 mm), minimum.

SIMPLIFIED BLOCK DIAGRAM

Note: DPM's are supplied without bezel labels and logos.

DM-3100B AC-POWERED 3 1/2 DIGIT LED DPM

DATEL-INTERSIL, INC., 11 CABOT BOULEVARD, MANSFIELD, MA 02048/TEL (617) 339-9341/TWX 710-346-1953/TLX 951340
ANALOG INPUT

Configuration...True, balanced differential bipolar
-1.995 Vdc to +1.995 Vdc
Input pad area will accept user-installed range change
Input Bias Current...5 pA typical, 50 pA maximum
Displayed Accuracy @ +25°C......................................Adjustable to ±0.1% reading, ±1 count
Resolution ...1 mV
Temperature Drift of Zero...Autozeroed ±1 count over 0 to +50°C
Temperature Drift of Gain..±50 ppm of Reading/°C typ.
Input Impedance..±100 Megohms, minimum
Input Overvoltage ...±250 Volts, 155 VRMS continuous max.
Common Mode Rejection ..±300 Volts, intermittent max.
Common Mode Voltage Range80 dB, DC to 60 Hz, 1 Kiloohm unbalance
Warm-Up Time..Within 10 minutes
Reference ...Internal, referred to the negative rail (-Vs). External, user-supplied reference optional for ratiometric operation
External Ref. Range ..+100 mV to 2V, referred to -Vs
Ramp-up Time (Integration Period)...............................83.3 ms

DISPLAY

Number of Digits ..3 decimal digits and most significant '1' digit (3½ digits)
Decimal Points ...Selectable decimal points are included for scale multipliers
Display Type ..Red, light-emitting diode (LED) self illuminated.
Display Height ...0.56 inches (14.2 mm)
Overscale ..Inputs exceeding the full scale range blank the display, leaving a '1' MSD and sign.
Autopolarity ..A minus sign is automatically displayed for negative inputs, and may also be blanked
Sampling Rate ...Factory set at 3 conversions per second. May be re wired up to 20 conversions/second.

I/O CONNECTIONS

Analog HI Input (Pin A3) ...Differential input voltages are connected between these inputs. A bias current path from POWER COMMON (if ±5V-powered) or ANALOG RETURN from both these inputs must be externally provided. External circuits may constrain these inputs to be within the common mode voltage range.
Analog LO Input (Pin A2) ...Connected in series through R1 (Optional attenuator resistor) to Analog HI in (Pin A3). Supplied with a jumper in place of R1.
Attenuator IN (Pin A4) ..This pin may be used as a low-noise bias current return for some floating inputs. If not possible, inputs may be referenced to POWER COMMON (if ±5V-powered). Analog Return is approximately -0.8V below +Vs and can sink 30 mA to -Vs.
Analog Return (Pin A1) ..Normally, REF. IN and REF. OUT should be jumpered together. An external floating source referred to EXT. REF. LO (Pin A7) may be substituted for ratiometric operation.
Reference In/Out (Pins B9/A6)(See Section 2 of 6)

DECIMAL POINTS...Connect selected pin to DECIMAL POINT COMMON (Pin B6)
DISPLAY TEST (Pin A5)...Connect this input to +5 Vdc (Pin B9) to light all display segments.
Polarity Enable (Pin A8) ...Ground this input to Pin A9 to automatically display a minus sign for negative inputs.
OHMS LO (Pin B7)...This connection is used in the ohm meter configuration, otherwise do not use.

POWER CONNECTIONS

For 115 VAC input: (parallel both windings)
1. Connect AC LINE HI A (Pin B18) to AC LINE HI B (Pin B14). Connect both to the hot side of the AC line (mains).
2. Connect AC LINE LO A (Pin A16) to AC LINE LO B (Pin A12). Connect both to the neutral side of the AC line (mains).
3. For 230 VAC input: (series both windings)
 1. Connect AC LINE HI B (Pin B14) to AC LINE LO A (Pin A16). Make no other connections to these two leads.
 2. Connect AC LINE HI A (Pin B18) to the hot side of the AC line (mains).
 3. Connect AC LINE LO B (Pin A12) to the neutral side of the AC line (mains).
 DC Power Ground (Pin A9) may be connected to earth ground if input circuits permit.

For DC Power Only:
A bipolar ±5V power supply or two isolated single supplies are required
Connect -5V to Pin B9, -5V to Pin A7 and Power Ground to Pin A9

POWER REQUIREMENTS

AC Power ...115 or 230 VAC, ±10%, 47 to 440 Hz, 4 watts typical
DC Power ..+5V ±0.25 Vdc @ 250 mA typical
(Users will normally power from AC-only)
DC-only power is optional.
Calibration ...Interchangeable with other Datel cases

PHYSICAL-ENVIRONMENTAL

Short-Depth Case ...3.00"W x 2.15"D x 1.76"H
Outline Dimensions ...(76.2 x 54.6 x 44.7 mm)
Cutout Dimensions ..1.812"H x 3.062"W
Mounting Method ...Through a front panel cutout secured by (4) 4-40 front access screws which are concealed by the bezel
Mounting Connector ..Double-sided edgeboard PC type, solder tab, gold-plated fingers, Dual 18-pin, 0.100" centers, Datel #59-2075010, (not included)
Mounting Position ..Any
Storage Temperature Range-25 to +85°C
Altitude ...0 to 15,000 feet (4600m)
Relative Humidity ..20% to 80% non-condensing
Some versions of the DM-3100B have solder gaps on the bottom of the converter board, rather than a jumper at R1. Before attenuating resistors can be added to the DM-3100B, this solder gap must be opened with a soldering iron.

DECIMAL POINT WIRING

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>QUANTITY (1-9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM-3100B</td>
<td>DPM, AC-Powered</td>
<td></td>
</tr>
<tr>
<td>58-2075010</td>
<td>Dual 18-pin connector, .100" ctrs., solder-tabs</td>
<td></td>
</tr>
</tbody>
</table>

(not included)
SINGLE-ENDED INPUT WITH GAIN

The internal power supply of the DM-3100B can be used to power external circuitry. The drawing below shows an op amp—user-supplied—in a single-ended configuration to provide gain for a low level input. Power is from the +5V and -5V power in connections (B9 and A7, respectively) on the DM-3100B. Where low level signals will be amplified, it is important to pay attention to ground routing. A single common ("Mecca") ground point, as indicated in the diagram, is recommended.

LOW-CURRENT, ±5V – POWERED OP AMP.
APPLICATIONS

RATIOMETRIC CONNECTIONS WITH BRIDGE INPUTS

The DM-3100B has a reference in-out loop which makes possible ratiometric measurements. Representative connections are illustrated below. Ratiometric operation eliminates changes in the DPM reading due to voltage variations in the Bridge's external excitation source. The input gain on the DM-3100B varies inversely with voltage at Reference IN — as REF IN voltage increases, meter gain decreases. Meter input gain thus can be made to compensate for variations in the bridge excitation source voltage. (The DPM is set for unity gain when REF IN V equals +1V as referred to -V5).

For all applications, \(V_{IN} = 2 \times V_{REF} \) at full scale (1999 counts). For small values of \(V_{REF} \) (100 mV or lower), increased display noise, nonlinearity, rollover and CMR errors will be apparent. Avoid \(V_{REF} \) inputs beyond about 2V to prevent integrator saturation with full scale inputs. Variable \(V_{REF} \) is not intended for wide gain changes as in multimeter applications. Instead, it should be used for drift correction, scaling to engineering units, or for modest amounts of gain.

A note on grounding: The DM-3100B's internal voltage reference source is biased against the internal negative supply rail (-Vs). Note that this is not the same electrical connection as the 5V Power Common connection. Refer to the Simplified Block Diagram.

Because of this configuration, external reference sources should be isolated from the 5V Power Common and should have the Reference Lo Output from the external source connected to the negative supply rail.

DIGITAL OHMMETER CONNECTIONS

The digital ohmmeter circuit uses the DM-3100B's ratiometric capability. An external reference resistor of known resistance, accuracy, and temperature drift is connected in series with the unknown resistance. A constant, stable voltage from the DPM's internal reference diode is applied to the resistor pair to produce a constant current. This current develops two voltage drops across the resistors which are proportional only to the ratio of the resistances since the current through them is identical.

The chart below lists recommended \(R_{REF} \) and \(R_{LIMIT} \) resistance values corresponding to different ohmmeter ranges. Values of \(R_{LIMIT} \) were selected to limit the current through \(R_{REF} \) and \(R_x \) to 1 milliampere maximum.

<table>
<thead>
<tr>
<th>RANGE</th>
<th>RESOLUTION</th>
<th>(R_{LIMIT})</th>
<th>(R_{REF})</th>
<th>DECIMAL POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.99 MΩ</td>
<td>10 kΩ</td>
<td>22 MΩ</td>
<td>10 MΩ</td>
<td>B2 to B5</td>
</tr>
<tr>
<td>1.999 MΩ</td>
<td>1 kΩ</td>
<td>3.6 MΩ</td>
<td>1 MΩ</td>
<td>B1 to B5</td>
</tr>
<tr>
<td>199.9 kΩ</td>
<td>100 Ω</td>
<td>360 kΩ</td>
<td>100 kΩ</td>
<td>B3 to B5</td>
</tr>
<tr>
<td>19.99 kΩ</td>
<td>10 Ω</td>
<td>36 kΩ</td>
<td>10 kΩ</td>
<td>B2 to B5</td>
</tr>
<tr>
<td>1.999 kΩ</td>
<td>1 Ω</td>
<td>6.2 kΩ</td>
<td>1 kΩ</td>
<td>B1 to B5</td>
</tr>
</tbody>
</table>

5 of 6
ULTRA-LOW COST OEM
Tiny 2" x 3.5" single-board with .62" panel depth
Accepts components for 2 to 200V, 20 μA to 2A, and digital ohmmeter ranges
Noise-rejecting balanced differential inputs
5 Vdc power @ 280 mA
DM-31, Stock to 2 weeks

MICROPOWERED .75"-HIGH LCD
2" x 4" single-board with .56" panel depth
Battery-powered 5 Vdc @ 3.5 mA
Large, easy-to-read .75" digits
Balanced differential, low noise input
Autozeroing, ratiometric for drift correction
DM-LX3, Stock to 4 weeks

LOW-COST 4½ DIGITS
1000 Megohms input impedance,
5 pA bias current
Autozeroing, ratiometric for drift correction
4½ digits for large-scale indications
Example: 15,000 pounds full scale
Accepts components for 2V to 200V, 20 μA to 2A ranges
DM-4100L, Stock to 4 weeks

MINIATURE AC-POWERED
Dual Power 115/230 VAC, pin-selected
Low-noise Balanced Differential Inputs
Autozeroed, ratiometric drift correction
3½ LED Digits, ±2V basic range
1000 Megohm input impedance,
5 pA bias current
DM-3100B, Stock to 4 weeks

LOW-COST MULTIRANGE
Accepts user-installed components for:
1. Any voltage range ±2V to ±200V
2. Any current range ±20 μA to ±2A
3. Digital Ohmmeter 200Ω to 10 MΩ FS
4. Offset pot for 4-20 mA and others
Noise-rejecting balanced differential input
+5 Vdc power @ 280 mA
DM-3100N, Stock to 4 weeks

MICROBUSSABLE 3-STATE BCD
4½ digit data gated out in 4-bit nibbles, full parallel selectable
Connects directly to shared microprocessor busses
1000 Megohm input impedance,
5 pA bias current
Autozeroed, ratiometric to correct drift
5 Vdc power @ 500 mA
DM-4100D, Stock to 4 weeks

Datel-Intersil has a dozen DPM's for instrument makers. All prices are 1 to 9 quantity.
Contact Datel-Intersil for generous OEM quantity discounts.
MODIFYING THE METER'S INPUT RANGE

All DATEL DPM's are shipped with a standard input range configuration of ±2V dc. It is quite easy to change the input range by installing an attenuation resistor and shunt resistor. DATEL DPM's have pads on the circuit board for the installation of these two resistors. Install an attenuation resistor (R_A) in series with the ANALOG HIGH input, and a shunt resistor (R_s) across ANALOG HIGH and ANALOG LOW. For higher voltage input ranges, a solder gap (SG1) must be opened in conjunction with the installation of R_A.

The figure below shows the resistor and solder gap configuration. For most meters, the exact locations of the resistor pads and solder gap are shown in the meter's Data Sheet. In some cases this information is missing or incorrect. See the reverse of this page for updated information.

![Resistor Schematic](image)

<table>
<thead>
<tr>
<th>Range</th>
<th>R_A</th>
<th>R_s</th>
<th>SG1</th>
</tr>
</thead>
<tbody>
<tr>
<td>±2V dc</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>±20V dc</td>
<td>10 MΩ</td>
<td>1.1 MΩ</td>
<td>OPEN</td>
</tr>
<tr>
<td>±200V dc</td>
<td>10 MΩ</td>
<td>100 KΩ</td>
<td>OPEN</td>
</tr>
<tr>
<td>±200 mA</td>
<td>-</td>
<td>10Ω, 1W</td>
<td>CLOSE</td>
</tr>
<tr>
<td>±20 mA</td>
<td>-</td>
<td>100Ω</td>
<td>CLOSE</td>
</tr>
<tr>
<td>±2 mA</td>
<td>-</td>
<td>1 KΩ</td>
<td>CLOSE</td>
</tr>
<tr>
<td>±200 μA</td>
<td>-</td>
<td>10 KΩ</td>
<td>CLOSE</td>
</tr>
<tr>
<td>±20 μA</td>
<td>-</td>
<td>100 KΩ</td>
<td>CLOSE</td>
</tr>
</tbody>
</table>

For input ranges not shown, use the general equation: Where: 50 KΩ < R_A + R_s < 10 MΩ

\[
\frac{R_s}{R_A + R_s} \text{ Multiplied by Range } = 2.0
\]

IMPORTANT:

1. Use 1%, 1/4W metal-film resistors (except where noted).

2. R_A and R_s values may be different, as long as the proportions shown in the table above are maintained.

3. With a few exceptions, R_A is designated as R1 on component layouts and R_s as R2. The solder gap is generally labeled "SG1" and is located on the wiring side of the printed circuit board. Consult individual product Data Sheets.

4. Change the decimal point location for correct readout of nonstandard input ranges. Consult the meter's Data Sheet.

5. After installing resistors, recalibrate the meter according to the procedures described in the meter's Data Sheet.
RESISTOR AND SOLDER GAP LOCATIONS
(If your meter is not pictured, consult Data Sheet)

DM-3100B

DM-4200

DM-3100U2/U3

DM-4105D

DM-4105

WARNING: DATEL panel meters contain sensitive CMOS devices which are easily damaged. Meter modifications should only be attempted by skilled technicians.
APPENDIX F

DRAWINGS

General Arrangement
Electrical Schematic