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ABSTRACT 

 

Despite decades of U.S. water quality management efforts, over half of assessed 

waterbody units were threatened or impaired for designated uses in the most recent 

assessments, with urban runoff being a leading contributor to those impairments.  This 

cumulative research explores several aspects of urban runoff dynamics through a 

combination of field study and modeling.   

 

Stormwater ponds are ubiquitous in developed landscapes due to their ability to 

provide multiple forms of treatment for stormwater runoff.  However, evolving design 

goals have reduced the applicability of much of the early work that was done on pond 

effectiveness.  In this study, we instrumented a recently constructed detention pond in 

Burlington, VT, USA.  Flow gaging demonstrated that the pond achieved a 93% 

reduction in event peak flow rates over the monitoring period.  Storm sampling showed 

that the pond significantly reduced total (TN) (1.45 mg/L median influent, 0.93 mg/L 

median effluent, p < 0.001) and total phosphorus (TP) (0.498 mg/L median influent, 

0.106 mg/L median effluent, p < 0.001) concentrations over the events sampled.  A 

loading analysis estimated the TN and TP removal efficiencies for the pond to be 23% 

and 77% respectively.  Lastly, temperature data collected from the pond showed that 

during the summer the pond accumulates considerable heat energy.  This study adds to 

the body of literature on detention pond performance, and raises concerns about the 

extensive use of stormwater ponds in watersheds where thermal stress is a concern. 

 

EPA SWMM is a widely used urban hydrologic, hydraulic and water quality 

model, though its application can be limited due to its deterministic nature, high 

dimensional parameter space, and the resulting implications for modelling uncertainty.  

In this work, I applied a global sensitivity analysis (SA) and evolutionary strategies (ES) 

calibration to SWMM to produce model predictions that account for parameter 

uncertainty in a headwater tributary case study in South Burlington, VT, USA.  Parameter 

sensitivity was found to differ based on model structure, and the ES approach was 

generally successful at calibrating selected parameters, although less so as the number of 

concurrently varying parameters increased.  A watershed water quality analysis using the 

calibrated model suggested that for different events in the record, the stream channel was 

alternately a source and a sink for sediment and nutrients, based on the predicted washoff 

loads and the measured loads from the stream sampling stations. These results add to the 

previous work on SWMM SA, auto-calibration, and parameter uncertainty assessment. 

 

Lastly, given the extent of eutrophication impairment in the U.S., I compared TN 

and TP data collected in these original works with national and regional datasets.  TN 

concentrations sampled in this work were generally commensurate with values reported 

elsewhere, however TP data were not.  Drainage area attributes and an event based 

rainfall runoff analysis of the study catchments provided circumstantial support for the 

idea that runoff from lawns is driving the high TP loads in Englesby Brook.  The role of 

pet wastes is considered as a potentially fruitful area for further research. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Dissertation Structure 

This dissertation is structured into five chapters.  Chapter 1 includes a 

comprehensive literature review and background summary to place the subsequent 

chapters in context.  Chapter 2 includes the details of a wet detention stormwater pond 

assessment conducted in the Englesby Brook watershed in Burlington, Vermont.  This 

work will be reformatted and submitted to the Journal of the American Water Resources 

Association following the publication of this dissertation.  Chapter 3 includes a 

cumulative documentation of the research work performed in Potash Brook Tributary 

Seven drainage in South Burlington, Vermont, including flow gaging and storm event 

sampling, a global sensitivity analysis and evolutionary calibration of a SWMM model 

for the area, and a drainage area pollutant washoff assessment.  The specifics of how this 

work will be reorganized into discrete journal articles are not yet determined.  Chapter 4 

includes a comparative summary of national stormwater quality data and the total nutrient 

data from the studies summarized in Chapters 2 and 3, including the results of an 

additional event based rainfall runoff analysis.  Chapter 4 will be distributed to interested 

Federal, State and Municipal water quality managers given its relevance to local 

management issues, and may serve as the basis for further research.  Finally, Chapter 5 

contains a cumulative summary of this work, including a focus on notable findings and 

suggestions for further work.  A cumulative Bibliography and an appendix with 

additional data is included following Chapter 5.  
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1.2 Background Literature Review 

My research focusses on measurement and modeling of stormwater runoff from 

small suburban watersheds.  Thus, to begin, I review stormwater sources and the scope of 

the resulting management problems.  Next, I review common stormwater management 

strategies including detention ponds, which are the focus of Chapter 2.  This is followed 

by a review of stormwater modeling as a research and management endeavor, with a 

focus on EPA SWMM, which is used in Chapter 3 of this work.  Next, I review 

simulation model sensitivity analysis, including previous applications to EPA SWMM.  

Lastly, I review the current state of model calibration, including manual and automated 

approaches, specifically in the context of previous work with SWMM.  

 

1.2.1 Water Quality 

1.2.1.1 National Water Quality 

In the most recent compilation of nationwide water quality assessments, 54% of 

assessed stream and river miles, 68.4% of assessed lake, reservoir and pond area, and 

78.2% of assessed bay and estuary area were found to be threatened or impaired (U.S. 

EPA 2013).  The leading probable source groups include agriculture, atmospheric 

deposition, urban runoff / stormwater, municipal sewage discharges, and 

hydromodification, among other sources, reflective of the broad impacts of anthropogenic 

landscape change on our nation’s water resources.  Leading attributable pollutants 

causing impairment include pathogens, sediment, nutrients, metals and toxics, all of 

which can derive from multiple source groups, both non-point and point sources.  This 
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diversity of source groups and impairing pollutants necessitates a range of management 

approaches in order to effectively target underlying impairments.  In response, a range of 

federal, state and local regulations have been promulgated in recent decades to begin to 

address the range of water pollution sources, and yet over half of assessed water units 

remain threatened and impaired in the most recent assessments.  This speaks to relative 

intractability of diffuse sources of pollution, which in many cases are inherent to human 

activities at the land surface and are not easily eliminated except at great cost.  

Stormwater is the focus of this research, which along with agriculture, atmospheric 

deposition, and unknown sources, is a leading cause of impairment of US waters, and one 

for which considerable research and management needs exists. 

 

1.2.1.2 Stormwater 

Stormwater and urban runoff have been a large contributor to documented water 

quality impairment and a focus of management efforts to reduce impairment inducing 

pollution.  Federal regulations (40 CFR § 122.26 (b)(13)) define “storm water” as: 

 

“Storm water means storm water runoff, snow melt runoff, and surface 

runoff and drainage”. 

 

Following this definition, stormwater can exist in the absence of anthropogenic landscape 

change, however its characteristics (both quality and quantity) can be severely altered as 

a result of landscape change. 
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 First and foremost, unmitigated landscape development can alter the timing and 

magnitude of streamflow and its contributing components through the construction of 

impervious surfaces, removal of natural vegetation, and installation of more efficient 

drainage (Leopold 1968; Booth and Jackson 1997).  The construction of impervious 

surfaces produces one of the most dramatic changes, whereby areas that previously 

would produce surface runoff infrequently are replace by surfaces that do so routinely.  

The resulting reduction in infiltration can lead to a reduction in baseflow (Spinello and 

Simmons 1992), while the more quickly conveyed storm flow can result in flooding, 

channel erosion and habitat changes (Hammer 1972; Booth 1990; Paul and Meyer 2001).  

The loss of native vegetation and replacement with impervious surfaces and developed 

pervious surfaces (e.g., lawns) can also reduce annual evapotranspiration (ET) (Dow and 

DeWalle 2000), and can produce greater rainfall (and thus runoff)  through heat island 

convection and urban production of cloud condensation nuclei (Huff and Changnon 

1973).  Cumulatively, these changes can make it such that not only does more water get 

to receiving waters more quickly by bypassing subsurface flow pathways, but that more 

water in total can enter receiving waters under a developed land scenario.  The 

cumulative hydrologic effects of urbanization related landscape changes can alter habitat 

and degrade water quality in the absence of other factors. 

 In addition to hydrologic change, the change at the land surface can alter the 

sediment and solute loads that runoff conveys in ways that can adversely affect water 

quality.  Driveways and other pavement surfaces, for example, may have some 

combination of degraded wear surface (e.g., asphalt, stone), anthropogenic detritus, and 
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aerially deposited material (Gilbert and Clausen 2006).  Managed lawns, in contrast, will 

lack degrading wear surface material but may have some combination of fertilizers, 

pesticides, and pet wastes (Garn 2002; Nielson and Smith 2005).  Thus, not only does 

incident precipitation fail to infiltrate, but the extra water that runs off can carry those 

materials as dissolved and suspended load.  Developed watersheds typically have a 

diverse mixture of land cover characteristics all of which may contribute a range of 

pollutants at different rates, but all of which can be seen cumulatively by the receiving 

waters.   

Perhaps the largest concerted effort to characterize the quality of collected 

stormwater was the National Urban Runoff Program (NURP), a large scale stormwater 

sampling initiative intended to establish a baseline for stormwater quality that could 

inform water quality management decision making (U.S. EPA 1983).  The work was 

carried out at 28 sites across the U.S. over five years, with sampling of urban stormwater 

outfalls and data analysis managed by the U.S. Geological Survey (USGS), and in 

collaboration with state and local partners.  NURP assessed the aggregate quality of 

runoff from the diverse range of urban sources contributing flow to the outfall points.  

They found a high degree of variability in urban runoff concentrations of pollutants 

assessed, with relatively high concentrations of metals (e.g., copper, lead, zinc) relative to 

ecological thresholds, as well as sediment, oxygen demanding substances, and coliform 

bacteria levels that could be problematic.  In general, they were not able to attribute 

differences in pollutants levels to particular urban cover types within the urban landscape, 

although the data were still summarized by contributing urban land use and have been 
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used on that basis.  Despite the comprehensiveness of the NURP data set, the data were 

collected more than three decades ago, and as such are not necessarily representative of 

contemporary runoff.  For example, rates of atmospheric deposition, pesticide and 

fertilizer use, road surface wear characteristics, automotive deposition (e.g., brake dust, 

leaded gasoline, among other attributes), and instances of illicit sewer connection, and 

illegal waste disposal, are all likely to have changed over time, which can affect 

concentrations at stormwater outfalls.  As a result, these data are of limited use for 

current management challenges.  

More recently, Pitt et al. (2004) compiled stormwater outfall sample data from 

over 200 regulated Phase 1 Municipal Separate Storm Sewer Systems (MS4s) (those 

serving populations of 100,000 or more) into the National Stormwater Quality Database 

(NSQD).  (By summarizing Phase 1 MS4s sampling data, the resulting data are highly 

reflective of stormwater from higher intensity development.)  These data were generally 

consistent with NURP for nutrients and sediment concentrations, with the ranges of 

values recorded encompassing values that could exceed thresholds for sensitive receiving 

waters (VT-ANR 2014).  Preliminary analysis of those data suggested that there were 

differences in analyte concentrations among the 11 identified contributing land covers 

present in the data (e.g., residential, mixed commercial, freeways), however additional 

work remained to confirm those differences given the confounding factors.  Lead levels it 

should be noted, were found to have declined between the NURP and NSQD data sets.  

The time gap between the studies included the phasing out of lead in gasoline, which was 

reflected in declining concentrations of lead.  Combined, the NURP and the later NSQD 
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datasets provide a baseline characterization of the quality of untreated stormwater that 

confirms that development alters not only the hydrology but also the water quality of run 

off. 

Another receiving water attribute that can be affected by stormwater runoff is 

thermal regime, as a result of impervious surfaces ability to accumulate heat that can then 

be transferred to incident precipitation as it runs off (Galli 1990).  Spronken-Smith and 

Oke (1998) used remote sensing and surface measurements to assess the thermal 

variation among different surfaces in urban parks, and the effects of urban park thermal 

regime on adjacent areas.  They noted afternoon temperatures of 45-55 °C for roofs, 36-

38 °C for at grade impervious surfaces, and 23 °C for tree canopies and shaded ground.  

While they did not assess runoff temperatures, these data clearly suggest the potential for 

heat transfer given a storm event.  Thompson et al. (2008) measured surface temperatures 

and runoff temperature from experimental asphalt and sod plots and found that asphalt 

surface was on average 20.3 °C warmer than sod, and that the resulting runoff was 

initially 9.5 °C warmer from the asphalt than from the sod.  Van Buren et al. (2000) 

performed a measurement and modeling study of parking lot asphalt heat transfer, and 

recorded differences between rainfall temperature (inferred by wet bulb temperature) and 

asphalt surface temperature.  For example, for one summer storm the asphalt at the onset 

of rainfall was 17 °C hotter than the rainfall.  They observed that given sufficient volume 

of rainfall, nearly all of the heat difference will transfer to runoff, with the effect on 

receiving waters concentrated in the early part of the storm when runoff temperatures 

would be greatest. 
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1.2.2 Stormwater Management 

In light of the clear impact of stormwater on the quality of receiving waters and 

the cumulative physical understanding of how landscape development alters stormwater 

quantity, quality and timing, considerable work has been done in recent decades to 

mitigate the sources and effects.  This includes both regulation that compels action, and 

research informing the actions to take and practices to employ to target most effectively 

the known and presumed sources.   

 

1.2.2.1 Regulatory Context 

The Federal Water Pollution Control Act (i.e., the Clean Water Act) was 

originally passed in 1972 to deal with point source water pollution, particularly sewage 

outfalls and industrial discharges of materials to waters of the U.S. (Ferrey 2004).  

Stormwater, as previously defined, only came to be federally regulated following the 

Water Quality Act of 1987 (i.e., amendments to the Clean Water Act), which resulted in 

promulgation of the Phase 1 Stormwater Rule in 1990.  Under Phase 1, medium and large 

municipal separate storm sewer systems (MS4s), or those serving populations greater 

than 100,000, were compelled to implement local stormwater management plans, 

including sampling to inform both their own and broader nationwide efforts.  Large 

construction sites and a subset of industrial operations were also included under the 

federal National Pollutant Discharge Elimination System (NPDES) framework for the 

first time under these rules.  In 1999 EPA issued the Phase II Stormwater rules, 

regulating small MS4s, and lowering the regulated construction site threshold to 1 acre of 
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earth disturbance.  EPA also issued the first Multi-Sector General Permit for a broad 

range of industrial related stormwater discharges in 1995.  Cumulatively, these permitting 

obligations are variously delegated to State and local entities, and administer or overseen 

by EPA, varying by area. 

There have been other broad based regulatory efforts to address stormwater, both 

preceding and following the Federal regulations just discussed.  For example, the City of 

Bellevue Washington formed a Storm and Surface Water Utility in 1974 to manage for 

flooding and water quality concerns given contemporary and expected future 

development (WERF 2010).  Similarly, Florida, Maryland and Vermont, among other 

states, were issuing stormwater discharge permits for large new developments in the 

1970s before any Federal requirements to do so existed (NRC 2009).  Concurrent with 

and following promulgation of Federal Rules, many States have continued to go beyond 

what is federally required for example requiring that stormwater management practices 

and site design techniques be applied to the maximum extent  practicable in Maryland 

(Md. Code, Env. Art. §4-201.1 and §4-203 2007) and requiring discharge permits for all 

impervious new development or redevelopment exceeding one acre in Vermont (Vt. Env. 

Pro. Rules § 18-302 2011).  However, in many other jurisdictions, Federal regulations 

continue to define the upper bound on stormwater management (National Research 

Council 2009). 

 Lastly, through the routine water quality assessment process that must occur 

under the Federal Water Pollution Control Act Section 303(d), waters identified as being 

impaired due to stormwater or stormwater pollutants (as well as a range of non-
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stormwater impairing pollutants) may be subject to Total Maximum Daily Load (TMDL) 

planning or Water Quality Remediation Plan (WQRP) processes.  A TMDL is an 

accounting system whereby targets are first set based on the pollutant loading that a 

receiving water can most likely assimilate while still supporting designated uses.  Among 

the existing and expected future loading sources, a reduction plan is then devised to 

match the assimilative capacity of the receiving water and to thereby meet the water 

quality goal(s).  TMDL planning and implementation can occur at a variety of scales, 

including for example a stormwater TMDL for Morehouse Brook, a ~1 km
2
 watershed in 

Winooski Vermont (VT ANR 2007b), to the nutrient and sediment TMDL for the 

166,000 km
2
 Chesapeake Bay drainage area (U.S. EPA 2010).  Alternatively, WQRP 

processes may be used in cases where it is expected that impairing loads can be 

eliminated quickly by working with a limited number of responsible parties, without the 

need for the broader framework that TMDL planning provides.   

 

1.2.2.2 Centralized Treatment  

Different treatment practices have specific advantages and constraints related to 

pollutant removal (Geotech Consultants and Wright Water Engineers 2012), hydrologic 

performance (McCuen and Moglen 1988), cost (Houle et al. 2013), space requirements, 

and other site conditions.  Among stormwater management practices, most can be 

categorized as either centralized or distributed treatment practices, though this distinction 

can be somewhat arbitrary.  Centralized treatment practices typically collect runoff from 

multiple land parcels, potentially including different contributing land uses.  These 
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practices can include dry ponds, wet ponds, and various wetland treatment practices, and 

typically require considerable land area which must be located down slope of the 

impervious areas to be treated.  The characteristics of a centralized treatment practice are 

dictated by the treatment goals, which can include prevention of overbank flooding, 

prevention of channel erosion or aggradation, removal of stormwater pollutants, and 

groundwater recharge.  

Traditionally, preventing an increase in overbanking flooding via peak rate 

control has been the goal of centralized stormwater management (McCuen 1979). 

However, it was subsequently recognized that by limiting the focus to peak rate control, 

the larger runoff volumes produced by development can be released at near-peak flow 

rates for extended periods, which can produce sustained erosive velocities in channel 

(McCuen and Moglen 1988).  Thus, throughout the 1980s and 1990s, different 

approaches were explored for adding volume control to stormwater ponds, such that the 

increased runoff volumes caused by development could be slowly released at rates that 

would not produce sustained erosive velocities in channel (MacRae 1993).  Another 

design objective not central to early ponds, but that has gained in importance, is the 

removal of pollutants from stormwater.  A key enhancement of traditional (i.e., 1970s) 

pond design is the establishment of a permanent pool of water within a stormwater pond 

(i.e., a wet pond), which can provide additional pollutant removal capability by allowing 

pollutants to settle out and to be removed through biological processes (i.e., algae 

incorporation, denitrification).  These processes account for generally higher pollutant 
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removal rates that have been found in wet ponds, as compared with dry ponds (Fraley-

McNeal 2007). 

Wet stormwater ponds, which can combine overbank flooding, channel erosion 

and water quality treatment functionality within a single structure, have been widely 

constructed and widely studied in recent decades based on their capability to serve 

multiple stormwater objectives (Wu et al. 1996; Comings et al. 2000; Hossain et al. 2005; 

Weiss et al. 2007).  A large number of earlier detention pond studies provide a basis for 

differentiating wet ponds from dry ponds, however there are a number of factors that 

limit the usefulness of previous individual and aggregated wet pond data.  First, many 

studied ponds were built decades ago, using design practices that do not reflect current 

best practices (Barrett 2008; Wright Water Engineers 2012).  Data from those 

installations cannot be expected to be representative of performance of newer detention 

ponds, which have incorporated various design enhancements over time (e.g., forebays, 

aquatic benches).  Along with differences in detention pond designs, inconsistent data 

collection has obscured more conclusive knowledge on pond performance.  While the 

goal of previous studies has consistently been to characterize runoff concentrations 

and/or loads into and out of detention ponds, the methods employed have varied widely.   

For example, previously studied ponds have variously used time-paced or grab (as 

opposed to flow paced) sampling (Wu et al. 1996; Mallin et al. 2002), or estimated 

hydrologic flux components indirectly (e.g., by water balance as opposed to direct 

measurement) (Comings et al. 2000; Hossain et al. 2005).  Differences in analytes that 

have been analyzed also limit the transferability of the data previously collected.  
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Sediment has been frequently sampled as total suspended sediment (TSS) as opposed to 

suspended sediment concentration (SSC).  This is important because TSS has been shown 

to significantly underestimate actual sediment concentrations measured by SSC in certain 

circumstances (Gray et al. 2000).  Nutrient sampling has included various subsets of 

organic and inorganic, dissolved and particulate, and total fractions of interest to the 

researchers.   

Cumulatively, the history of stormwater pond performance assessments is both 

extensive and of limited use in predicting the performance of planned or newly 

constructed ponds due to changes in design standards, and differences in sampling 

regimes and performance assessment methodology (Strecker et al. 2001).  Among the 

monitoring studies that have been conducted, as many as 70% of those studies were 

conducted prior to 2000, and thus may not be representative of the design features 

currently being used (Wright Water Engineers 2012).  Given the increasing need for 

stormwater management in the U.S., additional data quantifying the various performance 

aspects of ‘state of the art’ wet detention ponds is potentially of value. 

 

1.2.2.3 Distributed Stormwater Management 

Distributed treatment practices (sometimes included under the umbrellas of Low 

Impact Design (LID), Green Stormwater Infrastructure (GSI), and Environmental Site 

Design (ESD)) are typically at the parcel or finer scale, and capture or convey runoff and 

associated pollutants on site.  They can often be proportionally sized to the areas they are 

treating, which can increase the fraction of inflow volume that is lost via infiltration and 
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ET, as opposed to conveyed as effluent.  These practices include small-scale bioretention, 

enhanced treatment conveyances, green roofs, and pervious surface installations among 

other practices.  A key advantage to distributed treatment practices is that they can 

eliminate or reduce the need for large contiguous land areas to be dedicated to stormwater 

treatment.  For MS4s in particular, the stormwater management regulations were imposed 

upon large existing developments that may have been largely constructed without 

consideration for stormwater treatment.  Thus, there is a strong incentive to landscape 

integrate treatment where ever possible, given the challenges in finding large down-slope 

areas for centralized infrastructure and the potentially great cost for constructing new or 

newly separated (i.e., from wastewater) conveyance infrastructure.   

In addition to offering a degree of spatial convenience, distributed treatment can 

be as effective at meeting hydrologic and pollutant management goals as traditional 

centralized infrastructure.  A number of practices have been assessed for performance 

both individually (i.e., per constructed practices) and at the watershed scale.  For 

individual practice types (e.g., bioretention), there are in many cases studies of individual 

installations, studies considering particular design variants, literature reviews of practices 

by type, and database compilations of studies for particular practices.  Among the latter, 

the National Pollutant Removal Performance Database (Fraley-McNeal 2007) and the 

International BMP Database (Geotech Consultants and Wright Water Engineers 2012) 

contain the largest datasets for predicting how a particular treatment may perform based 

on past performance of similar practices that were monitored.  These compiled results 

have generally supported the use of distributed treatment.  One concern that has emerged 
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from the compiled research results is that for practices involving engineered soil media or 

fertilization, relatively high phosphorus effluent concentrations can occur, in some cases 

greater than influent levels.  However, this issue can likely be mitigated in cases where 

phosphorus is of concern, either through judicious use of low phosphorus alternatives or 

by directing treatment practice effluent to the subsurface environment (i.e., infiltration) 

where phosphorus loadings are less problematic. 

Other researchers have looked at watershed response to the implementation of 

distributed stormwater management in comparison with the response given a more 

traditional management approach (i.e., catch basin, pipes, ponds).  For example, Dietz 

and Clausen (2008) monitored stormwater flow and nutrient loads for two drainage areas 

concurrent with the development of traditional (i.e., conveyance only, no treatment) and 

LID residential subdivisions, respectively.  Little change was seen in the annual runoff 

volumes or nutrient loads at the LID subdivision relative the predevelopment forested 

conditions, while order of magnitude increases were manifested in the traditional 

subdivision.  Wilson et al. (2015) instrumented two commercial subdivisions with 

traditional treatment (i.e., swale and dry pond) and LID stormwater management 

approaches and found little difference in resulting sediment and analyte effluent 

concentrations.  However, the traditional site had an empirical runoff coefficient (i.e., 

runoff divided by rainfall) of 0.49 while the same coefficient was 0.02 for the LID 

development.  While they do not comment on the cost differences for installing the two 

types of systems, they do document that an LID system can meet stringent runoff and 

load targets in a commercial setting.  Lastly, ongoing research in New Hampshire has 
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demonstrated that installation of distributed treatment to reduce “effective” impervious 

area within a developed watershed can shift developed watershed area normalized 

discharge rates to closely match lower undeveloped watershed discharge rates, however 

with indirectly comparable watersheds (UNH Stormwater Center 2014). 

In summary, properly designed and adequately sized centralized and distributed 

approaches and practices have been found capable of meeting stormwater management 

goals.  Distributed treatment can be advantageous simply by occupying small underused 

green space thereby allowing for greater build out, and because distributed treatment can 

fit many places in the existing developed landscape that larger scale stormwater treatment 

cannot.  Centralized treatment can have the perceived advantage of being out of sight 

where suitable siting is available, and can often make use of existing but less effective 

infrastructure (i.e., through retrofits).  Ultimately, the most appropriate stormwater 

system depends upon many site specifics.  

 

1.2.3 Stormwater Modeling 

The magnitude of stormwater related water quality impairment and the need to 

investigate sources and evaluate potential management scenarios on both cost and 

effectiveness bases has led to the development of a suite of modeling tools which can be 

used in these applications.  A selection of the most used U.S. government developed or 

sponsored tools for stormwater modeling are broadly reviewed in the following section.  

Section 1.2.3.2 then goes into greater detail on EPA’s Stormwater Management Model 

(SWMM) since that is the tool that was ultimately used in Chapter 3 of this work. 
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1.2.3.1 Models 

Stormwater models can focus on stormwater quantity or stormwater quality, but 

in practice, many have functionality to simulate both quantity and quality to varying 

degrees.  Mathematical bases and software packages have been extensively reviewed by 

others (Zoppou 2001; Borah and Bera 2003; Elliott and Trowsdale 2007; Obropta and 

Kardos 2007) and will only be briefly reviewed here.  Ultimately, the user’s modeling 

objective will determine the necessary model functionality required for any particular use 

case.  Factors such as whether or not explicit hydraulic design of stormwater treatment 

practices are needed, whether water quality accounting is required, and which aspects of 

the hydrologic cycle need to be included may dictate which modeling tools are most 

appropriate.  In the remainder of this section I review two different models that have been 

widely used in stormwater applications.  Then in the following section, I review the 

EPA’s Stormwater Management Model (SWMM) in greater detail, which is the model I 

employed in this research. 

One of the most common water quantity stormwater design tools is the Natural 

Resource Conservation Services (NRCS) Runoff Curve Number (CN) hydrology 

framework, formalized in both Technical Release 20 (TR-20) and Technical Release 55 

(TR-55), as well as the U.S. Soils Conservation Service (SCS) National Engineering 

Handbook Hydrology Section (SCS 1965) and subsequent NRCS revisions.  Both TR-55 

and TR-20 are available in government distributed computer packages at no cost, and are 

also incorporated into numerous commercial applications with additional functionality.  

The basis of these approaches is to predict runoff volume as a function of empirical land 
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area CNs, which are determined by land cover / land use and a categorical soils parameter 

developed by NRCS (or rather, their predecessor agency the SCS).  Procedures are 

included to predict both runoff volume and runoff peak rate given precipitation inputs 

and site specific parameters, and can be used to compute changes in runoff volume or 

peak flow rate under different scenarios, for example pre- and post-development.  In 

addition to the runoff generation capabilities of TR-55, TR-20 includes a limited 

representation of reach routing and detention structures among other enhancements.  No 

consideration for water quality is included.   

Cited advantages of the CN approach are that it is simple to apply, it can produce 

reasonable results, and that it has been developed and supported by government agencies 

over a long period of time (Ponce and Hawkins 1996).  For example, the Hydrologic 

Soils Group parameter (HSG) is mapped by NRCS and thus readily available for 

modeling applications across the U.S.  However, despite its ease of use, the approach has 

been legitimately faulted for having been developed outside the scope of peer review 

(Hjelmfelt 1991; Willeke G.E. 1997), for being widely applied to cases for which it was 

not intended or appropriate (Fennessey et al. 2001), and for providing poor fit to 

measured data (Kumar and Jain 1982; Fennessey et al. 2001).   

One of the broadest scale models used for stormwater applications is Hydrologic 

Simulation Program Fortran or HSPF (Bicknell et al. 2001).  HSPF is an example of a 

process based, continuous lumped watershed model that can be used in mixed land use 

watersheds for the simulation of water quantity and water quality processes.  Because it 

can account for urban land hydrology, land surface washoff, and loss and generation of 
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pollutants from stream channel processes, it can simulate the aggregate effects of urban 

development in either strictly urban or mixed land use watersheds.  However, for strictly 

urban basins, the lack of detailed urban routing (i.e., sewer hydraulics) and detailed BMP 

capabilities is a hindrance (Borah and Bera 2003).  It has also been noted that HSPF’s 

reliance on a large number of parameters that are difficult or impossible to measure 

requires a high degree of specialized skill on the part of modelers in order to successfully 

use HSPF (Whittemore 2004).  For example, Doherty and Johnston (2003) calibrated 

HSPF in four geophysically similar and adjacent watersheds, and found that for a subset 

of selected parameters there were different (non-unique) sets of values that all adequately 

fit the data within and across the four sites.  While this issue is in no way unique to 

HSPF, a reliance on numerous parameters that are both abstract/immeasurable and 

sensitive is problematic.  However, in large mixed land use watersheds where detailed 

routing of urban runoff is not required, HSPF has many advantages and has been used for 

example as the basis for Chesapeake Bay TMDL modeling (Shenk et al. 2012).  

 

1.2.3.2 SWMM 

The EPA Stormwater Management Model (SWMM) is the product of decades of 

hydraulic and hydrologic water quality model development and currently has routines for 

surface and subsurface flow, pipe and channel hydraulics, buildup and washoff water 

quality modeling, and stormwater infrastructure hydrology and hydraulics.  SWMM has 

broad applicability for modeling developed landscape runoff and water quality dynamics 

and has been used for pre-post development hydrology assessment (Jang et al. 2007), 
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pollutant washoff water quality analyses (Tsihrintzis and Hamid 1998; Temprano et al. 

2006; Lee et al. 2010), combined sewer overflow modeling and assessment (Cantone and 

Schmidt 2009; Zhang and Li 2015), flood forecasting (Liong et al. 1995; Kim et al. 

2014), and stormwater treatment practice modeling and assessment (Aad et al. 2010; 

Lucas 2010; Burszta-Adamiak and Mrowiec 2013; Zhang et al. 2013), among other 

applications.  Despite the broad applicability of SWMM’s computational routines, its use 

can be limited in many applications by the relatively high parameter and input data needs, 

its urban focused conceptual model, and the high cost of measured data collection for 

SWMM calibration purposes.  Because this is the model I ultimately decided to use for 

this research I will review the pros and cons of the SWMM model in greater detail than 

was provided for the previously discussed models.   

The primary unit of spatial discretization within SWMM is the ‘subcatchment’, a 

user defined area based on topography.  These can vary in size from entire watersheds to 

sub-parcel scale, depending on objectives.  Each subcatchment must be transformed from 

its actual physical geometry to a rectangular plane representation within SWMM.  It is 

then partitioned between pervious and impervious areas, and the user must select a 

routing method whereby (1) pervious runoff flows on to the impervious surface, (2) 

impervious runoff flows on to the pervious surface, or (3) both areas route directly to the 

subcatchment outlet.   

For both the subcatchment impervious and pervious surfaces the user must 

specify conceptual depression storage, or depth of incident precipitation that can be held 

prior to the initiation of runoff, and slope and Manning’s roughness coefficients 
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(FIGURE 1).  Combined, these parameters specify the nonlinear reservoir conceptual 

model and the Manning’s wide channel flow approximation runoff computation.  For 

pervious areas, an infiltration model must specified through which water captured in 

depression storage can be lost to the subsurface module.  Either an SCS CN based 

approach, the Green-Ampt equation, or one of two variants of Horton’s infiltration model 

can be used for modeling infiltration in pervious areas.  For each of the infiltration 

models, there are a number of physical and conceptual parameters which must be 

specified. 

 

 

FIGURE 1. Schematic of SWMM surface runoff conceptual model.  Parameters 

shown include depression storage depth (dp) subcatchment water depth at time t (d), 

and outflow at time t (Q) as computed by Manning’s equation (from Rossman 

2010). 

 

Defining the width of the conceptual rectangular cascading plane (Width) to 

which each subwatershed is converted is one of the most problematic parameterization 

issues for SWMM users.  This is because 1) Width must be specified in every model, 

once per subcatchment, 2) Width has been previously reported to be a sensitive parameter 

(Barco et al. 2008; Krebs et al. 2013; Sun et al. 2014), and thus the value used is of 
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consequence, and 3) Width is a conceptual parameter, and is thus both inherently 

uncertain and unmeasurable.  The SWMM User’s Manual (Rossman 2010) provides 

guidance that an initial value can be computed as the drainage area divided by the 

average maximum overland flow distance for the drainage area, and that the value should 

be subsequently adjusted to improve hydrograph fit (i.e., calibrated).  This is problematic 

both because observed data to calibrate against do not exist for many modeling 

applications, and because treating this sensitive parameter as a ‘free’ parameter to be 

calibrated allows it compensate for mis-specification in other parameters or model 

structure.   

To address these issues with Width, Guo and Urbonas (2009) have used a 

dimensional analysis to produce a methodology for transforming irregularly shaped 

natural watersheds into rectangular cascading planes while preserving watershed area and 

potential energy over the drainage conveyance.  This approach provides a quasi-

physically based method for specifying the Width parameter that is based on measurable 

subcatchment properties, and thus does not rely on calibration data.  To date, this 

approach has been applied on both hypothetical (Guo and Urbonas 2009) and real (Guo et 

al. 2012) watersheds, and is currently being incorporated into the SWMM Reference 

Manual (Rossman 2014), but has not yet been extensively tested or employed in the 

published SWMM literature.   

For subcatchment water entering the subsurface module from pervious area 

infiltration, the flow can subsequently satisfy void space demand, evaporate, exfiltrate to 

deep groundwater (i.e., loss) or emerge as subsurface flow to the identified receiving 
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node.  SWMM uses a number of physically based parameters to define the groundwater 

reservoirs, which are dynamically partitioned between an upper unsaturated zone and 

lower saturated zone.  Specifically, water that infiltrates enters the unsaturated zone from 

which it can be lost via evaporation or percolated to the lower saturated zone using an 

implementation of Darcy’s Law for unsaturated flow.  Water that reaches the lower 

saturated zone is subject to deep percolation (i.e., lost from the model), evaporation, and 

outflow, resulting in the depth of the saturated lower zone being re-evaluated at each time 

step.  Outflow is calculated by a user defined power function of the current depth of the 

lower zone, with the ability to include additional terms accounting for the depth of flow 

in the receiving channel relative to the depth of simulated groundwater.  Each of these 

fluxes are controlled by one or more user-defined parameters, which are both physically 

and conceptually based. 

For water that is simulated as flowing out of a subcatchment (as opposed to 

stored, lost to deep percolation, or lost to ET), that flow can ultimately be routed in a 

number of ways, including to stormwater treatment systems and through natural or 

engineered conveyances.  Steady flow, kinematic wave, and dynamic wave routing 

options are included, allowing for physically realistic representation of pressurized flow 

in pipes, reversed flow, backwater effects, and conveyance system surcharging where 

needed.  Standard hydraulic approaches are used to represent storage units, culverts, 

weirs, orifices, and other common features of engineered drainage networks, including 

specialized functionality for simulating flow through so-called LID features such as 

bioretention, permeable pavement and green roofs. 
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The water quality simulation capabilities of SWMM are based on buildup and 

washoff algorithms for user defined pollutants.  Several functional relationships (e.g., 

power, exponential, and saturation) are available to specify the accumulation of 

pollutants between storms as a function of time, and the washoff of pollutants during 

storms as a function of flow rate.  Efficiency of and temporal parameters for street 

sweeping can be specified, as well as static removal efficiencies for other simulated 

BMPs.  Stream channel processes are not explicitly accounted for, however pollutants 

can be lost (i.e., deposited) at nodes within the conveyance network based on a user 

defined function.  However, deposited pollutants are not subsequently available for 

transport, nor is channel erosion simulated at all.    

   

1.2.4 Sensitivity Analysis 

Sensitivity analysis (SA) includes a collection of methods for assessing the degree 

to which a model’s predictions are affected by model parameters and /or inputs.  For 

highly parameterized models, SA plays a critical role in focusing data collection, 

calibration, and uncertainty estimation efforts.  For example, a parameter to which model 

outputs are not sensitive would be a poor candidate for costly data collection and 

verification, or for computationally expensive calibration and uncertainty extrapolation 

efforts.  In contrast, a sensitive parameter may warrant any of those actions based on the 

modeler’s objectives.  The sensitivity of a model can be definitively assessed for a fixed 

model structure and parameter domain.  However, for many environmental models, there 

is a range of feasible structural configurations and parameterizations for different 
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systems, or even for the same system.  Thus, study-specific sensitivity analyses can be of 

critical importance in cases where previous analyses are not available, but can also 

provide insight for previously assessed models.   

 

1.2.4.1 Local Methods  

Approaches to SA have been generally categorized as being either local or global 

(Saltelli et al. 1999).  Local methods individually assess model parameters relative to a 

base model, typically varying parameters one at a time by a fixed percentage or fixed 

factor of each parameters’ assumed variance (Downing et al. 1985).  Parameters are then 

ranked on sensitivity based on the relative change in model output resulting from 

individual changes in model input, with all changes being relative to the base scenario.  

The advantages to this approach include that it is conceptually simple, practical to 

implement for many models, computationally inexpensive, and can produce useful results 

within the limited context of the model parameterization being considered.  The primary 

limitations of local methods are that only a small portion of the model parameter space is 

explored, and that interactions among parameters are not assessed. 

 

1.2.4.2 Global Methods 

Global SA is distinguished from local SA primarily by the concurrent variation of 

parameters.  The resulting variation in model output(s) can then be attributed to 

individual model parameters averaged over the explored parameters space, rather than 

relative to the base case (Saltelli 2002).  This has the advantage of providing insight when 
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parameters interact and of being able to concurrently assess sensitivity to the entire 

parameter space, given a fixed model structure, in a way that local SA does not.  The 

primary disadvantage of global methods is that they can be more complicated and time 

consuming to implement and interpret.  

While there are numerous approaches to global sensitivity analysis that have been 

applied to hydrologic and water quality modeling, these have generally been based on 

either Monte Carlo filtering or variance decomposition.  The first approach to Monte 

Carlo filtering was presented by Spear and Hornberger (1980) and is referred to as 

Generalized Sensitivity Analysis (GSA).  In this approach, a uniform random sampling of 

the parameter space is performed resulting in large number of model simulations.  Each 

simulation is next characterized as being either behavioral (i.e., an acceptable simulator 

of the underlying system) or non-behavioral (i.e., an unacceptable simulator), based on an 

application-specific performance criteria threshold.  The differences (if any) between a 

model’s parameter values in the behavioral and non-behavioral model runs are then taken 

as indicating model sensitivity to a given parameter.  Subsequently, Freer et al. (1996) 

expanded the GSA technique to include many categories of model fitness, as opposed to 

the binary behavioral / non-behavioral classification scheme used in GSA.  Advantages 

of this approach, termed Regional Sensitivity Analysis (RSA), are that it can display finer 

scale parameter sensitivity and it is not dependent on a single performance threshold, as 

GSA is.  This methodology has been employed for analysis of conceptual rainfall runoff 

modeling (Wagener et al. 2001; Wagener and Kollat 2007), distributed catchment 

modeling (Sieber and Uhlenbrook 2005), channel flood modeling (Roux and Dartus 
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2008), and hyporheic exchange modeling (Naranjo et al. 2012), among other 

applications. 

The second set of approaches are based on variance decomposition, whereby the 

parameter space is randomly sampled and the resulting variation in model output is 

partitioned among the input parameters and input parameter interactions contributing to 

the output variance.  Among hydrologic and water quality modeling applications, 

variations on Sobol' indices (Sobol' 2001) are among the most frequently employed 

variance decomposition methods (Song et al. 2015).  To compute Sobol' indices, model 

output variation is first generated by sampling the model parameter space.  First order 

sensitivity indices can then be calculated as the ratio of the output variance contributed by 

an individual model parameter to the total model output variance.  Total sensitivity 

indices, accounting the individual and interacting contributions of parameters to total 

variance can be computed as well.  Explicit calculation of parameter interaction terms has 

been cited as an advantage of Sobol's method over RSA for example, which only deals 

with parameter interactions indirectly (Tang et al. 2007).  This feature has led to 

increasing use of Sobol's method in recent years, including applications in watershed 

modeling (van Werkhoven et al. 2008; van Werkhoven et al. 2009), semi-arid flash flood 

forecasting (Yatheendradas et al. 2008), and forested basin scale runoff modeling (Zhang 

et al. 2013). 
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1.2.4.3 SWMM Applications 

There have been numerous published SAs of SWMM, including both local and 

global approaches.  For example, Barco et al. (2008) individually varied seven surface 

runoff parameters and found that simulated runoff was most sensitive to percent 

imperviousness and depression storage depths.  However they used parameter 

perturbations of +/- 90% that in many cases would be greater than the uncertainty in 

underlying parameters.  Peterson and Wicks (2006) included a local sensitivity analysis 

in a study that used SWMM to simulate flow and solute transport is karst systems and 

found conduit Manning’s n to be most sensitive out of the subset of parameters assessed.  

As a final example of local SA applied to SWMM, Krebs et al. (2013) conducted a one-

at-a-time SA of subcatchment surface parameters and a Green-Ampt infiltration 

parameter to inform a subsequent multi-objective genetic algorithm calibration of 

SWMM.  Their SA was constrained by the presumed uncertainty in their particular 

parameterization.  They found impervious depression storage and impervious Manning’s 

coefficient to most strongly affect modeled runoff dynamics.    

Several global SAs have also been conducted on various SWMM components, 

using the Monte Carlo scatter plot approach demonstrated by Duan et al. (1992) and 

Beven (1993), the GSA or RSA procedures of Spear and Hornberger (1980) and Freer et 

al. (1996), respectively, and variance decomposition in at least one case.  For example, 

Aronica et al. (2005) ran 10,000 simulations of a twelve hectare drainage area model, 

sampling a complete random surface parameter set for each run and subsequently 

computed a hydrologic performance metric for binary classification of simulations 
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between behavioral (i.e., acceptable) and non-behavioral (unacceptable) results.  Scatter 

plots of parameter values versus model performance revealed the extent to which 

variation in model performance was correlated with individual parameter values and 

found model performance to be most affected by the conduit Manning’s coefficient, 

impervious depression storage and the surface Manning’s coefficients.  In contrast, the 

Horton infiltration parameters and pervious area runoff parameters were not sensitive 

despite the 32% pervious subcatchment, likely due to the use of a peak flow oriented 

objective function (i.e., Nash-Sutcliffe efficiency or NSE).   

Zhang and Li (2015) applied the same Monte Carlo scatter plot approach to a 130 

hectare combined sewer drainage area in Shanghai.  Of the five surface hydrology 

parameters varied, percent impervious and impervious Manning’s roughness were found 

to most affect the NSE performance metric.  In another study, Gaume et al. (1998) 

applied the RSA procedure of Freer et al. (1996) to an application of SWMM’s 

exponential buildup and washoff algorithms for modeling suspended solids in a 

combined sewer system.  The buildup and washoff models were generally sensitive to the 

input parameters with the exception of the buildup exponent, where acceptable model 

performance was found to be distributed across most of the parameter’s range.  Lastly, 

Sun et al. (2014) calculated variance decomposition based first order sensitivity indices 

for selected surface runoff parameters following a global Monte Carlo sampling of the 

model application’s parameter space, using a modification of SWMM that explicitly 

accounted for ‘Trees’ as a subcatchment area that is distinct from ‘Pervious’.  They 

demonstrated differences in the sensitivity of simulated flow volume versus simulated 
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peak flow rate, with most of the assessed parameters showing a degree of sensitivity in 

one or both cases. 

Cumulatively, these works provide a baseline sensitivity reference for the 

components that have been assessed to date (particularly the surface hydrology 

component).  However, they also demonstrate how sensitivity can vary based on the 

SWMM model structure, the methods used (i.e., local vs global), and by the degree of 

parameter variation employed, consistent with the application to application variation in 

sensitivity seen in other models (e.g., van Werkhoven et al. 2008).  Therefore, a user 

needs to assess previous SAs to determine whether they adequately address their structure 

and parameterization under consideration.  For some aspects of SWMM simulations, 

including pervious area characteristics, infiltration models, and subsurface flow 

parameters, the parameters and structures have been minimally assessed in the past, if at 

all.  Thus, if those model components are thought to be important in representing a 

system, project specific SA may be warranted. 

 

1.2.5 Calibration 

Calibration is the process of changing model parameters within predefined 

constraints to improve agreement between model output and observed data (Moriasi et al. 

2007).  Where only a limited number of parameters are to be calibrated, manual methods 

can be employed by iteratively adjusting parameters individually or in concert while 

monitoring for changes or improvement in model performance.  However, for even 

moderately complex or parameterized models, the process of manual parameter 
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adjustment and assessment can become impractical (i.e., the “curse of dimensionality”), 

which has spurred the development of automated approaches.   

 

1.2.5.1 Manual versus Automatic 

The role of modeling in the investigation and management of watersheds has led 

to considerable research on model calibration, both endogenously by watershed modelers 

and by drawing on calibration work from the modeling of other systems.  The reasons for 

calibrating a model include adjusting for watershed conditions not believed to be 

accurately captured by the model’s base parameterization (e.g., fragipan soils via CN 

modeling, see Peterson and Hamlett 1998; Benaman et al. 2005), or where uncertain 

empirical parameters are present, such that any value within a predefined range can be 

used that will maximize model performance (e.g., SWMM conceptual / empirical 

parameters, see Tsihrintzis and Hamid 1998; Temprano et al. 2006).  A general 

distinction can be drawn among various calibration approaches by classifying them into 

either manual calibration or automatic calibration approaches.  In manual calibration, a 

modeler will systematically change one or more parameters to produce a desired change 

in the initial model output, typically in a laborious fashion.  Manual calibration can be 

effective if approached systematically (e.g., stratified sampling approaches, McKay et al. 

1979) and when the number of parameters to be calibrated is limited, however it quickly 

becomes impractical as the number of parameters being calibrated increases. 

It has long been recognized that this process of manual calibration ranged from 

tedious to intractable, spurring interested in automated approaches (Ibbitt and O'Donnell 
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1971).  Early approaches to automated calibration of watershed models (generally 

conceptual rainfall runoff models at that time) were for the most part derivative-free (but 

see Gupta and Sorooshian (1985) for a derivative based approach) direct and pattern 

search algorithms (Ibbitt and O'Donnell 1971; Pickup 1977).  However, it was generally 

found that these approaches were unable to find global optima and as such were not ideal 

for rainfall runoff models given the known presence of suboptimal minima in the typical 

objective function response surface (Gupta and Sorooshian 1985; Hendrickson et al. 

1988).   

The next generation of approaches were evolutionary in approach, meaning that 

the algorithm properties were based on principles of biological evolution (i.e., 

reproduction, survival of the fittest).  For example, Wang (1991) applied a canonical 

genetic algorithm, following the work of Holland (1975), to calibrate a conceptual 

rainfall runoff model and reported that it identified the global optimum in 8 of 10 runs, 

with near optimal results in the two runs that did not identify the global minimum.  Duan 

et al. (1992) combined aspects of evolution search with existing direct search approaches 

to formulate the Shuffled Complex Evolution-University of Arizona (SCE-UA) 

algorithm, which was demonstrated to outperform several non-evolutionary predecessor 

algorithms.  SCE-UA consists of multiple concurrent direct search simplexes (following 

the work of Nelder and Mead 1965) which periodically exchange information (i.e., 

shuffle), resulting in relatively fast and consistent convergence toward the global optima.  

In introducing SCE-US, Duan et al. (1992) did not directly compare SCE-UA to a 

canonical GA, however work by others (Jeon et al. 2014) has suggested that both have 
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advantages and disadvantages that are dependent on the particular application.  It should 

be noted that the need for user configuration of the algorithms (e.g., population size, 

number of complexes, mutation rates, etc.) complicates any direct comparison of these 

methods.  Since the publication of SCE-UA and the GA application of Wang (1991), 

there have been hundreds of applications using these approaches for single objective 

calibration of watershed models. 

Evolution strategies (ES) are a particular variant of biological evolution-inspired 

algorithms (i.e., evolutionary algorithms), which were initially distinct from the more 

commonly used GAs (Eiben 2003).  ES was initially devised for real valued parameters, 

and is therefore not directly applicable in some circumstances, for example when 

variables must be represented in binary or as permutations (Bäck and Schwefel 1993).  

There are important distinctions between ES and GAs, which were developed 

concurrently over decades.  For example, ES relies more heavily on mutation or random 

perturbations of parameter values (as opposed to recombination or shuffling of discrete 

values between solutions) for the introduction of variation into parameter sets, and 

includes properties of self-adaptation.  That is, in addition to evolving solutions to the 

problem being optimized (e.g., hydrologic model parameters that improve simulation 

performance), an ES can also evolve its own parameters to increase the efficiency of the 

search over generations.  This typically includes the variation operator or mutation rate, 

which controls the level of variation allowed in the evolving parameters and in particular 

how large a change can be made in the search for better performance (i.e., fitness 

function / objective function minimization). 
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Of the published ES applications to environmental model optimization, the 

majority have used variants of ES, reflecting the evolving nature of the field.  For 

example, Ostermeier et al. (1994) introduced de-randomized mutative step-size control 

ES (DES), which replaces a random aspect of object parameter mutation with a 

deterministic approach.  The approach purports to solve the problem of inefficiency of 

random draws from the mutation distribution, whereby relatively large mutations can be 

drawn (with low probability) from mutation distributions that have evolved to have small 

standard deviations.  That large mutations can occur where small mutation are known to 

be most profitable has been demonstrated to introduce inefficiency into searches for a 

number of theoretical test problems (Ostermeier et al. 1994).  The DES approach has 

been successfully used in at least two studies for the optimization of groundwater 

remediation scenarios (Yoon and Shoemaker 1999; Bayer and Finkel 2004), where DES 

was found to outperform other optimization approaches (e.g., simple GAs and direct 

search).  

Another commonly used variant is the so-called covariance matrix adaptation ES 

(CMA-ES) first introduced by Hansen and Ostermeier (1996).  Similar to DES, this 

approach seeks to de-randomize the mutation of strategy parameters, but further makes 

use of the strategy parameters’ performance over the full generational time to optimally 

adjust the strategy parameters at the current generation.  Thus, this approach both 

eliminates the possibility of randomly drawn large changes where small changes are 

profitable and can draw on the series of preceding mutations to specify deterministically 

the strategy parameters at each generation.  While this can produce vastly greater search 



35 

 

efficiency in many theoretical scenarios, it comes at the expense of greater algorithm 

complexity and parameterization with the ES itself.  Further, Beyer and Arnold (2003) 

demonstrate that these changes to mutation approach are not always beneficial (i.e., can 

lead to premature convergence) and note that the cumulative theoretical results on ES 

variants (including their own) do not necessarily transfer to “real world optimization 

problems”.  Nonetheless, applications of CMA-ES have been found to perform well in 

two applied water resources applications (Bayer and Finkel 2007; Maier et al. 2009), 

suggesting the efficiency gains demonstrated in the theoretical cases do not cause the 

algorithm(s) to fail in real world applications.  Still, performance comparisons of 

different ES variants across real world optimization problems appear to be lacking. 

Other recent work has focused on the inherently multi-objective nature of 

watershed model calibration, whereby a user may need to calibrate or optimize for 

uncorrelated measures of model performance concurrently, for example water balance 

and peak flow accuracy (Gupta et al. 1998).  The goal then is to identify a Pareto optimal 

or non-dominated set of solutions, which are those among the feasible space which 

cannot be improved with respect to one objective without loss of goodness of fit in other 

included objectives.  For example, Yapo et al. (1998) developed multi-objective complex 

evolution algorithm (MOCOM-UA), which uses downhill simplex evolution of sets of 

solutions based on the Pareto ranking scheme following Goldberg (1989).  Continued 

developments in multi-objective optimization algorithms that can be applied to water 

resources modeling have included sharing of information among complexes (see for 

example the widely used Non-dominated Sorted Genetic Algorithm-II or NSGA-II of 
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Deb et al. 2002), incorporation of self-adaptive features (e.g., Kollat and Reed 2006; 

Vrugt and Robinson 2007), and a number of other approaches recently reviewed by Reed 

et al. (2013).  

 

1.2.5.2 Generalized Likelihood Uncertainty Analysis (GLUE) 

An inherent aspect of traditional optimization algorithms applied to watershed 

models has been the goal to identify a single best or best sets of parameterizations.  A 

related but distinct school of thought, with respect to model calibration, follows from the 

so-called equifinality thesis of Beven (1993).  The equifinality thesis proposes that, given 

measurement error, limits in hydrologic understanding that propagate into model 

structural error, uncertainty in model parameters and inputs, and the relatively low 

information content of a streamflow record for identifying a range of distributed physical 

parameters, efforts to identify optimal parameter sets are misplaced.  Thus, many 

different parameterizations and even model structures may be acceptable simulators of 

the system.  It follows that the calibration objective should be to identify a collection of 

acceptable simulators of the system as opposed to a single best simulator, since they may 

all have value as predictors of future states of the system. 

Beven and Binley (1992) described a procedure for dealing with multiple 

acceptable models, the so-called Generalized Likelihood Uncertainty Estimation (GLUE) 

procedure, which has been both widely adopted and widely debated since its initial 

introduction (Beven and Binley 2014).  Under GLUE, the parameter space is first 

sampled by Monte Carlo sampling a large number of times and each set of parameters is 
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then given a likelihood weight of either 0 (unacceptable simulator) or a positive value, 

increasing proportional to the quality of the simulation.  As additional data become 

available (e.g., subsequent years of hydrologic data), the likelihood weights can be 

recalculated to further restrict the parameter space.  Thus, GLUE can produce a large 

range of model predictions which in some cases may not encompass observations for all 

or part of the record.  Beven (1993) observes that the GLUE procedure is analogous to 

classical optimization, except that in classical optimization the best simulation is given a 

likelihood value of 1, while all others are assigned a value of zero.  A key feature, 

however, is the rejection of classical optimization framework of seeking a single global 

optimal solution.    

Despite its widespread adoption by environmental modelers, the GLUE 

framework has been the subject of considerable debate and criticism focused primarily on 

the efficiency of sampling and its statistical validity (Mantovan and Todini 2006; 

Stedinger et al. 2008).  Reliance on uniform random sampling in most applications has 

yielded low search efficiency, such as the 37,000 acceptable parameter sets found from 

2.7 million sets evaluated in the work of Brazier et al. (2000).  Thus, in cases where a 

large number of parameters are to be included in a GLUE analysis, adaptive search 

approaches have been incorporated to improve the efficiency of behavioral parameter set 

identification (Blasone et al. 2008).   

The criticisms of GLUE’s statistical validity stems from how the range of model 

predictions generated by GLUE can and cannot be interpreted.  Under a restrictive set of 

circumstances in which errors in inputs and model structure are known, a formal 
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likelihood function can be used in GLUE resulting in model predictions with statistically 

interpretable properties (e.g., model predictions will bracket future observations with X% 

probability, given the cumulative uncertainty in inputs, model structure and model 

parameters).  However, as discussed by Beven et al. (2008), in a typical hydrologic 

modeling application there will be unknown input errors (e.g., in rainfall data) that are 

processed nonlinearly through a model structural containing unknown errors, precluding 

definition of a formal likelihood function.  Thus, a typical GLUE application will 

produce prediction intervals accounting for the subjective narrowing of parameter 

uncertainty via behavioral model classification, but otherwise lacking in statistical 

interpretability.  Formal likelihood measures have been incorporated into GLUE and 

applied to rainfall runoff models in greatly simplified or hypothetical examples 

(Mantovan and Todini 2006; Stedinger et al. 2008).  However, methods for extension of 

these approaches to more complicated watershed models with unknown errors have not 

yet been established.   

 

1.2.5.3 Previous SWMM Work 

A number of automated calibration approaches have been applied to SWMM in 

the past, towards identification of best parameter sets from a large feasible parameter 

space.  For example, Barco et al. (2008) used the complex method direct search algorithm 

(Box 1965) to optimize four SWMM parameters, while keeping all others fixed at best 

estimates.  Other researchers have employed evolutionary approaches, including Liong et 

al. (1995), who reported successful use of a simple GA to optimize subcatchment surface 
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parameters and Horton infiltration model parameters for the minimization of peak flow 

rate errors.  Similarly, Balascio et al. (1998) used a GA for a set of surface runoff and 

Horton infiltration model parameters, and found the algorithm to be successful at 

minimizing a multi-objective hydrologic error term.  Fang and Ball (2007) also explored 

the use of a GA for minimizing the error in simulated flow in a 133 hectare drainage area 

in Australia.  However, rather than simply search for a best parameter set, they used the 

GA to narrow the feasible parameter space, in recognition that identifying a single best 

parameterization was conceptually problematic.   

More recently, Krebs et al. (2013) used the NSGA-II algorithm (Deb et al. 2002) 

to optimize surface depression and conduit roughness parameters while keeping all other 

parameters fixed at best estimates.  Their approach repeatedly evolved the included 

parameters to the same values (suggesting a global optimum), however most parameters 

were repeatedly evolving to a boundary of the allowed parameter range.  Thus, while the 

NSGA-II algorithm was successful at identifying an optimum within the allowable 

parameters space, the results strongly suggested that out of range parameters could 

further optimize performance, indicating that either parameters or model structure were 

misspecified for the application. 

The GLUE procedure for model parameter uncertainty estimation has been 

applied to many environmental models since its conception (Beven and Binley 2014), 

including at least two SWMM applications.  For example, Sun et al. (2014) applied 

GLUE to a modified version of SWMM that accounted separately for trees and lawns (as 

opposed to default SWMM approach of lumping all ‘pervious’).  Using a combination of 
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volume and rate based flow performance measures they demonstrated how different 

performance measures can be used to constrain the acceptable regions of the parameter 

space, and used GLUE to propagate the confined parameter space through their model 

predictions.  Zhang and Li (2015) applied the GLUE methodology to eight surface and 

infiltration parameters in a combined sewer drainage area and assessed those parameters 

on their ability to simulate water levels at a pump station suction well, while also 

exploring both different objective functions and the subjective acceptance thresholds used 

for accepting candidate models.  They reported the GLUE procedure to be capable of 

restricting the predictive uncertainty in water levels such that they very closely 

corresponded with observed water levels, albeit with a large volume of in-line storage 

initialized into the model as opposed to produced by SWMM.  

In summary, despite the solid basis of SWMM calibration and parameter 

uncertainty analysis work summarized in the preceding sections, parameter uncertainty 

estimation efforts to date have generally focused on the surface runoff model or selected 

components of the surface runoff model.  Further, calibration efforts have seldom been 

informed by a robust application specific SA to focus the work.  Given the high 

dimensionality of the SWMM parameter space, these efforts may significantly 

underestimate the variability in SWMM predications attributable to parameter uncertainty 

on account of the large number of potentially sensitive parameters that remain at fixed 

values.  (This is neglecting model structural uncertainty, uncertainty in inputs/forcings, 

and uncertainty in calibration data, which are more difficult to assess and heretofore 

unexplored in the context of SWMM modeling.)  In the following work, I more fully 
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assess parameter uncertainty in a SWMM model for the primary purpose of aiding our 

hydrologic and pollutant transport assessment, but secondarily for the benefit of other 

SWMM users. 
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CHAPTER 2. NUTRIENT PERFORMANCE, HYDROLOGIC PERFORMANCE, AND 

TEMPERATURE DYNAMICS OF A MUNICIPAL RETROFIT WET EXTENDED 

DETENTION POND IN BURLINGTON, VT 

This should not show 

2.1 Abstract 

We instrumented and studied a wet extended detention pond constructed as a 

retrofit installation in Burlington, Vermont.  Flow gaging at the pond inlet and outlet 

demonstrated that the pond achieved a median reduction in peak flow of 93% over 89 

discrete events identified in the flow record between 2007 and 2009.  Storm event 

samples collected at the inlet and outlet via auto-sampler showed that the pond 

significantly reduced total nitrogen (TN) (1.45 mg/L median influent, 0.93 mg/L median 

effluent) and total phosphorus (TP) (0.498 mg/L median influent, 0.106 mg/L median 

effluent) concentrations over the events sampled.  Using the event mean concentrations 

and a set of dry weather (baseflow) concentrations, I conducted a Monte Carlo loading 

analysis that estimated the TN and TP removal efficiencies for the pond as 22.5% and 

76.7% respectively.  These removal efficiencies, which were measured at a pond located 

in the humid-continental (cool summer) climate zone, are consistent with reported values 

for similar facilities located elsewhere. Temperature data collected at the study pond’s 

inlet and outlet suggests that during warmer months, stormwater retained in the pond 

warms considerably.  This suggests that summer warming in large-scale detention ponds 

could be an issue in areas where receiving waters are already thermally stressed. 
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2.2 Introduction 

Urban runoff is a widely recognized source of water pollution.  EPA’s most recent 

cumulative assessment of state data found 53% of assessed river and stream miles to be 

impaired or threatened, with urban and municipal discharges as the second leading 

probable cause of impairment, behind agriculture (U.S. EPA 2013).  The pollutants most 

frequently identified as contributing to U.S. river and stream impairment include those 

that tend to be associated with urban runoff and stormwater (e.g., pathogens, nutrients, 

metals, sediment) (U.S. EPA 2013).  The management of urban runoff and associated 

pollutants is addressed under the Federal National Pollution Discharge Elimination 

System (NPDES) and Total Maximum Daily Load (TMDL) frameworks, as well as 

various state and local programs, often with the goal of restoring runoff quality and 

quantity back toward predevelopment levels, or to within the assimilative capacity of the 

receiving water (Ferrey 2004).   

Unmitigated stormwater discharges to receiving waters can result in adverse 

hydrological, biological, geomorphic, chemical, and thermal change (Paul and Meyer 

2001).  Development alters the timing and magnitude of flow through the construction of 

impervious surfaces, removal of natural vegetation and installation of more efficient 

drainage (Poff et al. 1997).  Changes in flow can in turn deliver higher loads of solutes 

and sediment bound pollutants (Pitt et al. 2004), and can alter the thermal characteristics 

of runoff by making it hotter (Galli 1990; Herb et al. 2008), which can further degrade 

water quality and habitat (Walsh et al. 2005).   Changes in hydrology associated with 

urbanization can also cause stream channels to erode (Wolman 1967), creating a 
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continual supply of sediment within the stream channel that is delivered downstream 

(Trimble 1997), including the potential for mobilization of toxic legacy sediments (Singer 

et al. 2013).  The cumulative effect of these changes is often that streams become 

degraded, with a loss of valued taxa and a resulting shift to more pollutant-tolerant 

aquatic community (Cook 1976; Pratt and Coler 1976).  

The negative effects of stormwater and associated pollutants can be addressed 

through various structural treatment practices (e.g., detention and infiltration) and 

through source reduction (e.g., restrictions on fertilizer use, street sweeping) management 

practices.  Among infrastructure practices, most can be further categorized as either 

centralized or distributed treatment practices.  Centralized treatment practices typically 

collect runoff from multiple land parcels, which may have different land uses and covers.  

These practices can include dry ponds, wet ponds, and various wetland treatment 

practices.  Distributed treatment practices are typically at the parcel or finer scale and 

detain runoff and associated pollutants on-site.  These include small-scale bioretention, 

pervious surface installations, treatment conveyances, and other landscape integrated 

practices.  Different treatment practices have specific advantages and constraints related 

to pollutant removal (Geotech Consultants and Wright Water Engineers 2012), 

hydrologic performance (McCuen and Moglen 1988; Wilson et al. 2015), cost (Houle et 

al. 2013), required space, and other site conditions.  Consideration of these factors will 

determine the best or most feasible treatment practice for a particular set of 

circumstances.   
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Stormwater ponds have been a widely used method to treat urban runoff because 

they reduce peak flows and treat multiple parcels at a centralized location.  Due to their 

wide use, there have been numerous opportunities to monitor the efficiency of detention 

ponds (Wu et al. 1996; Comings et al. 2000; Hossain et al. 2005; Weiss et al. 2007) and 

so they are readily accepted by regulators.  However, despite the history of stormwater 

pond performance assessments, there is still considerable uncertainty about how any 

particular pond will perform in the field over time, due in part to differing pond inputs, 

changes in design standards, and differences in sampling regimes and performance 

assessment methodology (Strecker et al. 2001).  For instance, many older ponds did not 

include sediment forebays, elongated geometry, aquatic benches, or substantial 

permanent pool volumes, all of which can facilitate pollutant removal from transport.  

Further, among the monitoring studies that have been conducted, as many as 70% of 

those studies were conducted prior to 2000 and thus may not be representative of the 

design features currently being used (Wright Water Engineers 2012).    

The International BMP Database, a central repository for stormwater BMP 

studies, identifies only one wet stormwater pond that was studied within New England 

(Wright Water Engineers 2012).  That pond was a retention pond
1
 located at the 

University of New Hampshire (UNH) Stormwater Center, in Durham, NH (UNH 

                                                      
1
 Stormwater pond naming conventions are not consistent across the U.S.  Ponds can generally be 

categorized as either wet ponds or dry ponds.  Wet ponds maintain a permanent pool of water between 

storm events by design, whereas dry ponds are designed to store runoff volumes only temporarily and to 

empty between events.  Vermont’s Stormwater Management Manual calls wet ponds (i.e. those with 

permanent pools) detention ponds, while ponds designed to drain fully are referred to as dry ponds.  

Convention within the International BMP Database and elsewhere is to refer to ponds with permanent pools 

as ‘retention ponds’, and to call fully draining dry ponds ‘detention ponds’.  With the exception of this 

single reference to the University of New Hampshire Retention Pond, naming convention throughout this 

work will use the Vermont Stormwater Manual terminology.  
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Stormwater Center 2009).  The UNH pond is atypical in two ways.  First, the pond drains 

a land area of 0.4 hectares (i.e., one acre), which is a relatively small drainage area for a 

wet pond.  The Vermont Stormwater Management Manual suggests a minimum of 4 

hectares of drainage area be routed to a wet pond to ensure preservation of a permanent 

pool (VT-ANR 2002).  New Hampshire in contrast requires a documented hydrologic 

budget demonstrating that the permanent pool will be maintained (Comprehensive 

Environmental and NH-DES 2008).  Under either of those regulatory frameworks, a 0.4 

hectare drainage area is likely at the low end of the range of drainage areas for wet 

detention due to regulatory constraints and the availability of alternative treatment 

practices to treat small areas.  Second, the pond was constructed with steep side slopes in 

clay soil which led to erosion within the pond and thus endogenous sediment and nutrient 

supplies by the second year of operation.  Given that these design limitations can usually 

be avoided, the resulting low pollutant removal rates calculated at the UNH pond should 

not be viewed as broadly representative of modern design ponds.  Nonetheless, the UNH 

retention pond appears to singularly comprise the New England regional wet pond 

performance data set.  Thus, the goal of this study was to evaluate the nutrient 

performance, hydrologic performance, and temperature dynamics of a recently 

constructed large wet extended detention pond in Burlington, VT. 
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2.3 Methods 

2.3.1 Site Description   

The stormwater pond that we studied is located in the Englesby Brook watershed 

in Burlington Vermont.  Englesby Brook is one of the most highly developed watersheds 

in Vermont with moderate density residential neighborhoods, commercial and light 

industrial uses, and institutional and municipal land covers.  This 2.45 km
2
 watershed 

drains to Lake Champlain, directly adjacent to a public swimming area (TABLE 1).  The 

Vermont Department of Environmental Conservation has determined that both Englesby 

Brook and Lake Champlain are impaired by stormwater and phosphorus, respectively, 

and that flow from Englesby Brook has contributed to bacterial swimming closures in the 

past.  Englesby Brook has been listed on the U.S. Environmental Protection Agency’s 

303(d) listed since 1992, alternately due to bacteria and other contaminants, and multiple 

impacts associated with excess stormwater runoff.  Restoration work within Englesby 

Brook has been underway since at least 2000 (Center for Watershed Protection 2000; 

Medalie 2012), including most recently through the City of Burlington’s Municipal 

Separate Storm Sewer System (MS4) Phase II stormwater management plan and through 

a flow-based stormwater TMDL approved in 2007 (VT ANR 2007).   
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TABLE 1.  Land cover attributes for the Englesby Brook Watershed, and for the 

study pond’s drainage area.  Land cover and canopy cover estimates are calculated 

from 2011 National Land Cover Dataset products.  Additional detention pond 

drainage area impervious estimates were hand digitized from 2004 color 

orthophotos.  

 

 

The Englesby Brook TMDL was one of twelve flow-based stormwater TMDLs 

issued in Vermont between 2006-2009.  The framework applied in each of these 

watersheds was to first match each stormwater impaired watershed with one or more non-

impaired watersheds with similar development patterns and geophysical attributes that 

were meeting state-defined biocriteria standards (so called “attainment” watersheds, see 

Foley and Bowden 2005).  Ten years of P8 modeling (Walker 1990) were then run for 

each attainment and stormwater impaired watershed, and synthetic flow duration curves 

for each watershed were tabulated from the P8 output (Tetra Tech 2005).  The TMDL 

targets for Englesby Brook and the other stormwater impaired watersheds were then 

calculated as the average Q 0.3% flow rate among the statistically matched attainment 

watershed subset for each particular impaired watershed, using mean daily flow rates.  

Land Cover Attribute
Englesby 

Brook

Detention Pond 

Drainage Area

Area (km
2
) 2.45 0.47

Impervious Cover

Total NLCD 2011 (%) 28.1 44.2

Total Hand Digitized 2004 (%) --- 39.0

Directly Connected (%) --- 32.7

Land Cover

Developed (%) 87.6 89.5

Forest (%) 11.9 10.4

Pasture/hay (%) 0.4 0.2

Canopy Cover (%) 31.5 29.6
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An additional reduction to account for future growth was included, resulting in a target 

reduction of 34.4% in the Q 0.3% for Englesby Brook, relative to the baseline modeling 

(VT ANR 2007). 

There were several stormwater management activities implemented in the 

watershed from 2001 to present, both structural and non-structural, toward watershed 

restoration goals.  These included the construction and retrofitting of multiple detention 

ponds, construction of a shallow marsh wetland, and numerous measures under the MS4 

management including street sweeping, catch basin cleaning, and illicit discharge 

detection and elimination.  The largest structural control measure, on a treatment area 

basis, is an extended wet detention pond (hereafter “the pond”) constructed near the 

middle of the watershed in 2005.  This pond’s drainage area is 48.7 hectares, or 19.9% of 

the total Englesby Brook watershed area.  The land cover attributes within the pond’s 

drainage area are similar to the rest of the watershed, though slightly more developed 

(TABLE 1).  The pond’s drainage area is more impervious than the watershed as a whole, 

and the impervious surfaces are largely connected to the stormwater drainage 

infrastructure (32.2% directly connected impervious cover (DCIA), though a DCIA 

estimate is not available for the entire watershed).  Water that infiltrates pervious areas 

within the drainage area does not route to the pond except through infiltration inflow (I/I) 

to the subsurface storm pipes. 

 

 

 



50 

 

2.3.2 Pond Design 

The study pond is an extended wet detention pond near the center of the Englesby 

Brook watershed (FIGURE 2).  The design is generally consistent with the extended wet 

detention pond design included in Vermont’s Stormwater Management Manual (VT-

ANR 2002).  A water quality storage volume for the pond was sized based on the 

expected runoff from a 0.9” storm over the impervious area contributing flow to the pond 

and is allocated between the forebay, the permanent pool, and 38.1 cm of extended 

detention storage between the permanent pool level and weir notch cutout on the outlet 

riser.  The pond was also designed to detain the runoff volume from the 1-year design 

storm (2.1” over 24 hours, SCS Type II distribution) for 4.6 hours on a center of mass 

basis and to reduce the peak rate from the 10-year storm (3.2”) by 55%. 



51 

 

 

FIGURE 2.  Map of the study area identifying the Englesby Brook watershed 

boundary and stream channel, location of the study pond and its contributing area, 

and area within the treatment area draining to a municipal wastewater treatment 

facility. (Imagery date is May 2004, downloaded from Vermont Center for 

Geographic Information.) 

 

Prior to construction of the pond in 2005, piped stormwater from the 48.7 ha 

treatment area discharged directly to Englesby Brook.  Inflow to the pond is through a 

0.91 m diameter collector pipe that connects to a concrete inlet riser adjacent to the pond 

forebay.  The inlet riser redirects flow into the forebay and includes a flow splitter / 
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overflow diversion designed to divert runoff above the 10-year flow directly to Englesby 

Brook.  Flow into the pond enters the forebay and travels 55 m before exiting the forebay 

at the opposite end via an all-around spillway in the forebay outlet riser.  Outflow from 

the forebay outlet riser discharges to a 35 m stone-lined channel, terminating in the main 

pond’s permanent pool.  The main pond is irregularly shaped, and underlain by a 

geomembrane liner atop a constructed clay core.  Outflow from the main pond occurs at 

four stage thresholds, with a 1.83 m permanent pool (at its deepest) maintained below the 

lowest outlet.  Outflow occurs first at a proprietary vortex orifice installed near the 

bottom of the outlet riser.  A rectangular notch weir is located 38.1 cm above the bottom 

of the vortex orifice, which is cut into an all-around spillover outlet in the outlet riser 

with an invert at 63.5 cm above the permanent pool level.  Lastly, there is an emergency 

side spillover from the main pond designed to accommodate either the 100-year design 

storm or backed up flows in the event of clogging of the regular outlet orifices.  Outflow 

from the outlet riser box flows 168 m through a 0.61 m diameter pipe before discharging 

to a stabilized bank adjacent to the Englesby Brook channel.  

 

2.3.3 Flow gaging and water sampling  

USGS personnel installed monitoring equipment at the inlet and the outlet of the 

detention pond in the summer of 2007.  Flow gauging consisted of Sutron bubble gages 

in PVC stilling wells installed inside the inlet riser and on the outside of the main pond 

outlet riser.  Stage and computed flow were recorded at a 5-minute interval.  Stage-

discharge ratings were developed using a combination of design drawings, site surveys, 
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and temporary weir plates.  This instrumentation worked well, except for a tendency for 

the low flow outlet vortex to clog.  On at least one occasion during our period of 

sampling, the vortex clogged substantially causing the pond stage to rise to the outlet 

weir notch in the period following a small storm.  This clog was cleared manually.  

However, water balance calculations led us to believe that partial clogging occurred at 

other times as well, resulting in less outflow than the corresponding stage reading would 

suggest.  Analysis of the flow record suggested this occurred infrequently and corrections 

to the flow record were made using USGS standard procedures. 

Storm event samples were collected using ISCO 3700 autosamplers positioned on 

top of the inlet diversion structure and outlet riser, linked to and triggered by the flow 

gaging through Campbell Systems Dataloggers.  Continuous temperature and 

conductivity readings were also collected at these inlet and outlet locations.  Water 

samples were collected in proportion to flow volume, into a single composite jug per 

sampling location and storm event.  The start of event sampling was either triggered by 

exceedance of a predefined stage threshold or was triggered manually during a site visit 

in advance of a storm.  The auto-sampler program ran until either the composite jug was 

filled, or a site visit occurred for collection of the sample. 

Composite and grab dry weather samples were also collected at the pond inlet and 

outlet.  To collect the composite dry weather samples, I reprogramed the autosamplers to 

fill the composite jug via flow proportional sampling over a period of approximately 24 

hours.  The resulting composite samples included between 18-75 ISCO aliquots per daily 

sample and were collected on days when it had not rained more than 2 mm in the 48 
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hours preceding the onset of sampling.  These 1-day dry weather composite samples were 

collected once at the inlet and outlet during spring, summer, and fall seasons.  Several 

single grab samples were also collected during summer months.  These were collected by 

positioning a sample container where free discharge entered the forebay for the inlet and 

from within the permanent pool adjacent to the vortex orifice for the outlet. 

After collection, all storm and dry weather samples were either transported 

directly to the State of Vermont’s National Environmental Laboratory Accreditation 

Program (NELAP) accredited analytical laboratory for analysis, or were preserved and 

stored at a University of Vermont laboratory until subsequent transport to the state lab.  

The collected samples were analyzed for total nitrogen (SM-4500 N C persulfate 

digestion) and total phosphorus (EPA-4500-P F), both on an unfiltered basis. 

 

2.3.4 Flow and Loading Analysis 

I post processed the flow records to enable an analysis of period of record (POR) 

peak flow rate reductions.  Event based hydrologic analysis was constrained by the lack 

of identifiable outlet peak flows for many of the smaller inlet peak flows and by the 

multiple consecutive inlet peaks that could produce a composite outlet peak response.  To 

proceed, an inlet flow threshold of 0.10 m
3
 s

-1
 was defined based on a visual assessment 

of the flow record since storms with flow rates above that level typically had clearly 

defined outlet peaks.  I then ran a sliding window over the inlet flow record to select any 

peaks over the 0.10 m
3
 s

-1
 threshold, with a maximum of one peak per eight hour window 

selected.  Outlet peaks were then identified as the maximum outlet flow rate in the six 
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hour window following each identified inlet peak, lagged by 15-minutes.  All inlet and 

outlet hydrograph pairs were plotted and visualized as these peak identification 

parameters were iteratively adjusted.  The results of this analysis allowed for event based 

peak flow rate reduction calculations over the POR.  

For the loading analysis, the sampled storm data allowed for direct calculation of 

TN and TP loads only for the storms that were sampled.  To extend this analysis to the 

many storms that were not sampled, I fit probability distributions to each of the analyte 

datasets (TN and TP) at each of the sites (inlet and outlet) as a basis for estimating event 

mean concentrations of storms that were not sampled.  The fitted probability distributions 

were then assumed to characterize the storm driven concentrations during the entire POR.  

Thus, for each storm for which samples were not physically collected and analyzed, the 

storm concentrations were instead estimated as random draws from the fitted 

distributions.  For non-storm periods, the collected sample concentrations were not of 

sufficient size to fit probability distributions.  Instead, for each discrete non-storm period 

of the flow record (by definition, the periods between discrete storm events), a simple 

resampling scheme was used.  That is, inlet and outlet non-storm concentrations from the 

sample dataset (n=8 TP, n=7 TN, composite and grab, TABLE 3) were randomly selected 

and used to compute the dry weather load for each discrete non-storm interval.   

To estimate the cumulative TN and TP fluxes into and out of the pond over the 

POR I (1) assigned the actual storm and non-storm composite sample concentration 

values to the periods during which they were collected, (2) drew random TN and TP 

values from the fitted distributions for each inlet and outlet event in the record during 
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which no water sample was collected, and (3) randomly selected, with replacement, 

discrete non-storm sample concentrations to apply to each non-storm period that was not 

sampled.  Due to the small number of winter and early spring samples in the dataset, this 

analysis was limited to the periods between April 1 and December 1. This approach 

allowed us to assign TN and TP concentrations and to calculate fluxes for 617 days of 

flow record.  These individual storm and non-storm load components were then summed 

over the period of record to give an aggregate estimate of wet weather, dry weather, and 

total TN and TP fluxes into and out of the pond.  Finally, I repeated this entire sampling 

scheme iteratively to produce 100,000 unique estimates of the fluxes into and out of the 

pond. 

 

2.4 Results 

2.4.1 Hydrology  

Flow gaging at the pond inlet and outlet provides a basis for assessing the pond’s 

hydrologic performance.  Peak flow performance of the pond is presented on an event 

basis in FIGURE 3.  The storm selection criteria used resulted in 89 identified storm 

events over the POR (2007-06-08 to 2009-10-15).  Of those 89 events, the majority were 

fully conveyed by the low flow vortex orifice, with an average peak flow rate reduction 

of 94.9% (FIGURE 3; TABLE 2).  Twenty six of the storms were at least partially 

conveyed by the rectangular weir notch, with an average peak flow reduction of 82.1%.  

For the 12 events that reached the upper cut out in the outlet riser, the average peak flow 

reduction was 50.1%.  The three storms with the highest peak inlet discharge are shown 

in FIGURE 4, all of which reached the upper most outlet conveyance.   
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FIGURE 3. Peak inlet and outlet flows for the study pond.  Events were identified as 

the highest inlet peak rate over 0.10 m
3
/s within any 8 hour sliding window, 

resulting in 89 discrete events over the period of record.  Outlet controls are 

described in section 2.3.2. 
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TABLE 2. Peak flow reduction summary. Eighty nine discrete storm events are 

grouped by the highest outlet conveyence reached at peak outflow. 

 

 

 

FIGURE 4.  The three largest storms within the POR, based on the peak inlet peak 

flow. Time zero corresponds to 2007-07-09 07:30 EST (21.3 mm of rain in 1 hour), 

2008-06-22 17:35 EST (18.0 mm of rain in 6.2 hours), and 2009-07-07 15:15 EST (< 

5 mm recorded for the day).  The large inflow from the 2009-07-07 event most likely 

resulted from an intense localized thunderstorm. 

 

I characterized the long-term hydrologic performance of the pond using flow 

duration curves (FDCs), highlighting the differences in the percent of the time that inlet 

and outlet flow rates exceeded various magnitudes.  FIGURE 5 shows the inlet and outlet 

FDCs for the 860-day overlapping POR, illustrating several relevant aspects of the 

pond’s hydrologic performance.  First, the pond is effective at reducing peak flow rates 

from the inlet to the outlet, consistent with the event based analysis.  This is clearly 
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demonstrated by the separation between inlet and outlet curves at the flows exceeded less 

than ~3.4% of the time.  As should be expected for a detention pond, for the majority of 

the record excluding peak flows the outlet flow rate was greater than the inlet flow rate 

for a given exceedance percentile.  However, it was unexpected that the inflow to the 

pond did not cease entirely for extended periods of time.  For example, the 95% flow at 

the inlet is equivalent to 12 L min
-1

, which we attribute to groundwater interception by 

the conveyance network (so called infiltration / inflow or I/I) and non-stormwater 

discharges to the conveyance network. 

 

 

FIGURE 5.  Inlet and outlet flow duration curves with a high flow inset in the same 

units. 
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2.4.2 Event mean concentrations, TP 

 We collected and analyzed 42-paired inlet and outlet storm samples for unfiltered 

total phosphorus (TP) (FIGURE 6a).  The median inlet and outlet TP storm 

concentrations were 0.498 and 0.106 mg/L, respectively.  I used Levene’s test for 

equality of variances and found variance of the inlet samples to be significantly greater 

than corresponding samples at the outlet (p < 0.001).  The concentrations of TP storm 

samples were approximately log normally distributed at the inlet and outlet and were 

compared using the nonparametric Mann-Whitney U test for paired means.  Inlet TP 

storm concentrations were significantly higher than the corresponding outlet samples (p < 

0.001).   

 

2.4.3 Event mean concentrations, TN 

We collected and analyzed 43-paired inlet and outlet storm samples for unfiltered 

total nitrogen (TN) (FIGURE 6b).  The median inlet and outlet TN storm concentrations 

were 1.45 and 0.93 mg/L, respectively.  As for TP, Levene’s test for equality of variances 

indicated that the variance of the inlet samples was significantly greater than 

corresponding samples at the outlet (p < 0.001).  The concentrations of TN storm samples 

were also approximately log normally distributed, and were compared using the 

nonparametric Mann-Whitney U test for paired means.  I found inlet TN storm 

concentrations to be significantly higher than the corresponding outlet samples (p < 

0.001).   

 



61 

 

 

FIGURE 6. Scatter plots of inlet and outlet TN and TP storm composite event mean 

concentrations. 

 

2.4.4 Dry Weather Sampling 

Details of the dry weather samples are given in TABLE 3.  The small number of 

dry weather samples (TABLE 3) limits the analysis that can be conducted, however a few 

findings can be inferred.  For TN, the effluent concentration was lower than the influent 

concentration for all except a single grab sample pair, while the averages of the 

composite samples were close to the average storm concentrations at both the inlet and 

outlet.  For TP, the pond effluent concentration was higher than the corresponding inlet 

samples for two of the three daily composites, whereas effluent had lower TP 

concentration for three of the four grab samples, relative to the inlet.  Overall, the TP 

concentrations of the dry weather pond effluent were close to the mean value measured 

during storm events, while the dry weather influent concentration was lower than storm 

event levels.  
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TABLE 3. Dry weather sample characteristics. 

 
 

2.4.5 Long term flux estimates 

All four EMC datasets were right skewed and were iteratively fit with lognormal, 

Weibull, gamma, and exponential probability density functions.  In all four cases, 

lognormal distributions were best fit based on comparisons of log-likelihood values from 

the sets of distribution fits (FIGURE 7).  Using these distributions and the dry weather 

sample concentrations, I proceeded to construct the POR loading analysis as described in 

Section 2.3.4. 

Time of First 

Sample

Time of Last 

Sample

# 

Aliquots

Total 

Nitrogen 

(mg L
-1

)

Total 

Phosphorus 

(mg L
-1

)

Sampled 

Flow (m
3
)

Days Since 

Storm > 2 

mm 

Inlet

1 Day Composite

2008-08-23 14:14 2008-08-24 16:01 45 1.85 0.167 102.9 4

2008-09-23 14:04 2008-09-24 19:39 75 1.21 0.052 35.4 9

2009-04-15 14:02 2009-04-16 13:43 75 2.18 0.109 166.9 8

Single Grab

2007-08-15 13:50 --- 1 2.55 0.100 --- 9

2010-08-26 18:00 --- 1 --- 0.035 --- 3

2010-08-28 19:15 --- 1 0.10 0.050 --- 5

2010-08-31 7:00 --- 1 3.00 0.013 --- 8

Outlet

1 Day Composite

2008-08-23 15:13 2008-08-24 15:17 18 0.98 0.243 83.8 4

2008-09-23 14:12 2008-09-24 19:55 75 0.59 0.095 40.6 9

2009-04-15 14:37 2009-04-16 17:46 75 1.71 0.034 194.8 8

Single Grab

2007-08-15 13:30 --- 1 0.59 0.090 --- 9

2010-08-26 18:05 --- 1 --- 0.028 --- 3

2010-08-28 19:25 --- 1 2.70 0.021 --- 5

2010-08-31 7:05 --- 1 0.60 0.049 --- 8
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FIGURE 7. Lognormal distribution fits to the TN and TP storm sample sets at the 

inlet and outlet. 

 

For TN, a relatively large percentage of the total loads at both the inlet and outlet 

(38.3% and 28.5% respectively) was attributed to non-storm driven loadings (TABLE 4).  

This is a result of the non-event TN sample concentrations having often been higher than 

the median storm event TN concentrations.  For TP, the total loads at the inlet and outlet 

were primarily driven by storm events (79.2% and 83.7%, respectively).  The total flux 

estimates are presented as histograms for TP and TN, in FIGURE 8 and FIGURE 9 resp., 
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showing the summed results of the 100,000 iterations of total loads into and out of the 

pond.  There was no overlap between the total TP load estimates into and out of the pond, 

while there is a small amount of overlap in the TN total loads at the inlet and outlet.  

 

TABLE 4.  Prediction percentiles of long-term load estimates for TN and TP into 

and out of the detention pond.  The period of analysis includes 2007-06-08 through 

2007-12-01, 2008-04-01 through 2008-12-01, and 2009-04-01 through 2009-10-15 

(617 days total).   

 
 

 

Total Nitrogen 2.50% 50% 97.50% Total Phosphorus 2.50% 50% 97.50%

Pond Inlet Pond Inlet

Storm (kg) 172.1 186.5 203.9 Storm (kg) 81.0 93.9 113.6

Non-storm (kg) 96.1 116.0 135.3 Non-storm (kg) 15.7 24.2 35.3

Total (kg) 277.7 302.8 328.5 Total (kg) 102.4 118.5 140.7

Pond Outlet Pond Outlet

Storm (kg) 152.0 167.2 187.6 Storm (kg) 20.0 23.1 27.8

Non-storm (kg) 54.7 66.8 81.9 Non-storm (kg) 3.4 4.5 5.9

Total (kg) 214.2 234.5 259.2 Total (kg) 24.3 27.6 32.5

Reduction (%) 22.54 Reduction (%) 76.69
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.  

FIGURE 8. Frequency distribution of total phosphorus loads estimated over the 617 

day period of analysis into and out of the pond. 
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FIGURE 9.  Frequency distribution of total nitrogen loads estimated over the 617 

day period of analysis into and out of the detention pond.   

 

2.4.6 Temperature 

Water temperature exhibited strong event, inter-event and seasonal dynamics.  On 

an event basis, storm driven influent in warmer months tended to be warmer than the 

inter-event I/I inflow, with the shape of the temperature inflow graph closely tracking 

inflow storm hydrographs (FIGURE 10).  A reversed pattern was evident in the late fall 

and early winter, where colder event driven stormwater caused sharp decreases in inflow 

temperature relative to inter-event flow (data not shown).  For the sustained I/I inter-

event flow that was maintained into the pond for most of the POR, the water temperature 

roughly tracked air temperature dynamics on a daily time scale, with warmer inflow at 

mid-day in the warmer months, even in the absence of event flow.  Water temperature at 
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the outlet showed small spikes during warmer months that can be attributed to warm 

storm flow at the inlet, however much larger differences were evident on a daily basis 

during inter-event periods.  The period of 2008-06-07 through 2008-06-11 included in 

FIGURE 10 illustrates this dynamic over a period of days where air temperature 

exceeded 30°C over three consecutive daily peaks.  These diel fluctuations resulted in 7-

10 degree daily swings in effluent temperature, with pond effluent reaching daily 

maximums near 16:00 and daily minimums near 06:00. 

 

 

FIGURE 10. Flow rate and temperature into and out of the pond from 2008-06-02 

to 2008-06-13, including the POR maximum temperature at the outlet. 

 

On a seasonal basis, inflow and outflow tracked ambient temperatures, but with a 

greater seasonal amplitude at the outlet, which more closely tracked air temperature.  The 
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annual inlet record (FIGURE 11) showed a seasonal trend driven by air temperature, 

which was superimposed with storm event spikes (summer) and troughs (fall winter), 

along with the diel variation seen in FIGURE 10.  The outlet also exhibited seasonal 

dynamics, but with additional variation largely attributable to diel temperature 

differences.  It can also be seen that inlet flow temperature was slower than the outlet to 

drop to 0 °C.  In contrast, the outlet was at or near 0 °C for most of the winter, though it 

warmed more quickly than the influent through early spring. 

 

 

FIGURE 11. Seasonal temperature trends at the pond inlet and outlet.   

 

2.5 Discussion 

2.5.1 Hydrology 

As expected, the flow gauging at the pond inlet and outlet showed the pond to be 

generally effective at reducing peak flow rates (FIGURE 4 and FIGURE 10).  The 
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broader context for the pond’s hydrologic performance is the Englesby Brook watershed 

TMDL, which targets a 34.4% reduction in the watershed Q 0.3% flow rate relative to a 

pre-TMDL baseline (VT ANR 2007).  The TMDL also includes a base flow remediation 

target quantified as an 11.2% increase in the Q 95% flow rate, relative to the pre-TMDL 

baseline.  Given that the study pond drains surface flows from 19.9% of the Englesby 

Brook watershed, this retrofit pond is expected to play a substantial role in meeting the 

peak flow reduction target.  The TMDL flow metrics computed from the TMDL baseline 

modeling, the study pond flow record, and the streamflow record for the Englesby Brook 

watershed are summarized in TABLE 5.  The Englesby Brook streamflow series is from 

USGS gage #04282815, which was operated near the mouth of Englesby Brook, 

approximately 0.8 km downstream of the pond outfall from 1999-10-01 through 2010-09-

30.   
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TABLE 5.  Flow metrics used in the Englesby Brook TMDL, calculated from 

modeled and measured time series. Pre and Post refer to periods of record (POR) 

before and after construction of the study pond. 

 

TMDL flow metrics (Q 0.3% and Q 95%) are presented on the basis of daily 

mean flows and instantaneous
2
 flows, by necessity.  That is, the synthetic FDCs used in 

the TMDL modeling were reported at a daily time step, as are the resulting baseline 

metrics and targets (Tetra Tech 2005).  While this temporal resolution is the explicit in 

the TMDL analysis, a more refined analysis can be done using the existing 5-minute 

records.  This is important because the flow data from the study pond and the watershed 

                                                      
2
 Instantaneous is used in this section to refer to the highest resolution data available and is meant to 

distinguish those flows from daily aggregated flows.  For the study pond, data were collected at a 5 min 

interval and so instantaneous refers to 5 min data in this context.  Englesby streamflow data were initially 

reported by USGS at 15-minute interval, and later at a 5-minute interval.  Thus, instantaneous Englesby 

streamflow data refers to this mixed resolution time series. 

 

Q 0.3% Q 95%

mm/d mm/d

TMDL Synthetic FDC (Daily Flows)

Englesby Brook Baseline 14.61 0.180

Mean Attainment Target (inlcuding 

future growth allocation)
9.58 0.200

Pond Inlet

Daily Mean 6.45 0.043

Instantaneous (5 min.) 20.55 0.036

Pond Outlet

Daily Mean 6.36 0.037

Instantaneous (5 min.) 11.44 0.036

Englesby Brook

POR Daily Mean 9.91 0

Pre Daily Means 12.34 0

Post Daily Means 8.77 0.001

POR Instantaneous (5 min.*) 13.65 0

Pre Instantaneous (5 min.*) 15.74 0

Post Instantaneous (5 min.) 12.60 0

* First 8 months of record are 15 minute data

Flow Series
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gage show the Englesby Brook drainages to have rapid storm dynamics at the sub-daily 

time scale, not unexpected given the small area and high level of development within the 

watershed (TABLE 1).  Aggregating the measured flow records to daily mean flows 

produces comparable metrics to those that were generated in the TMDL analysis, but has 

the effect of averaging sub-hourly event dynamics with sustained inter-event periods of 

low or no flow.  Aggregation to the daily time step as used in the TMDL analysis can 

greatly misrepresent the actual flow conditions experienced by the receiving stream.  For 

this reason we have included daily flow as well as instantaneous flow metrics in TABLE 

5 and in this discussion, but we emphasize that the daily flow metrics are of limited 

validity outside of the TMDL regulation context. 

Under the TMDL, the high flow reduction target (Q 0.3%) is set at 5.03 mm/d (or 

34.4%) on the basis of the whole watershed.  Using daily mean flow into and out of the 

study pond, the Q 0.3% was reduced by only 0.9 mm/d or 1.4% over the study period. 

Calculating the same quantity from the instantaneous flow record results in a 44.3% 

reduction in Q 0.3% for the pond’s drainage area.  Given the fraction of the total 

watershed treated by the pond, this 44.3% reduction in the pond’s instantaneous Q 0.3% 

corresponds to an 8.8% reduction on a whole watershed basis, or 25.6% of the total 

TMDL target being met from only 19.9% of the contributing area.  The same calculation 

based on daily mean flows would credit the pond with having achieved only 0.3% of the 

total TMDL target.  As discussed above, the instantaneous Q 0.3% better corresponds to 

the hydrograph dynamics of the pond, and the difference between instantaneous and daily 
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mean metrics highlights the misrepresentation that can result from aggregating storm 

flows to daily resolution. 

The pond was not expected to have a large effect on the Q 95% target since it was 

not designed as an infiltration practice, nor was baseflow restoration an explicit design 

goal for the site.  However, given that the pond detains storm flow volumes from 19.9% 

of the watershed, it is conceivable that it could contribute to the targeted Q 95% 

augmentation through temporal redistribution of surface conveyed storm flow.  On the 

basis of daily mean flows, the low flow metric (Q 95%) at the pond inlet was slightly 

higher than at the outlet, while on an instantaneous basis there was no difference.  I also 

calculated Q 95% values for the pond from a series of median daily flows since the 

distribution of flows on any given day were typically skewed (median daily flow metrics 

not included in TABLE 5).  From these data, Q 95% increased slightly at the pond outlet 

relative to the pond inlet.  Thus, depending on whether and how the flow data were 

aggregated the pond can be shown to increase slightly, decrease slightly or have no effect 

on Q 95%.  The most useful summary of these data is therefore simply to note that the 

empirical Q 95% stream flow for Englesby Brook corresponds to a dry channel (TABLE 

5), and that the empirical Q 95% for the pond corresponds to low sustained flow into and 

out of the pond (approximately 7 liter s
-1

).  It is unlikely that this contributes 

meaningfully to baseflow augmentation in the Brook. 

 While there was little difference in Q 95% from the inlet to outlet, the temporal 

redistribution of storm flows is evident in the empirical FDC (FIGURE 5).  Within the 

3% and 90% probability of exceedance interval, the outlet flow rate was uniformly 
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greater than the inlet flow rate for any given percent exceedance.  This demonstrates that 

except for the highest 3% and lowest 10% of flows, the pond generates higher 

instantaneous outflow relative to inflow.  It is only at the relatively infrequent lowest 

flows that the difference between inlet vs outlet flow approaches zero as corresponding 

flow rates decline to zero. 

The Englesby Brook streamflow gage records provide another indirect means of 

assessing the extent to which the study pond has contributed to watershed restoration 

targets.  The streamflow data at USGS gage #04282815 were collected over an 11 year 

period (1999-2010), during which the study pond and number of other large and small 

BMPs were constructed.  The study pond and a shallow marsh wetland were constructed 

in 2005, while two smaller stormwater ponds (on a contributing areas basis) were 

constructed in 2006.  Other smaller scale stormwater management installations came 

online throughout the period of record.  The construction of the larger stormwater 

treatment systems in the middle of the gage record provides a natural break for the 

analysis of the stream flow records, albeit complicated by other small scale changes 

within the watershed throughout the gage record.  The Q 0.3% and Q 95% metrics were 

calculated over the stream flow record for (1) the entire 11 year POR, (2) the period 

before which the study pond went online (‘pre’, 1999-2005), and (3) the period after the 

study pond went online (‘post’,2005-2008).  These data are summarized in TABLE 5 on 

a daily mean flow and instantaneous flow basis.  

The value of the Q 0.3% flow calculated based on the POR as well as the USGS  

daily mean flow prior to construction of the pond (“pre-“ data) did not match the baseline 
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Q 0.3% derived from the daily resolution TMDL modeling.  This was not a surprise 

given the differences in methodologies (e.g., measured vs modeled, significant BMPs 

implementation within the measured POR that were not included in the baseline 

modeling), producing what should be incomparable metrics.  Considering just the 

measured data, on both the daily and instantaneous bases, the pre- Q 0.3% exceeded the 

POR Q 0.3% values, while the post- Q 0.3% values were lower than those for the entire 

POR.  This suggests that peak stream flow during the post construction period was lower 

than in the preceding period, which we attribute at least in part to stormwater 

management. 

The landscape within Englesby Brook was fairly static over the decade of stream 

flow gaging, except for stormwater management.  The area was already largely built out 

at the onset of flow gaging in 1999, and after 2002 any substantial new or redeveloped 

impervious area within the watershed was subject to State of Vermont stormwater 

management regulations, and later the Phase 2 MS4 permitting.  Thus, with no major 

greening or reforestation initiatives within the watershed, the primary land use change 

over this period of time was the implementation of stormwater management retrofits.  

The other factor with obvious potential to manifest the observed change in Q 0.3% is 

precipitation.  Medalie (2012) noted in a watershed scale BMP assessment for Englesby 

Brook over the same period of record that the post- period was significantly wetter on the 

basis of paired monthly median precipitation totals, though not on an annual total basis 

due to one relatively wet year in the pre-installation period. The magnitude of low 

probability flow events (i.e., Q 0.3%) is inherently sensitive to occurrence of low 
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probability precipitation events in the period for record, including not only the magnitude 

but the antecedent watershed condition which can influence flow rates.  We therefore 

cannot exclude the possibility that the apparent decline in watershed Q 0.3% from the 

pre- to post- periods is an artifact of the relatively short periods of record over which they 

were calculated.   

In contrast to the Q 0.3%, the streamflow based assessment of the Q 95% target 

does not suggest that substantial progress has been made toward watershed hydrology 

restoration goals, but rather highlights the extent to which the TMDL modeling is 

incomparable to the measured stream flow data.  The TMDL baseline identifies a daily 

mean Q 95% of 0.18 mm/d for Englesby Brook.  However, Medalie (2012) noted that 

during the pre-BMP construction period, there were between 47 and 64 days per year 

with mean daily flows equal to zero.  These dry periods occurred primarily during 

summer, and result in empirical Q 95% metrics of zero.  This extended dry dynamic was 

not captured in the TMDL modeling, with the result being that an increase in base flow 

from even the post- period would have to be by a factor of 500 or greater to meet the 

attainment watershed target, rather than the 11% increase referenced in the TMDL.   

 

2.5.2 Event Mean and Grab Sample Concentrations 

Analysis of the baseflow samples is limited by the small sample size, however 

there did appear to be difference in dry weather versus storm driven TP.  While the dry 

weather TP effluent generally grouped well with the storm driven TP effluent, the 

influent baseflow and storm samples did not.  It appeared the influent TP was lower 
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during dry weather periods, which I attribute to a lack of sediment and particulate bound 

TP loading during dry weather periods.  The combination of linear forebay and main 

pond flow paths was designed to settle out suspended loads resulting in outlet loads that 

would be comprised of dissolved and colloid bound P during storm and non-storm flow 

conditions.  Thus, these dynamics generally corresponded with expected removal 

mechanisms within the pond. 

I also compared the EMC storm data collected in this study with other urban 

runoff concentration data reported in the literature.  This study’s median storm TN EMC 

calculated from all sampled storms at the inlet was 1.45 mg/L, which is lower than most 

literature estimates for piped urban runoff (TABLE 6).  The median storm influent TP 

concentration of 0.498 mg/L measured in this study, however, was higher than most 

reported values for piped urban runoff from the literature.  The elevated TP 

concentrations, combined with TN concentrations that were commensurate or lower than 

other published estimates suggests that there was a disproportionate source of TP within 

the study pond’s contributing drainage area.   
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TABLE 6.  Urban runoff TN and TP concentrations from this study and values 

reported in the literature.  

 

 

Analysis of the different land cover types contributing to urban runoff has 

previously identified residential lawns as a disproportionate contributor of TP, relative to 

other urban land covers (Bannerman et al. 1993; Steuer 1997).  The sources of TP from 

residential lawns have generally been attributed to lawn fertilizers and pet waste, both of 

which are plausible contributors within this study’s drainage area.  Vermont enacted 

consumer education and voluntary phosphorus fertilizer restrictions in 2011, however no 

restrictions on residential lawn phosphorus application were in place concurrent with the 

sampling in this study (2007-09) (Vt. Stat. Ann. tit. 10, § 1266b 2011)  ("Application of 

phosphorus fertilizer,").  We also speculate that pet waste loading could be relatively high 

within the contributing drainage area.  Vermont has one of the highest pet ownership 

rates in the country (AVMA 2012), and the study’s contributing area is majority 

Reference TN (mg/L) TP (mg/L)

This Study 1.45 0.498

Previous Studies

NURP (1983) 2.18* 0.27

Pitt et al. (2004) 2.0* 0.27

Smullen et al. (1999) 2.0* 0.26

International Stormwater

BMP Database (2012)

Steuer et al. (1997) 1.87*
†

0.29
†

Bannerman (1993) --- 0.66
†

* TKN + NO2 + NO3

^ Range of inlet EMCs reported for different BMP types

† Geometric mean

Median Urban Runoff EMCs

0.75 - 2.37^ 0.11 - 0.36^
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residential lots (56% by area) averaging 0.24 acres, and is served by sidewalks.  Lastly, 

through field observation we have noted the presence of drop inlet yard drains within the 

contributing drainage area, presumably connected to the pond’s collection drainage 

network.  The combination of these factors (lack of regulations addressing phosphorus 

fertilizer, potentially high pet density, and direct lawn and street connection) suggest a 

possible explanation for the elevated TP EMC data measured in this study. 

 

2.5.3 Irreducible Effluent Concentrations 

The concept of irreducible effluent concentrations provides further context for 

considering the effluent quality of the pond in this study (Schueler 2000).  Irreducible 

effluent concentrations refer to the observations that for similar types of stormwater 

BMPs, there are minimum achievable effluent concentrations beyond which further 

reductions are not likely.  This can be due to re-suspension, desorption, and biological 

and chemical processing that prevent effluent concentrations from reaching zero or 

dropping below other thresholds.  It follows that influent with a high concentration 

relative to a BMPs intrinsic irreducible concentration level may be easily reduced, and 

will compute as a high removal efficiency, whereas influent concentrations close to the 

irreducible effluent concentration will not be further reducible, resulting in low removal 

efficiency.  Thus, high BMP removal rates can be indicators of either high influent 

concentrations, good BMP performance, or both.   

A comparison of effluent from this study with literature estimates of irreducible 

wet pond effluents suggests general agreement.  Schueler (2000) aggregated data from 
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the National Pollutant Removal Database (Winer 2000) and estimated 0.13 mg/L TP, and 

1.3 mg/L TN as the irreducible effluent limits for wet ponds.  Similarly, aggregated data 

from the International Stormwater BMP Database (ISBMPD 2012) estimated lower 

bounds on the 95% confidence intervals around effluent EMC medians as 0.19 mg/L for 

TP and 1.75 mg/L for TN, suggesting that it is infrequent that a wet pond produces 

effluent concentrations below those values (TABLE 7). The median storm effluent from 

this study of 0.106 mg/L TP and 0.93 mg/L TN are both slightly lower than the 

aggregated estimates for wet ponds in general.  This may be attributable to the study pond 

being a recently constructed extended detention wet pond, a variant of wet pond that has 

not been broken out in previous analyses of irreducible concentrations.  Overall, this 

consideration of irreducible effluent concentrations, combined with the preceding 

discussion of characteristic runoff concentrations suggests that the study pond both 

received higher than average TP influent and produced lower than average TP effluent.  

For TN, lower than average influent was generally released from the pond as lower than 

average effluent, suggesting the pond was at least commensurate with the performance of 

other studied wet ponds in this regard.  

 

2.5.4 Pond Efficiency  

An initial attempt was made to develop predictive models based on the 

characteristics of the sampled storms that would allow for event specific predictions of 

TN and TP concentrations into and out of the pond.  A large set of predictor variables 

related to flow, precipitation, and time of year were investigated using linear regression 
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and best subsets multiple regression.  The best predictors identified (i.e., month of year, 

days since storm with peak flow of at least X) were generally of low predictive value for 

TN and TP event mean concentrations at the inlet and outlet.  A suspected reason for this 

is that many of the sampled events in our data set included what could be identified post-

hoc as multiple discrete events.  Due to the relatively small area and high connected 

impervious cover of the treatment area, discrete events at the inlet can occur within 

periods of a few hours, so that during a day’s sampling more than one discretely 

identifiable inlet hydrograph was often sampled.  Thus, a single composite sampled event 

mean concentration often included multiple discretely identifiable inlet events, each of 

which would differ in event characteristics (e.g., peak q, time since previous event).  This 

makes it difficult to detect the effect of these predictors and would complicate the 

application of predictive models to the hydrograph record.  Given these challenges, I 

instead constructed pond loading estimates using the distribution fitting and Monte Carlo 

sampling approach described in Section 2.3.4, from which removal efficiencies were 

calculated. 

The EMC reductions and long-term nutrient removal rates estimated in this study 

using the distribution fitting and Monte Carlo sampling approach are generally in 

agreement with published estimates for wet detention pond performance.  Direct 

comparison with other studies is complicated by differences in pond design and sizing, 

contributing land use and influent characteristics, and differences in sample collection 

methods (Strecker et al. 2001).  Nonetheless, there are two published compilations of 

BMP performance studies, namely the International Stormwater BMP Database 
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(ISBMPD) (2012), and the National Pollutant Removal Performance Database (NPRPD) 

Version 3 (Fraley-McNeal 2007), which allow my estimates to be placed in context with 

previous work (TABLE 7).  The most recent aggregate assessment of the data compiled 

within the ISBMPD characterizes influent and effluent storm EMCs by BMP type 

(Geotech Consultants and Wrigth Water Engineers 2012).  The median influent and 

effluent TP EMCs from the current study are above and below, respectively, the 95% 

confidence intervals from the ISBMPD wet pond data.  For TN, sampled influent and 

effluent were both below the 95% CI estimates for wet pond EMCs.   

 

TABLE 7. Wet pond performance estimates from the ISBMPD and NPRPD, and 

from the Englesby Brook study pond.  ISBMPD data are from Geotech Consultants  

and Wright Water Engineers (2012) summary of retention ponds included in the 

database.  NPRPD data are from Fraley-McNeal (2007).  This study’s removal 

efficiencies were calculated from the long-term storm estimates in TABLE 4. 

 
 

Fraley-McNeal (2007) summarized 45 wet detention studies from the NPRPD, on 

a mass reduction efficiency rather than EMC basis.  The studies included in their analysis 

included only those for which at least five storms were flow or time composite sampled, 

Inflow Outflow
Removal 

Efficiency (%)
Inflow Outflow

Removal 

Efficiency (%)

ISBMPD

Median EMC (mg L
-1

) 1.83 1.28 --- 0.3 0.13 ---

95% CI
* 1.60 - 1.98 1.19 - 1.36 --- 0.27 - 0.31 0.12 - 0.14 ---

n storms 19,259 19,272 --- 46,657 48,654 ---

NPRPD

Median --- --- 31% --- --- 52%

Q1-Q3 --- --- 16-41% --- --- 39-76%

n studies

This study

Median EMC (mg L
-1

) 1.45 0.93 10.5% 0.498 0.106 75.4%

95% CI
*

1.22 - 1.69 0.77 - 1.08 --- 0.39 - 0.74  0.08 - 0.14 ---

n storms 44 43 --- 43 42 ---

* Confidence intervals estimated by bias corrected accelerated bootstrapping.

4522

Total Nitrogen       . Total Phosphorus        .
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and for which the mass efficiency methodology was documented.  (It should be noted 

that some studies are included within both the ISBMPD and the NPRPD dataset, such 

that these do not constitute independent datasets.)  For comparison purposes, these 

removal efficiency estimates are compared against the POR storm flow flux estimates 

made in this study (TABLE 4).  TABLE 7 includes both of these estimates, and the 

median and inter-quartile range removal rates compiled by the NPRPD.   

The NPRPD estimated median TP reduction was 52%, while our estimated storm 

TP removal efficiency was 75.4%, near the upper bound of the IQR computed from the 

NPRPD.  We attribute this greater TP percent removal to the relatively high influent 

concentrations measured in this study, which given the relatively invariant TP effluent 

concentrations, translates directly into a high percent removal.  The NPRPD estimated 

median reduction for TN was 31%, which is higher than the 10.3% storm-event TN 

removal estimated in this study.  However, our storm TN removal efficiency appears low 

in part due to an event vs. non-event volume imbalance in the long term analysis.  That is, 

in separating the inlet and outlet flow records into event versus non-event driven flows 

for the analysis, 23% more water was classified as being event driven at the outlet, 

compared to the inlet.  This was due to the long drain time for the pond, such that 

consecutive discrete events at the inlet could be intersected by a period of non-event 

driven flow, while the corresponding outlet flow record was continuously classified as 

event driven over the same period.  This resulted in a greater volume of water at the 

outlet being classified as event driven and thus included in the event based efficiency 
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accounting, with the unequal inlet and outlet volumes having the effect of driving down 

the computed removal rate for event flow.  

Lastly, our estimates of pond efficiency are qualified based on a couple of factors.  

First, the pond was relatively recently constructed at the onset of monitoring and routine 

maintenance will be required to keep it operating as designed.  The forebay was dredged 

of approximately ~130 m
3
 of sediment in 2011, removing some fraction of the TN and 

TP that we document as removed from transport in this study, and we expect the 

performance of the pond over time to continue to be dependent on this loss pathway.  

Another consideration is that our event samples address winter conditions only to a 

limited degree.  This was due in part to freezing and snow conditions making it difficult 

to collect composite samples during the winter.  Thus, it is unknown if the pond performs 

at the same level during those periods which constitute a third of every year.  Finally, 

source reduction activities, including more frequent street sweeping and catch basin, and 

improved pet waste, leaf fall, and fertilizer management have the potential to reduce TP 

and TN loads into the pond.  Given the relatively invariant nature of the pond effluent 

chemistry, we expect that would correspond directly to reduced removal efficiency within 

the pond.  

 

2.5.5 Temperature 

 The relatively high impervious cover within the pond’s contributing drainage area 

(44.2%) is likely to produce substantially hotter surface runoff than would occur under 

undeveloped or lower density of development (Galli 1990; Thompson et al. 2008), 
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however heating of surface runoff was likely mitigated by two factors in this study.  First, 

the contributing area includes a moderate degree of deciduous tree cover (29.6%) that 

shades patches of impervious surface throughout.  Previous work on the temperature of 

runoff from pavement has not specifically quantified the thermal effects of ambient 

temperature shaded impervious (Thompson et al. 2008; Janke et al. 2011; Kertesz and 

Sansalone 2014), however it is likely to be diminished relative to unshaded impervious 

surfaces (Spronken-Smith and Oke 1998).  The second factor is the relatively long 

conveyance distances through which flow is piped within the contributing drainage area.  

Sabouri et al. (2013), in an investigation of sewer pipe effects on runoff temperature, 

identified ‘longest pipe length’ as a key parameter affecting the cooling of surface heated 

runoff through the conveyance network, though the upper bound on their analysis was 

975 m.  The farthest catch basin from our study pond’s inlet riser is 1,335 m upslope in 

pipe distance at relatively shallow slope (2.7% at land surface), while the closest is 120 

m.  Additionally, interception of groundwater within the conveyance network provides a 

continual source of relatively cool inflow to the pond.  We do not expect this to have a 

strong effect during large events, when the groundwater volume would be small relative 

to the storm volume.  However, small afternoon storms during summer months have been 

found to have large thermal effect on receiving waters, given the combination of warm 

precipitation, warm pavement, and small volume such that the majority of storm flow is 

comprised of first flush (Herb et al. 2008).  For those storms, which are characteristic for 

this study area, dilution and mixing of stormwater with I/I flow is likely to provide a 

degree of mitigation.  Combined, these factors can lessen heat accumulation by runoff at 
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the land surface and provide opportunity for heat loss prior to stormwater reaching the 

pond.   

Thermal mitigation within the contributing area and conveyance network 

appeared to be largely negated by the pond itself.  The permanent pool surface area of 

2,050 m
2
 (550 m

2
 as forebay) provides considerable opportunity for warming via solar 

radiation and atmospheric conduction.  There is little shading of the pond water surfaces 

except for a line of trees on an adjacent lot ~12 m east of the north-south oriented linear 

forebay, which may provide a degree of shading during morning hours.  However, the 

larger main pond, and the forebay during all except for early morning hours receive no 

shading except for the emergent vegetation within the pond.  There is also a constructed 

berm extending 1.52 m above the permanent pool water surface within the main pond 

which could provide a degree of buffering from wind that might cool water within the 

pond.  These factors largely explain the diel temperature fluctuations shown within the 

main pond in FIGURE 10.   

The design features of the pond contributing to its ability to accumulate heat are 

typical of these types of installations.  The only explicit mitigation used in regulatory 

detention ponds in Vermont is a lowering of the detention time target for effluent that 

drains to cold water fisheries.  Specifically, where 1-year volume control requirements 

apply, a center of mass detention time of 24 hours is required in warm water fisheries 

while only 12 hours is to be provided in cold water fisheries.  While the study pond was 

not designed to either standard (rather, it was retrofit on a peak flow control basis), 

design sizing reported 4.6 hours center of mass detention time for the 1-year design 
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storm, suggesting a greater degree of thermal accumulation might have occurred were the 

pond designed to meet 1-year volume control standards.  

 

2.6 Conclusions 

The performance assessment conducted in this work adds to the body of research 

on stormwater pond effectiveness. The hydrologic assessment demonstrated the pond’s 

effectiveness in reducing peak flows from the contributing areas, and the overall role that 

this large wet extended detention pond serves in the broader flow-based Englesby Brook 

TMDL. The total nitrogen and total phosphorus influent, effluent, and mass efficiency 

results were found to be generally in agreement with previous published estimates, with a 

few exceptions as noted in the Results and Discussion sections.  While the hydrologic 

and nutrient performance was in general as good or better than expected based on 

previous research, the temperature data collected at the inlet and outlet demonstrates the 

heating that can occur while water is stored within a stormwater pond.   In watersheds 

where thermal pollution is of concern and stormwater management is required, under-

drained gravel trench outlet pond modifications (ME-DEP 2006), rock crib treatment 

trains (Thompson et al. 2008), or use of alternate stormwater management strategies less 

likely to accumulate heat (Long and Dymond 2014) to the same level seen in this study 

may be warranted.   

Lastly, as the consideration of the Englesby TMDL targets made clear, the 

temporal resolution of hydrologic analysis in flashy systems can have a profound effect 

on calculated metrics.  While we could document the hydrologic performance of the pond 
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in isolation, there were challenges in constructing a meaningful relationship from those 

data to watershed daily flows.  A more robust regulatory and management framework 

would explicitly account for higher resolution flow dynamics at multiple channel points 

along the watershed to ensure that individual and cumulative management efforts have 

the intended effect on base flows and peak flows along the channel length as opposed to 

exacerbating hydrologic impairments (McCuen 1979).  However, such a framework is 

unlikely to be adopted unless required (e.g., if the existing frameworks is demonstrably 

failing to meet management objectives), given the cost and other complications of 

adopting this approach across the many stormwater impaired watersheds of Vermont. 
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CHAPTER 3. GLOBAL SENSITIVITY ANALYSIS AND EVOLUTIONARY 

CALIBRATION OF SWMM HYDROLOGY AND WATER QUALITY FOR A 

MIXED LAND USE AREA 

 

3.1 Abstract 

EPA SWMM is a widely used hydrologic, hydraulic and water quality model, 

though its application can be limited due to its deterministic nature, high dimensional 

parameter space, and the resulting implications for modelling uncertainty.  In this work, I 

apply a global sensitivity analysis and evolutionary strategies (ES) calibration to SWMM 

to produce model predictions accounting for parameter uncertainty for a headwater 

tributary case study in South Burlington, Vermont.  I also assess two different methods to 

specify subcatchment width, a key SWMM parameter, including the novel methodology 

developed by Guo and Urbonas (2009).  SWMM parameter sensitivity was found to vary 

based on model structure and demonstrated both sensitivity and lack thereof among the 

numerous subsurface hydrology parameters SWMM employs.  The ES approach was 

generally successful at calibrating selected parameters, although less so as the number of 

concurrently varying parameters increased.  Lastly, a watershed water quality analysis 

using the calibrated model suggested that for different events in the record, the stream 

channel was alternately a source and a sink for sediment and nutrients, based on the 

predicted washoff loads and the measured loads from the stream sampling stations.  

Cumulatively, this adds to the volume of previous work on SWMM sensitivity analysis, 

auto-calibration, and parameter uncertainty assessment, and demonstrates the 

implications of high dimensional parameter uncertainty in a typical SWMM modeling 

context.  
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3.2 Introduction 

In the most recent compilation of nationwide water quality assessments, 54% of 

assessed stream and river miles were found to be threatened or impaired (U.S. EPA 

2013), with urban runoff and associated pollutants being a leading attributed stressor.  

Urban development contributes to the impairment of waterbodies through hydrologic 

modification of the land surface and through changes in loading to receiving waters due 

to different activities at the land surface (Lenat and Crawford 1994; Paul and Meyer 

2001; Wissmar et al. 2004).  These urban nonpoint loads are highly variable (U.S. EPA 

1983; Pitt et al. 2004), as is the effect of urban hydrologic modifications such as percent 

impervious cover (Booth and Jackson 1997; Schueler et al. 2009; Fitzgerald et al. 2012).  

As a result, the presence of urbanization and water quality impairment does not 

deterministically define the most appropriate management strategy.   

The EPA’s Stormwater Management Model (SWMM) is a widely used hydraulic 

and hydrologic water quality model for developed landscapes.  With routines for 

simulating surface runoff, subsurface runoff, pipe and channel hydraulics, stormwater 

treatment practices, and buildup and washoff (Bu/Wo) dynamics, it is both widely useful 

and very highly parameterized.  Many of the parameters are either empirical, conceptual, 

or typically lumped in practice such that there is no singularly correct SWMM 

parametrization (or structure) for a given drainage area.  Thus, while EPA SWMM is 

inherently a deterministic model predicting a single set of model outputs from a single set 

of parameters and inputs, there are typically many different parametrizations and 

structures which could be used to represent a system of interest, potentially yielding 
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different simulation results.  That there are multiple disparate model structures and 

parameterizations which may be equally good at simulating a particular period of 

monitored record is the concept of equifinality (Beven 1993), which has shaped a 

considerable body of environmental modeling research in recent decades.  In the case of 

SWMM, simply relying on modeler’s best judgement point estimates for uncertain 

parameters where the feasible parameter space can generate a large range of outputs (i.e., 

ignoring equifinality) can limit the use and acceptability of SWMM results for 

management purposes.   

 Previous research efforts have explicitly addressed issues related to SWMM’s 

high dimensional parameter space, for example conducting sensitivity analyses on model 

components of interest (Gaume et al. 1998; Aronica et al. 2005; Barco et al. 2008; Krebs 

et al. 2013; Sun et al. 2014; Zhang and Li 2015) and using evolutionary and Monte Carlo 

approaches to engage the high dimensional parameter space (Balascio et al. 1998; Barco 

et al. 2008; Krebs et al. 2013; Knighton et al. 2014; Zhang and Li 2015).  Nonetheless, 

there remains a need for sensitivity analysis work on previously unassessed model 

components, as well as for further sensitivity analyses of other components when they are 

applied to model structures or modeling objectives that differ from those used in previous 

assessments.  Additionally, while several approaches have previously been employed to 

account for SWMM’s high dimensional space in predictive modeling applications, this 

area remains both relatively unexplored and without a definitive preferred approach.   
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3.2.1 Goals 

The goals of this study were to: 

1) Assess the sensitivity of SWMM outputs to surface hydrology, subsurface 

hydrology, and water quality input parameters using a global approach; 

2) Apply a combined evolutionary calibration and Monte Carlo parameter 

uncertainty estimation approach to a SWMM model of a developed headwater 

drainage area, informed by the results of the sensitivity analysis; and  

3) Estimate the contributions of neighborhood surface washoff to watershed loads 

using a combination of calibrated SWMM results and measured data. 

 

3.3 Methods 

3.3.1 Study Site 

 Our study site was a headwater tributary to Potash Brook, in South Burlington, 

Vermont.  Since 1989, state biomonitoring within Potash Brook has frequently scored the 

watershed as fair and poor condition which led to its identification as an impaired stream 

on the U.S. Environmental Protection Agency’s 303(d) list in 2004 and ultimately to the 

development of a stormwater total maximum daily load (TMDL) in 2006 (VT ANR 

2006).  Approximately 53% of the Potash Brook watershed is developed with much of 

the development built without modern stormwater management.  Consequently, 

stormwater management has been focused on remediation efforts, in addition to treatment 

of new development and redevelopment.   



92 

 

This project was part of a larger program of research called “Redesigning the 

American Neighborhood” (RAN), which was focused on involving homeowners in a 

process to reimagine how to manage stormwater in the context of emerging regulations 

that were more stringent than existed in the past.  A detailed explanation of the overall 

RAN project is provided by McIntosh et al. (2006), and so only the aspects relevant to 

this study will be reviewed here.   

The study area is a tributary of Potash Brook and originates in an agricultural field 

which then flows north through a residential subdivision (the Butler Farms and Oak 

Creek Village neighborhoods, hereafter BF/OCV).  The intermittent channel at the south 

end of the BF/OCV neighborhood is fed by a 49 hectare upslope field area, which is 71% 

agricultural (primarily hay) with the remaining 29% consisting of single family 

residences along the drainage area perimeter.  From the south end of the BF/OCV 

neighborhood, the channel flows ~ 900 meters north through the subdivision, over which 

the channel has been straightened and passes under four roadways via culverts.  Over this 

distance, the channel accumulates an additional 68.3 ha of drainage area, 53.3% of which 

is the neighborhood.  Most of the 245 lots within BF/OCV were constructed on top of fill 

of unknown characteristics, because the underlying native soils are a combination of 

poorly draining clay and slit clay textures (i.e., Hydrologic Soil Group D).  The 

neighborhood’s drainage system consists of curb, gutter and catch basin conveyance, 

most of which discharged directly to the brook at numerous discrete outfalls.  Near the 

north end of the neighborhoods, there were two dry detention basins that had limited 

treatment capacity and did not comply with current design standards.  These basins 



93 

 

provided only a modest degree of storage and attenuation, due to the relatively large 

diameter outlet pipes that were installed at the low points within the ponds.  The 

remainder of the lower catchment area outside of the neighborhood consists of portions 

of a golf course and meadow. 

 

3.3.2 Data Collection 

 Data were collected in four discrete locations; two in-stream discharge monitoring 

and sampling stations and two closed conveyance stormwater outfall monitoring and 

sampling stations (FIGURE 12).  The closed conveyances (East Drain and West Drain) 

and the upper in-stream site (SW1) were hydrologically nested within the area measured 

at the lower in-stream site (SW2).  Flow gaging at the in-stream sites was implemented 

by embedding concrete paving stones along the two cross-sections of the streambed, and 

mounting ISCO 720 submerged probes on plates affixed to the concrete blocks.  Stage-

discharge relationships were developed by area-velocity discharge measurements taken at 

the cross-sections. The ISCO 720 submerged probes were connected to ISCO 6712c 

auto-samplers, which were programmed with the stage-discharge ratings.  In-pipe 

sampling consisted of In-Situ Level Troll 500 vented pressure transducers mounted inside 

of the 47 cm diameter PVC storm pipes using ISCO mounting rings.  The pressure 

transducer cables were routed through flexible conduit to protect against abrasion, and 

were connected to ISCO 6712 auto-samplers positioned on the stream bank above the 

outfalls.  The storm drains terminated at flared concrete aprons, with at least 10 cm of 

drop from the apron invert to the stream bed during typical flow conditions.  Flow rates 
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in the pipes were calculated as a function of depth using Manning’s equations with a 

variable roughness as described by Wong and Zhou (2003).  In-stream data were 

collected at 5-minute interval, while in-pipe flow was recorded at 1-minute interval.  

Rainfall data were collected by a tipping bucket rain gage installed near the centroid of 

the SW2 drainage area and were recorded as the number of tips per 5-minute interval.  A 

switch was made from a HOBO bucket to a Rainwise Bucket in 2009, changing the 

precision from 0.2 mm per tip to 0.254 mm per tip.  Overall periods of hydrologic record 

and the numbers of storms sampled per site are given in TABLE 8. 

.   
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FIGURE 12.  Study watershed showing the nested drainage areas within SW2.  

(Imagery date is May 2004, downloaded from Vermont Center for Geographic 

Information.) 

 

 

 

 

TABLE 8. Periods of hydrologic record and number of storm samples per site. 

 

 

1

SW1 

East

West

SW2

Study 

Area

0 230 460115 Meters

³

Sampling 

Location

Years of Flow 

Record

Days of Flow 

Record

Storms 

Sampled

SW1 2007 - 2009 582 27

SW2 2007 - 2009 653 40

East 2008 - 2009 337 13

West 2008 - 2009 405 20
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Stream water quality samples were collected using a flow-weighted sampling 

program, triggered by stage exceedance and stage rate of change thresholds.  Stream 

samples were collected by sample lines attached to fence posts installed ~1 m upstream 

of the flow measurement probes and were pumped into a single composite jug per site 

and per storm.  Samples from the storm pipes were collected by sample intake lines 

affixed to the cable conduit, approximately 0.25 m downslope of the sensors, near where 

the PVC storm pipes terminated at the beginning of the concrete aprons.  In addition to 

the composite storm samples, we collected samples during one storm using 24-bottle kits 

in the auto-samplers, allowing us to sample analyte concentrations throughout an event.  

All collected samples were transported to an EPA-certified commercial lab for analysis, 

where they were analyzed for total suspended sediment (TSS) (EPA 160.2), unfiltered 

total phosphorus (TP) (EPA 365.1), nitrate (EPA 300.0), nitrite (EPA 300.0) total 

Kjeldahl nitrogen (EPA 351.3 / 350.1), and chloride (EPA 300.0).  Nitrite was dropped 

from further analyses in 2008 following repeated low values and non-detections.     

 

 

3.3.3 Model Parameterization 

 A base parameterization SWMM model for the 117 hectare area draining to the 

SW2 monitoring station was constructed using a combination of GIS data, site specific 

survey data, and parameter guidance from the SWMM User’s Manual.  Three-meter 

LIDAR data were used to delineate the overall catchment area draining to the SW2 outlet 

location and to estimate the slope parameter for each SWMM subcatchment.  A 

municipally funded drainage survey of the BF/OCV neighborhoods was completed in 
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2005, which provided detailed data on storm drain conveyances for the neighborhood.  

Using these data, I adjusted drainage area delineations for portions of the neighborhood 

that topographically drained to the study brook, but which are piped to an adjacent 

drainage area.   

The combined LIDAR delineation and site-survey data resulted in 21 discrete 

SWMM subcatchments within the 117 hectare drainage area.  Impervious area was 

manually digitized for each subcatchment by overlaying drainage area boundaries on 

aerial imagery to create a total impervious layer.  A directly connected impervious 

surface layer was subsequently created by assuming roads, sidewalks approaches, 

driveways, and roof areas that pitched toward the street all drain to catch basins, while 

backward sloping roof areas were assumed to drain to pervious areas. A combination of 

total imperious area, directly connected impervious area, and spatial configuration of 

those areas within each subcatchment was used to define subcatchment impervious area 

and internal routing.  Surface parameters for each subcatchment, including Manning’s 

coefficient and depression storage depths for pervious and imperious surfaces were 

initially defined using suggested values from the SWMM User’s Guide.  

For each discrete SWMM subcatchment, SWMM utilizes a width parameter to 

define the shape of the kinematic wave cascading plane used in the Manning’s overland 

flow runoff model.  Per the SWMM User’s Manual, the width parameter can be estimated 

as the subcatchment area divided by the average overland flow path and subsequently 

calibrated to improve model performance (Rossman 2010).  More recently Guo and 

Urbonas (2009) have derived a parabolic shape function relating watershed shape to 
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kinematic plane width, length and slope.  The relationships make use of the subcatchment 

area, length of collector channel, and relative position of the collector channel within the 

subcatchment to compute a kinematic plane width and slope that preserves both area and 

vertical fall relative to the natural irregular subcatchment.  Guo et al. (2012) field tested 

this approach and found that the shape function generated widths a priori that were 

similar to those derived from calibration of the flow data.  Following this approach, I 

have utilized the SWMM Manual and the Guo Methods in this work to further test the 

relatively new Guo methodology and out of necessity for a calibration-free approach to 

specify width for most of the subcatchments within our model for which we did not have 

gauged flow data.  To do so, I estimated upper and lower probable bounds on collector 

length and area skewness parameters for each subcatchment from the previously 

discussed mapping, which allowed for a Monte Carlo sampling approach to the Guo 

Method. 

Conveyances within the subcatchments were simply represented using 

subcatchment internal routing.  More explicit routing, including finer subcatchment 

discretization routed to the catch basin and storm line conveyance network was explored 

using the data collected in the drainage survey.  However, based on initial exploration of 

SWMM model structures for the East Drain and West Drain outfall areas, improved 

model performance was not obtained by explicitly including catch basins and storm lines.  

Thus, I opted to use a lumped-per-outfall discretization, as described above, and 

accounted for the rapid transport provided by the conveyance network using 

subcatchment internal routing and calibration of surface parameters.    
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Stream channel conveyance was defined by measuring the linear channel 

segments between culverts via aerial imagery, supplemented with field measurements of 

channel cross section geometry.  Channel geometry measurements at the SW1 and SW2 

stations did not differ substantially and so I assumed the SW1 geometry represented the 

upper half of the channel with the SW2 cross section geometry representing the lower 

half of the channel.  Field observations of the culverts in the neighborhood channel were 

used to specify culvert loss coefficients and to confirm culvert dimensions as reported in 

a state database.   The two dry detention ponds at the lower end of the neighborhood were 

parameterized using original design drawings, confirmed by aerial imagery and LIDAR 

data.  A geometric wetland area located within the conveyance network in the lower part 

of the neighborhood was separately specified as storage node based on LIDAR data and 

field observations. 

 Given the study objectives to model flow from the constructed neighborhood in 

addition to the pervious areas contributing flow to the monitoring stations via surface and 

subsurface flow, I included the SWMM subsurface flow components within the model 

structure.  Detailed data were not available to characterize the existing subsurface 

physical environment, nor are detailed data over the vertical profile easily incorporated 

into SWMM’s subsurface model.  Instead, the SWMM subsurface model was simply 

treated as a conceptual model that provides a degree of attenuation to infiltrated water 

before potentially returning flow to the stream channel.  Subsurface parameters were 

initially defined using soil survey data and SWMM suggested values and were considered 
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to be free parameters within physically plausible ranges for calibration, as needed to 

improve model performance during hydrograph recessions and inter event periods.  

 While the subsurface model includes a physically based representation that I have 

treated as a conceptual model, SWMM water quality load generation and washoff models 

are inherently conceptual.  Among the options SWMM provides, I used the exponential 

buildup and washoff functions, applied to total nitrogen, total phosphorus, and total 

suspended sediment.  Initial estimates of maximum buildup coefficients were estimated 

by dividing developed land annual export rates for TN, TP, and TSS (Novotny 2003) by 

24, limiting total buildup between events to the load that would accumulate in half a 

month if total annual loads accumulated evenly through time over the year.  Ranges of 

buildup exponents and washoff model parameters were initially estimated using a manual 

trial and error process, but were subsequently given broad feasible ranges in which they 

could be calibrated. 

Shaw et al. (2010) have discussed how several example applications of 

exponential buildup models in the literature can be equivalently modeled using a constant 

available mass (CAM) approach, based on the observation that available washoff  loads 

are frequently not dependent on time between events.  Further, they identified rainfall 

kinetic energy and runoff volume as being stronger predictors of particulate washoff 

loads than antecedent dry days.  While we did not incorporate these additional predictors 

into our model given the lack of means for incorporating them into the SWMM engine, 

by allowing the buildup exponent (BuCo) the opportunity to evolve to an upper bound 
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during calibration, we allowed for an approximate form of the CAM model to be evolved, 

should it fit the data. 

 Evapotranspiration (ET) was initially calculated using the SWMM internal 

implementation of the Hargreaves equation (Hargreaves and Samani 1982), using air 

temperature, Julian day, and latitude to compute daily potential ET, from which actual ET 

can be realized.  However, initial exploratory modeling suggested that the Hargreaves 

approach generated more ET than was suggested by measured flow water balance 

calculations, which is consistent with previous research findings that the Hargreaves 

method benefits from calibration (Aguilar and Polo 2011).  Lacking the means to 

calibrate the Hargreaves method (i.e., SWMM‘s implementation is not easily user 

modifiable), I next implemented the more data intensive Penman-Monteith equation 

(Monteith 1965) using available atmospheric data and an assumed 10 cm grassland, 

following Dingman (2002).  Without any parameter adjustment or calibration outside of 

the base parameterization, this approach reduced annual ET estimates by approximately 

10%, bringing simulated ET closer in line with what was calculated using a water balance 

approach.  Thus, I proceeded by computing potential ET using a spreadsheet based 

Penman-Monteith model and input these values to SWMM using the climate input file 

option.   

 

3.3.4 Sensitivity Analysis  

In this work, I use the Regionalized Sensitivity Analysis (RSA) methodology 

(Freer et al. 1996), due to its global properties, its prior applications to SWMM and other 
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environmental models, and its informative and easily interpretable results.  To construct 

the RSA plots, a large number of simulations were run by randomly sampling the 

parameter space for the parameters of interest.  A performance measure was then 

calculated for each run, and all simulations were ranked by the performance measure and 

separated into n equal sized bins, for example with the best 1/n simulations in first bin 

and the worst 1/n in the nth bin.  For each parameter of interest, the cumulative marginal 

distributions for each of the n bins were then plotted together.  A parameter to which the 

performance measure was not sensitive will be equally represented among the best and 

worst bins, and all bins will plot as straight lines.  In contrast, sensitive parameters may 

have different levels of model performance associated with different parts of the 

parameters’ range, even while allowing for concurrent random sampling of other 

dimensions of the parameter space.  These parameters may show separation in the 

cumulative distributions among the n bins, thereby allowing sensitivity to be visualized 

graphically. 

I designed the RSA application to inform the subsequent calibration work and to 

investigate SWMM parameter sensitivity in a way that would produce generalizable 

results for other SWMM applications.  Further, the approach had to accommodate many 

parameters and multiple model responses (e.g., storm flow, event recessions, water 

quality) based on the scope of the assessment.  Therefore, to focus this work toward 

meeting those objectives, I used the RSA methodology sequentially to test the sensitivity 

of 1) surface hydrology within the East Drain subcatchment, 2) surface and subsurface 

hydrology within the SW1 subcatchment, and 3) buildup washoff parameters within the 
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East Drain subcatchment.  Using these divisions, I could independently assess SWMM 

sensitivity using one high impervious cover and one high pervious cover subcatchment 

for which we had collected measured response data.  Details of the RSA batches are 

described in the following sections. 

 

3.3.4.1 East Drain Subcatchment Surface Hydrology 

The East Drain subcatchment area includes 1.2 hectares of relatively 

homogeneous single lot residential development, with a curb and catch basin closed 

drainage system.  As previously discussed, I did not include the catch basin and storm 

line system in our parameterization, but rather, used SWMM’s overland flow model with 

routing of pervious areas to impervious areas to represent the flashy runoff dynamics of 

this area.  The surface hydrology parameter ranges used for the East Drain subcatchment 

RSA runs are presented in TABLE 9.  I ran a total of 40,000 simulations for 91 days of 

record (2008-7-28 through 2008-10-27), producing 40,000 simulated hydrographs for 

comparison with the measured flow record.  Root mean squared error (RMSE) was used 

as the objective function for this component, given the flashiness of the observed record 

and relative importance of peak flows in simulating the area, calculated as: 
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where N is the number of discrete measurements, sim is simulated flow rate, and meas is 

measured flow rate. 

 

TABLE 9.  Uniform distribution parameters for the East subcatchment SWMM 

parameters varied in the RSA runs.  Abbreviations used in the text are included. 

 

 

3.3.4.2 SWMM Subsurface Flow 

The SWMM subsurface flow component has as many as 18 unique parameters per 

aquifer and subcatchment pair, many of which are interdependent.  Behavior of those 

elements is also dependent on delivery of flow to the subsurface environment from the 

surface and is thus dependent on climate forcings and surface parameters as well.      

Given the large number of uncertain and / or empirical parameters used and the added 

capability for simulating hydrograph recessions and inter-event flow provided, SWMM 

subsurface modeling was an important priority for the RSA in this work.  However, while 

the RSA is performance based, no commensurable data were collected which could be 

Parameter Abbreviation Units Min Max

Area Area ha 1.17 1.30

Impervious Cover ICPct % 39.6 59.4

Width Width m 5 250

Slope Slp % 1.04 3.74

Impervious Manning's n nImp unitless 0.001 0.02

Pervious Manning's n nPrv unitless 0.05 0.45

Impervious Depression Storage DSPrv mm 0 5

Pervious Depression Storage DSImp mm 0 15

% Zero Impervious ZeroIC % 0 30

Max. Infitration Rate fMax mm hr
-1

5 102

Min. Infiltration Rate fMin mm hr
-1

0.001 25.40

Infiltration Decay fk hr
-1

1 8

Soil Drying Time fDry days 1 14
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used to directly assess performance of SWMM simulated groundwater flow.  Instead, I 

opted to use the SW1 streamflow data to assess model performance as the basis for the 

RSA.   

Flow from the SW1 drainage area was generally not well represented by the 

SWMM surface runoff model in the various plausible configurations considered.  

Similarly, rainfall runoff data analysis for the SW1 area suggests that event runoff 

volumes were only weakly predicted by event rainfall volumes.  It is likely that time 

variant aspects of the agricultural management of this area (a corn / hay rotation over the 

period of sampling), including plowing, cutting, and variable evapotranspiration demand, 

accounts for additional variation in the rainfall runoff response.  However, I have neither 

detailed management data for the upland area, nor would such data be easily incorporated 

into the SWMM conceptual model.  As a result, the use of SWMM subsurface flow 

components to improve event response modeling, particularly for hydrograph recessions, 

must be viewed in part as a misspecification of algorithm processes to the physical 

processes they represent.  Nonetheless, this application framework provides the best 

opportunity from the available data to assess simulated subsurface flow sensitivity and 

may in fact function as an effective conceptual surrogate for the processes being 

represented. 

The objective function used for the subsurface RSA under this framework was the 

mean absolute percent error (MAPE) between simulated and measured streamflow, 

calculated as: 
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where N is the number of discrete measurements, meas is measured flow rate, and sim is 

simulated flow rate.  This measure was selected due to its relatively high weighting of 

lower flows rather than peaks, which is better suited to the assessment of subsurface flow 

relative to RMSE.  I ran a total of 152,000 simulations for 247 days of record (2009-4-1 

through 2009-12-4), producing 152,000 simulated hydrographs for comparison with the 

measured flow record.  Parameter ranges for the varied parameters are given in TABLE 

10. 

 



107 

 

TABLE 10.  Uniform distribution parameters for the SW1 SWMM parameters 

varied in the RSA runs.  Abbreviations used in the text are included. 

 

 

3.3.4.3 Buildup and Washoff   

The exponential implementations of the SWMM Bu/Wo models were assessed for 

sensitivity using the data collected at the East Drain subcatchment.  The exponential 

Bu/Wo algorithms are not highly parametrized, with only two parameters per algorithm 

per analyte.  The parameter ranges used for Bu/Wo RSA runs are included in TABLE 11.  

Parameter Abbreviation Units Min Max

Subcatchment

Area Area ha 42.53 47.01

Width Width m 50 1400

Slope Slp % 0.69 3.63

Pervious n nPrv unitless 0.05 0.45

Pervious Depression Storage DSPrv mm 0 25.4

Max Infiltration Rate fMax mm hr
-1

5 76.2

Min Infiltration Rate fMin mm hr
-1

0.001 25.4

Infiltration Decay Constant fk hr
-1

0.1 8

Soil Drying Time fDry days 0.1 14

Surface Elevation SElev m 0.001 2

Aquifer and Groundwater

Porosity Por frac 0.2 0.5

Field Capacity FC frac 0.2 0.45

Wilting Point WP frac 0.05 0.25

Sat. Hyd. Conductivity KSat mm hr
-1

1 254

Conductivity Slope KSlp unitless 0.1 20

Tension Slope TSlp mm 0.1 20

Upper Evap. Fraction UEvap frac 0 1

Lower Evap. Depth LEvap m 0 1

Lower Groundwater Loss Rate GLoss mm hr
-1

0 5

Bottom Elevation BElev m -2 0.5

Initial Unsat. Zone Moisture Content MCInit frac 0.05 0.45

Groundwater Flow Coeff. (A1) A1 m sec
-1

0.00001 0.5

Groundwater Flow Exponent (B1) B1 unitless 0.4 4
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A total of 30,000 model runs were executed, producing 30,000 simulated pollutographs 

for comparison with the measured load estimates.   

 

TABLE 11.  Uniform distribution parameters for the East Drain Buildup and 

Washoff parameters varied in the RSA runs.  Abbreviations used in the text are 

included. 

 

 

As with subsurface flow, there is the issue of commensurability between what we 

measured and what SWMM simulates that must be dealt with before employing a 

performance-based assessment (such as RSA or calibration).  Water quality samples in 

this study were collected primarily on a flow weighted composite basis, producing a 

single concentration per analyte per site per sampled storm.  In contrast, SWMM 

computes pollutant concentrations continuously at a user defined temporal scale, as fine 

as 1 second.  Conceptually, the most direct comparison between the measured data and 

the simulated record would be to extract from the simulated record and then average all 

instantaneous concentrations corresponding to the instants in time that the autosampler 

collected an aliquot during a sampled event.  Perfect model performance would 

correspond to a match between the average of those instantaneous simulated 

concentrations and the lab analyzed composite concentration for that storm.  Despite the 

Parameter Abbreviation Units Min Max Min Max Min Max

Buildup Coeff BuCo kg ha
-1

0 40 0 3 0 0.3

Buildup Exp BuEx day
-1

0 6 0 6 0 6

Washoff Coeff WoCo unitless 0 5 0 5 0 5

Washoff Exp WoEx unitless 0 5 0 5 0 5

TSS TN TP
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conceptual correctness of this approach, I did not use this approach for the following 

reasons.   

First, while a perfect simulation would exactly match the measurements using the 

approach just described, so would a nearly infinite number of incorrect simulations that 

just so happened to average to the measured value.  While this concern cannot be 

alleviated in any scenario given how the data were collected, it does undermine the above 

approach as being singularly correct.  A issue second stems from the lack of temporal 

precision in the water quality sampling.  Given the flashiness of both measured and 

modeled data, the resulting instantaneous simulated concentrations could vary by an 

order of magnitude within a 2-minute window on an event rising limb.  The total time for 

the ISCO autosampler to purge, rinse, and collect a sample could be in excess of 2 

minutes, complicating the selection of a temporally matching instantaneous value from 

the simulated record.  Thus, based on these considerations I ruled out using this approach.   

The approach used here was instead based on total loads.  For each sampled event 

in the record I computed a total load for each analyte as a function of cumulative flow 

and storm composite concentration that was sampled.  The comparable simulated 

quantity was defined analogously as the simulated load (simulated flow times simulated 

concentration) during that same sample period (including all concentrations predicted at 

inter-aliquot time steps).  Further, to isolate the buildup and washoff models and 

minimize the load differences solely attributable to hydrologic model error, the buildup 

and washoff RSA runs were simulated using a calibrated ensemble of hydrologic models 
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for the East Drain area (i.e., the order that work was carried out differed from how it is 

summarized here).   

A disadvantage to this approach stems from the nature of our composite sampling.  

By collecting and analyzing a single composite EMC per storm, we have limited the data 

available to the calibration approach.  That is, many different SWMM load predictions 

can match total measured loads perfectly, while also incorrectly predicting instantaneous 

concentrations through time.  However, this was determined to be the best approach 

given the available data.  Thus, I defined the objective function as the sum of absolute 

load errors (SAE) over a set of seven sampled events, calculated as: 
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where N is the number of sampled storms considered, sim is the modeled load, and meas 

is the measured load.   

  

3.3.5 Calibration, Validation and Prediction 

My approach to calibration was inspired by previous work on both equifinality 

and parameter optimization.  However, in recognition of the different importance of and 

bases for the numerous parameters in this SWMM application, a three level classification 

scheme was adopted to facilitate calibration and uncertainty extrapolation.  For many 

parameters (e.g., percent impervious, drainage area), it is recognized that the feasible 
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parameter space cannot be constrained based on model performance, due to 

noncommensurable predictions and measurements, errors in inputs, and errors in model 

structure.  The only way to constrain those parameters is through higher precision field 

measurement.  For other parameters that are immeasurable (i.e., conceptual or empirical), 

it may be legitimate to optimize (or to constrain via a GLUE approach) values within a 

defined range, provided the underlying empirical model is applicable to the process being 

simulated.  A third class of parameters can then be construed, which are those parameters 

to which the model is not sensitive.  These insensitive parameters can be handled in any 

number of ways with little consequence, although it is computationally cheapest to 

simply fix them.  Lastly, it should be stated that while this categorization approach is 

inherently subjective for many parameters, it does provide a potentially useful framework 

for dealing with the high dimensional uncertain parameter space typical of SWMM and 

other watershed model calibrations.  Thus, given the sensitivity analysis work described 

in the previous sections, I proceeded to categorize the SWMM parameters into three 

groups for the calibration process.  These are:   

(1) Parameters to which the SWMM models were not sensitive.  These 

parameters can simply be fixed at best estimates during calibration and 

subsequent modeling with minimal consequence.   

(2) Sensitive parameters that are empirical, not directly measurable, or for which 

a solid basis for estimation does not exist.  These are parameters where it may 

be acceptable to vary values within their conceptual limits toward identifying 

values that maximize agreement between simulated and observed (i.e., some 
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feasible values of these parameters can be ruled out as being acceptable 

simulators of the system).   

(3) Sensitive parameters that can be measured or physically estimated and for 

which useful estimates exist.  These parameters may have known uncertainty, 

but that uncertainty should be extrapolated through the model predictions for 

conceptual soundness, and would be inappropriate to optimize to ‘best’ 

values.   

In summary, the goal of the calibration was then to identify values of sensitive 

calibration parameters (2) that maximize agreement between simulated and observed 

while concurrently accounting for the estimated uncertainty in the parameters classified 

as (3).  To accomplish this, I developed a MATLAB implementation of an evolution 

strategies (ES) search algorithm (described below) to be applied to the SWMM 

calibration parameters (identified as (2) above), concurrent with a Monte Carlo sampling 

implementation for the sensitive, non-calibration parameters (identified as (3) above). 

This approach was designed to avoid the problem described by A. Stirling, as presented 

in Saltelli (2002), specifically, that arbitrarily restricting the input parameter space 

produces deceptively precise model output. 

For the ES algorithm we used a canonical (µ, λ) implementation as described by 

Eiben and Smith (2007).  In brief, from an initial parent population of parameter sets of 

size µ, a set of offspring parameter sets of size λ (typically 7*µ) was created through a 

combination of mutation and recombination of the parent population.  Each of the λ 

offspring were evaluated as a SWMM realization and ranked based on fitness (i.e., 
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objective function value) with the best µ from the offspring population retained as parents 

for the next generation.  The creation of the λ offspring was biased toward Gaussian 

mutation (80%), as opposed to recombination (20%, implemented as a combination of 

discrete and intermediary recombination following Eiben and Smith (2007)), with 

mutation step sizes concurrently evolved with the SWMM parameters such that the intra-

generational parameter search space can change during an ES run.  This co-evolution of 

the mutation step size, or self-adaptivity, allows the algorithm to tune itself in this one 

respect, lowering the possibility of algorithm failure or inefficiency due to user 

misspecification.  This feature, coupled with ES’s natural handing of continuous 

variables parameter space made it a suitable candidate for this work.   

An important variation on this approach, as compared to traditional optimization, 

is the concurrent Monte Carlo sampling of physically based parameters that were not 

being optimized.  This sampling introduces noise into the search, which would be 

expected to make the search task for the ES algorithm harder.  Arnold and Beyer (2003) 

have examined the efficiency of five search algorithms on a theoretical optimization test 

case where Gaussian noise had been incorporated into the objective function to explore 

the implications on search efficiency.  Of the algorithms tested, the ES (using a 

derandomized ES variant) was the most efficient strategy given a high dimensional 

parameter space and large amounts of noise in the objective function.  Thus, I concluded 

that the ES strategy was a good choice for the nature of this case study. 

I typically used a population size of two times the number of varied SWMM 

parameters (evolving and Monte Carlo sampling), and created subsequent generations 
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sized as seven times the parent population through a combination of mutation and 

recombination.  I ran the ES algorithm for a fixed number of generations, given that the 

concurrent Monte Carlo sampling would be expected to prevent the populations from 

converging on single parameter sets.  For each grouping of parameters to be evolved, I 

ran a total of four ES runs at 30 generations per run.  For each collection of ES runs, I 

then retained as the calibrated set the last generation of each of the four runs, plus the best 

parameter sets in all other generations and runs (excluding the last generations) to create 

a total retained population of parameter sets equal to 10% of all parent parameter sets 

selected over the runs.  Many of these values (e.g., population size, number of runs, 

number of generations per run) were subjectively set based on initial algorithm testing in 

which I sought to balance computational run times with the need for proper functioning 

of the algorithm.   

Similar to the approach used in the RSA, I divided the parameters to be calibrated 

and the data available for doing so.  The major groupings included (1) East and West 

Drain surface hydrology, (2) East and West Drain Bu/Wo algorithms, and (3) full 

watershed subsurface hydrology.  Given the available measured data, I assumed these 

components were sufficiently isolated for purposes of independent calibrations, and thus 

did not warrant a (concurrent) multi-objective calibration approach.  Results of 

calibrating these components will provide useful data for parameterizing the entirety of 

the drainage area model using locally derived parameter values.    
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3.3.5.1 East Drain and West Drain Surface Hydrology  

 Flow gaging within the East and West Drain outfalls in 2008-09 provided the 

basis for the neighborhood subcatchment hydrologic calibrations.  The approach used 

was to calibrate each of these two drainage areas using one year of record, with the 

second year of record used for validation.  For the fitness function, I used the ratio of root 

mean squared error to the standard deviation of measured flow (RSR), calculated as: 
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���������1	∑ ������ −������ !������
 

 

where N is the number of discrete measurements, meas is measured flow rate, sim is 

simulated flow rate, and measmean is the mean of the measured flow record.  The resulting 

parameter values from these calibration runs were then pooled, both within and between 

sites, with the calibrated values taken to represent those parameters’ values for the entire 

neighborhood.  For example, values of nImp that were found to produce good agreement 

between simulated and measured within the two instrumented subcatchments were taken 

to be good values of nImp for other parts of the neighborhoods that were not discretely 

assessed.   

 The results from the calibration runs included hundreds of unique calibration 

parameter sets that maximized hydrologic fitness under the concurrent Monte Carlo 

sampling of uncertain parameters.  However, these hundreds of parameter sets had to 

then be paired with high dimensional non-calibration Monte Carlo parameter space to 
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fully represent the calibrated results.  Thus, the last calibration step was to resample from 

the hundreds of discrete calibration parameter sets while continuing to Monte Carlo 

sample the uncertain parameter space to generate a large number of realizations of the 

calibrated model.  To do so, I ran an additional 15,000 simulations (i.e., the calibration 

blowout) using this approach to more fully characterize the calibrated model’s 

performance over the full accepted parameter space.  Lastly, for validation I simply ran 

the same 15,000 blowout parameter sets over the alternate year of available flow record 

and computed the hydrologic fitness from the resulting flow records.  

 Finally, for my assessment of the comparability of subcatchment Width 

parameters specified by the SWMM User’s Manual (WidthSUM) versus the Guo Method 

(WidthGuo), I took two additional steps.  First, I computed large samples of WidthGuo and 

SlpGuo by randomly sampling the needed inputs from uniform distributions representing 

collector channel lengths, area skewness coefficients, and slopes for both the East Drain 

and West Drain subcatchment areas.  I was then able to compare evolved WidthSUM values 

calibrated by the ES with the range of values computed by application of the calibration-

free Guo Method (WidthGuo).  Second, I ran an additional batch of ES calibration runs 

where the Guo Method was employed to treat Width and Slp as uncertain parameters as 

opposed to calibration and uncertain parameters, respectively, thus eliminating Width as a 

calibration parameter.  The purpose of these runs was to assess whether the ES would 

evolve different values of other evolving parameters (e.g., Manning’s coefficients, 

depression storage) when alternately coevolved with WidthSUM versus evolving while 

Monte Carlo sampling of values for WidthGuo and SlpGuo. 
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3.3.5.2 East Drain and West Drain Water Quality 

We collected event mean concentration (EMC) and discrete concentration data at 

all four locations (East Drain, West Drain, SW1,and SW2).  However, water quality 

calibration was not attempted at the upper (SW1) and lower (SW2) monitoring stations 

because I did not have a suitable hydrologic model for the SW1 site nor did I have a 

suitable model for channel processes relevant to the SW2 site.  The drains, in contrast, 

represented two homogeneous residential closed system outfalls, with impervious surface 

washoff and pervious lawn run-on as the primary sources of sediment and nutrients.  

Thus, I considered them to be good candidates for SWMM’s simple buildup and washoff 

algorithms and these sites formed the basis of the water quality modeling.  

 The data available for calibration and validation included 17 composite sampled 

storms at for the West Drain and 11 composite sampled storms for the East Drain.  Storm 

composites consisted of between 4 and 38 aliquots per storm, with a mean of 22 aliquots 

per sampled storm.  Additionally, for a single storm we successfully deployed the 

autosamplers for discrete storm sampling using a 24 bottle sampling kit.  This enabled us 

to analyze for changes in constituent concentrations through the storm event.  Samples 

from the discretely sampled storm contained valuable data for Bu/Wo calibration and 

validation that are not included in the composite EMC data.  Because many 

parameterizations can closely match event loads but miss the intra-event dynamics (e.g., 

improbably high peak concentrations), I found I had to use these discrete concentration 

data to constrain the calibration.  Further, in addition to providing instantaneous as 

opposed to event mean concentrations, the sampling during the discretely sampled storm 
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actually occurred over two distinct event hydrographs, with event peaks separated by 4.5 

hours.  Thus, in addition to providing key data to constrain instantaneous constituent 

concentrations, these data provided the best basis to estimate the inter-event build up 

rates, since the other sampled storms were generally too far apart in time to be sensitive 

to this value.  Similarly, the discrete sampled storm offered the strongest opportunity to 

validate the Bu/Wo model, given the event concentrations through time in addition to 

total load estimates.  Thus, I elected to split the discretely sampled storm, using the most 

informative second event peak for calibration, while reserving the first pulse for 

validation.  I concluded that this was the best compromise given the modeling objectives 

and available data, and allowed for both calibration and validation against discrete 

concentrations.  

For the composite sampled storms, I approximately equally split the data into 

calibration and validation sets for each of the sites, while trying to ensure a representative 

split (e.g., small storms vs large storms).  For the fitness to be minimized, I computed the 

sum of the absolute errors (SAE) of calibration event loads as: 
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where N is the number of storm events, sim load is the SWMM predicted load for a given 

analyte, and meas load is the measured load estimate for a given analyte.  An important 

feature of this fitness measure is that overestimation on some events cannot not be 
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compensated for by underestimation on others, rather, the best value is one that exactly 

matches the loads for all events.  Lastly, to make use of the discrete concentration data 

that were collected, I computed a penalty as two times the sum of the total absolute load 

error if the maximum instantaneous concentration for the discrete calibration peak was 

more than three times the maximum observed concentration for that event.  This was 

implemented in response to observations during initial calibration efforts, where the 

evolved solutions tended to have very high concentrations for brief periods that matched 

the total load estimates, but that conflicted with our data and expectations for intra-event 

dynamics.  

Concurrent with the evolution of Bu/Wo parameters, the underlying hydrologic 

models were subject to the hydrologic model blowout sampling as described in Section 

3.3.5.1.  This ensured that the evolved Bu/Wo model parameters would be the best that 

could be identified with respect to the full range of hydrologic prediction scenarios to be 

used for these areas.  After running the ES calibrations, I used the same steps here as for 

the East Drain and West Drain hydrologic calibrations, pooling and then resampling the 

calibration parameters while concurrently resampling the uncertain parameters from their 

assumed uniform distributions.  I conducted a total of 10,000 calibration blowout 

simulations to more fully evaluate the calibrated model in this manner, and subsequently 

ran the same 10,000 parameter sets to evaluate the calibrated parametrization for the 

subset of validation events.  
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3.3.5.3 Full Model Pervious Area and Subsurface Hydrology 

I initially planned to calibrate the subsurface hydrology parameters using the SW1 

drainage area, which has a high level of pervious cover and was found to be poorly 

represented by the SWMM surface runoff model.  Given the lack of extensive impervious 

cover or engineered drainage infrastructure in this area, it provided the best opportunity 

to isolate the role of SWMM’s pervious area and subsurface processes on runoff 

responses within our study area.  However, I found this upland agricultural area draining 

to the SW1 station to be a challenge to acceptably represent using SWMM’s routines.   

While I was able to match specific events, and even seasonal sets of events with 

plausible SWMM model structures and parametrizations, no models were identified 

which could adequately represent the consecutive seasons within a year with an 

acceptable level of model performance.  In particular, the drying of the intermittent SW1 

channel over the summer and resumption of flow in fall were challenging to capture, in 

part due to lack of specific knowledge about or direct SWMM capability to represent 

agricultural land surface changes in the subcatchment over time.  Further, the best model 

structures and parameterizations that were identified routed most flow through subsurface 

pathways, including for larger events.  While this improved the hydrograph fit (although 

it remained relatively poor), it precluded modeling water quality as those events would 

deliver zero modeled washoff load, and contradicted our hydrologic understanding of the 

system in which the clay soils would primarily produce runoff through infiltration excess 

and saturation excess surface flow, as opposed to interflow.  Thus, in subsequent 

modeling I simply routed the measured SW1 flow record into the upper most node of the 
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SWMM model, while using SWMM subcatchments and conveyance infrastructure to 

model the lower 68.3 hectares of neighborhood and other watershed contributing area.  

This resulted in a flow record at the model outlet (SW2) consisting of the SW1 measured 

flow record routed through the modeled stream channel and culverts to which I added the 

SWMM-modeled runoff from the neighborhood and the remainder of the lower drainage 

area. 

To proceed with calibration of the subsurface and pervious area parameters given 

the poor results at SW1, I opted instead to use the lower watershed stream response 

(SW2).  Preliminary assessments suggested that modeled runoff from the impervious 

surfaces combined with the routed SW1 flow record could predict event peaks at SW2 

with acceptable accuracy, but that inter-event periods and hydrograph recessions in 

particular could be improved. Thus, I aimed to use the receding and low flow portions of 

the SW2 streamflow record as the basis for calibrating the pervious area and subsurface 

parameters.  To do so, I used the MAPELow as the fitness function, which was the 

previously defined MAPE function computed over only the lower 75% of SW2 flows.  

The longest year of record, 2009, was selected for calibration while the 2007-08 years 

were used for validation.  

I used the same steps here as for the East Drain and West Drain calibrations, 

pooling and then resampling the calibration parameters while concurrently resampling the 

uncertain parameters from their assumed uniform distributions.  I conducted a total of 

40,000 calibration blowout simulations to more fully evaluate the calibrated model, and 
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subsequently ran the same 40,000 parameter sets to evaluate the calibrated 

parametrization over the validation period.  

 

3.4 Results and Discussion 

3.4.1 Sensitivity Analysis   

The results of my sequential application of Freer et al. (1996) RSA methodology 

to SWMM’s hydrology and water quality, as described in Methods, are included in the 

following sections. 

 

3.4.1.1 Surface Hydrology   

RSA plots calculated from 40,000 East Drain surface hydrology runs are plotted 

in FIGURE 13, using RMSE of East Drain outflow as the performance measure.  

Sensitivity among parameters varied greatly, with Width, DSImp, nImp, and ZeroIC each 

showing moderate degrees of sensitivity.  A slight degree of sensitivity was seen in Slp 

and ICPct, while pervious area parameters (e.g., DSPrv, nPrv, and the Horton infiltration 

parameters) exhibited no sensitivity in this context.  These results generally conformed 

with my expectations for this system given its physical attributes.  The high proportion of 

connected impervious surface within the East Drain, collected by curb and gutter closed 

drainage, was assumed to be the dominant driver of runoff dynamics in the subcatchment 

based on the close correspondence between measured runoff and rainfall seen in the 

measured record.   
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FIGURE 13. RSA plots for 40,000 uniform random simulations of the East Drain 

subcatchment, using RSR as the goodness of fit measure.  The included parameters 

are selected SWMM surface runoff and Modified Horton infiltration parameters.  

Model goodness of fit is the RSR of East Drain outflow.  SWMM parameter 

abbreviations as defined in TABLE 9. 

 

3.4.1.2 Surface and Subsurface SW1 Hydrology   

Surface and subsurface hydrology RSA plots from 152,000 simulations of the 

SW1 catchment are plotted in FIGURE 14 and FIGURE 15, assessed on the basis of 

MAPE.  (Note that while the poor calibration results for SW1 precluded predictive 
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modeling and analysis for this area, this did not diminish its usefulness for assessing the 

sensitivity of SWMM pervious area flow predictions to pervious area and subsurface 

parameters.)  I considered the surface and subsurface parameters concurrently within this 

RSA batch due to the role that the surface parameterization plays in delivery of water to 

the subsurface reservoir.  Additionally, to assess meaningfully the parameters used, I 

calculated several post-hoc SWMM parameters to better illustrate the sensitivity 

dynamics shown in FIGURE 14 and FIGURE 15.  For example, within the SWMM 

conceptual model the subsurface storage volume is defined by Por, multiplied over a 

subsurface depth calculated as SElev-BElev, which can then be positioned at different 

absolute elevations relative to the receiving node.  Thus, the model might be more 

sensitive to SElev-BElev than to either parameter individually given the physical 

properties they represent.  By varying the parameters independently, I was able to assess 

sensitivity of interdependent parameters independently and combine parameters for joint 

consideration where it was potentially useful to do so. 

   There was a wide range in sensitivity, from a high degree of separation between 

best and worst bins (e.g., DSPrv, Por), to no discernable separation among bins (e.g., 

KSat, KSlope).  Among the surface parameters, DSPrv was found to be most sensitive.  

Since this parameter specifies the depth of ponding that occurs prior to initiation of 

overland flow, it can affect both the water available for infiltration and for surface 

evaporation.  Sensitivity was also evident in the infiltration parameters, in contrast to 

what was found in the East Drain subcatchment RSA.  Given the absence of impervious 

surface, the partitioning of incident rainfall between pervious surface and subsurface 
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pathways appeared to play a strong role in defining the runoff dynamics of the system, 

highlighting the degree to which even a global SA is dependent on the model structure 

being assessed.  

 

 

FIGURE 14. RSA plots for 152,000 uniform random simulations of the SW1 

subcatchment, using MAPE as the goodness of fit measure.  The included 

parameters are selected SWMM surface runoff, Modified Horton infiltration, and 

subsurface flow parameters.  SWMM parameter abbreviations as defined in 

TABLE 10. 
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FIGURE 15.  RSA plots for 152,000 uniform random simulations of the SW1 

subcatchment, using MAPE as the goodness of fit measure.  The included 

parameters are selected SWMM subsurface flow parameters.  SWMM parameter 

abbreviations as defined in TABLE 10. 

 

Among subsurface parameters, sensitivity was generally greatest for those directly 

affecting evapotranspiration potential and total subsurface storage.  For example, UEvap 

showed a moderate degree of sensitivity, which controls the fraction of ET demand not 

met by surface ponded water that can be met from available water within the unsaturated 

zone.  Given the primarily vegetated nature of the subcatchment, parameters controlling 

ET would be expected to influence runoff dynamics.  Additionally, numerous parameters 

affecting total subsurface storage available were found to be sensitive within this RSA, 

including several of the post-hoc calculated parameters.  For example, Por was found to 

be sensitive, as was the post-hoc variable Por-FC, which represents the storage volume 
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that must fill before flow to lower groundwater and thus outflow can occur.  In contrast, 

FC-WP, or the fraction of subsurface storage space subject only to ET demand was not, 

suggesting that the free draining void space affects runoff dynamics more strongly than 

the fraction emptying via ET alone.  Similarly, both SubTotDepth (calculated as SElev - 

BElev) and AqDepth (representing the elevation of the bottom of the aquifer relative to 

the receiving node) were found to be sensitive, defining the total storage depth and depth 

of storage below the receiving node (interpretable as the channel bed), respectively.  

Combined, these parameters indicate the total volume of storage and its positioning 

relative to the receiving node play a strong role in simulated runoff dynamics of this 

system.   

In contrast, parameters controlling the percolation rate between upper 

(unsaturated) and lower (saturated) groundwater, KSat, KSlp, and TSlp were not sensitive, 

suggesting that the magnitude of this internal flux was not affecting model performance. 

KSlp, it should be noted, was observed in manual calibration to affect the shape 

(peakiness) of the groundwater flow hydrograph.  I hypothesize that given an isolated 

groundwater flow record to calibrate against, this parameter could be very sensitive.  

However, for our tributary flow record, a mixture of response modes makes is such that 

exact shape of groundwater flow hydrograph, when superimposed on surface 

hydrographs, would not necessarily strongly affect the MAPE of streamflow.  Thus, to 

the extent that KSlp does alter flow dynamics, the small adjustments to hydrograph shape 

are likely dwarfed in comparison with the effects of other parameters controlling whether 

or not flow occurs. 
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Other  parameters found to be sensitive in this RSA were the groundwater flow 

equation parameters B1, and to a lesser extent A1.  These parameters directly control the 

groundwater flow rate that occurs as a function of the depth of groundwater above the 

node elevation.  Additional groundwater parameters can be specified to simulate other 

groundwater flow dynamics (e.g., streamflow from the channel into groundwater), 

however I chose not to include this additional complexity in our model.  Given the 

conceptual application of SWMM groundwater (i.e., based on a need for a slow reservoir 

to supplement SWMM surface hydrology), these parameters did not appear to be 

justified.  However, they could be important to the structure of other SWMM models and 

their degree of sensitivity remains unassessed. 

  

3.4.1.3 Buildup and Washoff Models 

Buildup and washoff model sensitivity is shown for TSS in FIGURE 16 on the 

basis of aggregated load error; similar results were found for TN and TP (not shown).  

For all three of the analytes considered, sensitivity was greatest for buildup parameters, in 

particular BuCo.  BuCo controls the maximum surface buildup of pollutant between 

storm events, and as such can uniquely constrain simulated loads among the set of 

Bu/Wo parameters. The buildup model exponent (BuEx), which controls the rate at which 

surface loads available for washoff return to their maximum level following a washoff 

event, showed a lesser degree of sensitivity.  It is worth noting that among the set of 

seven sampled storms used in the RSA, only one storm had an antecedent dry period of 

less than 3 days, with an average of ~6 days.  Thus, a wide range of BuEx values would 
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allow inter event surface loads to reach maximum levels (i.e., at or near BuCo) under 

these conditions.  Nonetheless, aggregate load error was sensitive to this parameter, and I 

suspect that it could be even more sensitive given an observed data set with greater 

inclusion of back to back storm dynamics.  In comparison, washoff parameters were 

relatively insensitive.  Given that the RSA objective function was aggregate load error 

over a series of events, a higher degree of sensitivity in the buildup model is not 

surprising.  Washoff parameters would likely show greater sensitivity at a more granular 

level (e.g., modeling instantaneous peak concentrations) than the data from this study 

(i.e., composite samples) would support due to the fact that a wide range of washoff-

driven pollutographs could produce the same total load.  Thus, the lack of washoff 

parameter sensitivity identified in this study is unlikely to transfer to other modeling 

applications using higher resolution data. 
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FIGURE 16. RSA plots for 30,000 uniform random simulations of the East Drain 

subcatchment’s buildup and washoff TSS models, using aggregated load error over 

seven storm events as the goodness of fit measure.  SWMM parameter abbreviations 

as defined in TABLE 11. 

 

In related work, Shaw et al. (2010) have found particulate washoff loads to be 

insensitive to time between events (i.e., buildup rates), and have shown that a constant 

available mass (CAM) model can provide similar predictive capability with fewer 

parameters.  The dominance of BuCo in our own work is generally in agreement with the 

findings of Shaw et al. (2010), although the moderate sensitivity of BuEx and specifically 

the tendency of best performance to be associated with small values of BuEx are not.  

However, as already discussed the storms used in our RSA generally had multi day 

antecedent periods such that a conclusive picture of the role of BuEx cannot be drawn.   
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3.4.1.4 Classification  

Based on the results of the RSA, the included SWMM parameters were 

categorized for the subsequent modeling (TABLE 12; TABLE 17).  Parameters which 

were not sensitive were fixed at base parameterization values for all subsequent modeling 

(i.e., calibration and prediction).  Physical parameters that were sensitive included ICPct, 

Width, Slp, fMax and fMin.  These parameters were handled via Monte Carlo simulation 

throughout, whereby parameter values for any simulation were randomly sampled from 

assigned distributions.  A large number of parameters that were found to be sensitive are 

either inherently or functionally conceptual.  These parameters were interpreted to be 

calibration parameters, such that any values that maximize model fit from within 

predefined feasible ranges were acceptable.  This grouping included the impervious 

surface characteristics (i.e., nImp, DSImp, ZeroIC), all of the buildup and washoff 

parameters, and many of the subsurface parameters (TABLE 17).  Combined, this 

classification framework, using the RSA results presented in FIGURE 13, FIGURE 14, 

FIGURE 15, and FIGURE 16 as well as a degree of subjective judgement, was used to 

determine how parameters were handled throughout subsequent modeling. 

 

3.4.2 Calibration and Validation 

I applied a combined Evolution Strategies (ES) and simple Monte Carlo (MC) 

sampling approach to the calibration of selected SWMM parameters, based on the 

classification results of the sensitivity analysis work.  The spatial, temporal and 

conceptual discretization of this calibration work is described in the following sections. 
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3.4.2.1 East Drain and West Drain Hydrology 

 The classification of parameters for calibration (i.e., fixed, MC sampled, or ES 

calibrated) is summarized in TABLE 12 with two aspects worth noting.  The 

classification of individual parameters was not solely informed by the East Drain RSA 

results (FIGURE 13).  For example, pervious area parameters were not found to be 

sensitive in the East Drain RSA, however they were found to be sensitive in the SW1 

RSA (FIGURE 14).  This suggests that these parameters are important to how incident 

rainfall is partitioned between surface storage, ET, and subsurface storage, but not in a 

way that affected outflow to the East Drain over the period of record used in the RSA.  

Thus, despite the lack of sensitivity in East Drain RSA, parameters DSPrv, fMax, and 

fMin were subject to Monte Carlo sampling during the calibration.  This ensures that 

calibrated values from the East Drain and West Drain are not only ‘best’ given particular 

fixed values of DSPrv, fMax, and fMin, but can be considered ‘best’ given the broader 

feasible parameter space.   The approach used for the other parameters listed in TABLE 

12 follows directly from the results of the East Drain RSA. 
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TABLE 12. Treatment of parameters within the East Drain and West Drain 

calibrations.  Parameter units and ranges are listed in TABLE 9.  All sampling 

distributions defined as uniform. 

 

  

The East Drain and West Drain subcatchments were calibrated independently, 

with 2009 used for the West Drain, and 2008 for the East Drain, and with alternate years 

used for model validation (FIGURE 17).  I used a population size of two times the 

number of varying parameters (ES and MC), and ran four 30 generation ES runs for each 

calibration site / year.  During each ES calibration run, the parameters identified as ‘MC’ 

in TABLE 12 were randomly sampled from uniform distributions, while model 

performance was optimized through evolution of the selected ‘ES’ parameters on the 

basis of  the RSR fitness function.  The results of the four calibration runs from each site 

were then pooled and resampled for a ‘blowout’ over the feasible MC parameter space, as 

described in Section 3.3.5.1.  The 95
th

 percentiles of simulated flow resulting from this 

Parameter Treatment

Area Fixed

ICPct MC

Width Calib/MC

Slp MC

nImp Calibrate

nPrv Fixed

DSImp Calibrate

DSPrv MC

ZeroIC Calibrate

fMax MC

fMin MC

fK Fixed

fDry Fixed
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approach are plotted with the observed flow series’ for both calibration and validation 

periods at the East Drain and West Drain sites in FIGURE 17.  

 

 

FIGURE 17. Measured and modeled flow series from the East and West Drains for 

the calibration and validation periods.  Measured data (black lines) overlay grey 

shading of the 95% range of modeled flows from 15,000 samples of the calibrated 

parameterization.  

 

 Calculated RSR fitness values from the drain calibration and validation years are 

summarized in TABLE 13.  Fitness was better in the calibration period than in validation 

period for both sites, though the difference was greater at the East Drain site.  Overall, the 

best fitness values were somewhat poor, with RSRs indicating that the RMSE was 

relatively high as compared to standard deviation of the measured data.  Moriasi et al. 



135 

 

(2007), in a review of acceptable model performance thresholds, reported that RSR 

values greater than 0.7 can be considered unsatisfactory based on monthly flow data.  

However, they also state that relaxed criteria may be used for higher resolution data such 

as daily flow.  The measured and model data for the drain subcatchments are at a 1-

minute time step, which is a finer temporal resolution than was used or explicitly 

considered in either the case study presented or the prior studies reviewed by Moriasi et 

al. (2007).  Thus, we conclude that our relatively high (poor) fitness values are 

acceptable.  

 

TABLE 13. RSR fitness measure for the best 10% of ES calibration runs and from 

15,000 samples of the calibrated parameterization. 

 

 

Despite the relatively poor RSR values in calibration and validation, I concluded 

that the visual hydrograph fit was generally acceptable.  The model successfully 

reproduced the flashy dynamic in the storm drain record, and over and under predicted 

peaks through the years of record without a substantial bias.  Based on visual assessment, 

the worst model performance occurred in the event recessions and inter-event periods, 

which I   attribute in part to measurement error rather than prediction error.  The sensors 

were 18.3 mm cylindrical pressure transducers, affixed parallel to the direction of flow in 

Type Best Mean Best Mean

East 2008 Calibration 0.708 0.732 0.695 0.753

East 2009 Validation ---- ---- 0.946 0.986

West 2008 Validation ---- ---- 0.975 1.017

West 2009 Calibration 0.963 0.994 0.962 1.010

RSR RSR

ES Calibration Runs 15,000 MC
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ISCO scissor rings, at the invert of the pipes.  Thus, flows at shallow depth were likely 

subject to greater error due to lack of complete submergence of the sensor and water 

surface anomalies created by flow over the sensor.  A second issue introducing 

measurement error in the drain records was the tendency for organic matter (e.g., leaves) 

to catch on the sensor.  This material had to be cleared from the sensor periodically.  

Since flow was calculated from measured depth using Manning’s equation, any localized 

ponding near the sensor would lead to an overestimation of instantaneous flow rates.  

Lastly, rainfall data were collected primarily at a 5-minute interval via tipping bucket, 

while drain flow data were collected at a 1-mintue interval.  The contributing drainage 

areas were very flashy with event time-to-peak values of less than 10 minutes in some 

cases.  Thus, small errors in timing, or artefacts of rainfall binning likely introduced 

additional error into calculations of goodness of fit of the models.  Ultimately, we 

determined that the drain models provided sufficient accuracy for modeling the 

remainder of the storm drained neighborhood, given the measurement error just 

discussed.    

 Results of the parameter evolution as it occurred in the calibration of the East 

Drain and West Drains subcatchments are shown in FIGURE 18 for one ES run of the 

West Drain in 2009.  For all four variables included in the ES, parameter values 

converged to similar values over the course of the runs, concurrent with improved model 

fitness.  In the plotted run, it can be seen that both Width and nImp evolved to best values 

within the middle of their defined parameter ranges.  DSImp and ZeroIC, in contrast 

evolved to their ranges lower and upper bounds, respectively, suggesting improved 
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fitness could be found outside of that range.  The DSImp and ZeroIC parameters are 

empirical / conceptual, and the parameter limits they evolved to are not physically 

bounded but rather user specified for this application.  However, given that these 

constraints were based on what was judged to be realistic for the model representation a 

priori, I did not adjust allowable parameter ranges based the ES results.  Loosening the 

constraints on DSImp and ZeroIC would have the effect of lowering the impervious 

surface storage potential, thereby creating additional runoff.  It can therefore be inferred 

that improved model performance, as measured by RSR over the periods of calibration, 

can be achieved by generating more runoff.  However, I suspect this is more attributable 

to measurement error and model structural errors, as opposed to misspecification in the 

parameter space boundaries.   
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FIGURE 18. Evolution of surface hydrology parameters from a single run of the 

West Drain 2009 site.  Box plots show inter-quartile ranges (IQR) with a median 

center line, whiskers denoting the largest value less than the 75
th

 percentile value 

plus 1.5 times the IQR and less than the 25
th

 percentile minus 1.5 times the IQR, and 

points to show values outside of those ranges.  Evolution of SWMM parameters is 

shown at left, with corresponding mutation step size evolution (σ) at right. 

 

Collectively, from FIGURE 18 it can be seen that over successive generations, the 

model performance improved, the SWMM parameter values converged, and the search 

strategy parameters converged toward minimum acceptable levels, even given the noise 

introduced by the MC sampling of other parameters.  The evolution of the mutation step 
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sizes (i.e., the sigmas) is notable, as it has the functional impact of narrowing the 

parameter search space over the run as fitness improved.  This shows that the self-

adaptive aspect of the ES algorithm functioned as designed in the case shown, as it 

generally did in the East Drain and West Drain calibration runs.    

 

3.4.2.2 Width 

After evolving values for the parameter Width, I compared the resulting values 

with those computed by applying Monte Carlo (MC) sampling to the Guo Method 

approach.  The range of Width and Slp estimates, and the ranges of parameters used in 

computing those estimates are given in TABLE 14.  The SWMM Documentation 

approach uses Area and uncertain estimates of overland flow distances for a 

subcatchment to define Width, with Slp estimated independently via available 

topographic data.  Guo’s Method, in contrast, estimates Width and Slp as functions of 

drainage area and uncertain estimates of topographic slope, collector channel length, and 

area skewness coefficients.  TABLE 14 shows that the range of calculated Width values 

under the Guo Method is considerably narrower than the range of values calculated with 

the SWMM Methodology.  Thus, on this condition alone the use of Guo’s Method could 

be justified due to the a priori reduction in the feasible parameter space for this sensitive 

parameter.   
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TABLE 14.  Upper and lower values for East Drain and West Drain Width, 

calculated using the SWMM Documentation and Guo Methods.  Also included are 

the subcatchment parameters used in computing those estimates. ‘Z’ is the area 

skewness coefficient, following the work of Guo and Urbonas (2009).  

 

 

To specifically assess the Guo Method’s suitability in our case, I next compared 

ES calibrated Width values, optimized from the SWMM Methodology search space, with 

the ranges of values produced by the Guo Method.  As shown in FIGURE 19, the ES 

calibrated values from both the East Drain and West Drain subcatchments correspond 

closely with the distributions of values computed via Guo’s Method.  This suggests that 

for these two cases, simply applying a MC implementation of Guo’s Method produces 

Units East West

Subcatchment Area ha 1.24 1.61

SWMM Guidance

Overland Flow Dist. (Upper) m 304 274

Overland Flow Dist. (Lower) m 58 51

Width 1 (Upper) m 214 316

Width 2 (Lower) m 41 59

Mean Slope % 2.39 2.77

Slope St. Dev. % 1.35 1.81

Guo Method

'Z' (Upper) frac. 0.8 0.85

'Z' (Lower) frac. 0.6 0.65

Collecter Length (Upper) m 85 230

Collecter Length (Lower) m 55 155

Guo Width (Upper) m 222 184

Guo Width (Lower) m 163 100

Guo Slope (Upper) % 0.845 4.03

Guo Slope (Lower) % 0.104 0.58
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the same values as would be achieved through the ES calibration.  This result, combined 

with previous validation work by Guo et al. (2012), provides a defensible basis for the 

use of this approach to estimate Width in subsequent modeling where discrete 

subcatchment calibration data do not exist.  

 

 

FIGURE 19.  A comparison of ES calibrated and Guo Method MC sampled values 

of Width for the East Drain and West Drain subcatchments. 

  

 As a final assessment on the Guo Method, I reran the ES calibration for the East 

Drain and West Drain areas using a MC Guo Method approach for both Width and Slp, 

rather than evolutionary calibration approach to Width previously employed.  The goal 

was to determine whether or not other evolving parameters (e.g., nImp, DSImp) would 

evolve the same values regardless of the approach used for Width.  The results of this 

exercise were indistinguishable (not shown) between the two approaches, further 

confirming that the Guo Method can be employed as an alternative to the SWMM User’s 
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Manual approach, with the advantage of being calibration independent, with little if any 

adverse consequence. 

 

3.4.2.3 East Drain and West Drain Water Quality 

The storm sampling data available for East Drain and West Drain water quality 

calibration and validation are summarized in TABLE 15.  The storm sampling data set 

was split for calibration and validation yielding six and nine calibration storms for the 

East and West Drains, respectively, and seven and nine storms for validation in the East 

and West Drains, respectively.  Using this approach, I ran four batches of 30 generation 

ES runs, with a population size of eight for each of three analytes to be assessed.  All 

Bu/Wo parameters consistently converged during the ES runs, in many cases while 

evolving to fractions of the feasible parameter space.  The results of all four batches of 

TN Bu/Wo parameters evolution in the West Drain are plotted in FIGURE 20.   

For all sites and analytes, the parameter BuCo most consistently evolved to nearly 

identical values across sets of four runs for a given site and analyte.  Consistent with the 

RSA showing this to be the most sensitive parameter, it also was most consistently 

associated with a small portion of the parameter space.  Parameters BuEx, WoCo, and 

WoEx converged to narrow ranges in most batches, and often converged on relatively 

narrow fractions of the feasible parameter space.  However, in some cases these 

parameters converged to different final values across the four runs for each site and 

analyte, with different resulting fitness values.  This suggests that for these less sensitive 

parameters, the ES algorithm was not able to escape from sub-optimal solutions, due to 
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either the relatively small fitness gains associated with optimizing those parameters, the 

additional noise incorporated into the search via the concurrent MC hydrologic model, or 

both.  

 

TABLE 15. Drain sampled storms by sampling method.  Dates shown indicate the 

date on which the first aliquot was sampled. ‘---‘ indicates a sample was not 

collected and / or analyzed. 

 

 

Date East Drain West Drain

2008-07-23 ---- Composite

2008-07-31 Composite Composite

2008-08-08 Composite Composite

2008-08-18 Composite Composite

2008-09-09 Discrete Discrete

2008-10-25 ---- Composite

2008-11-25 ---- Composite

2009-06-11 ---- Composite

2009-06-26 Composite Composite

2009-06-29 ---- Composite

2009-06-30 Composite Composite

2009-07-11 Composite Composite

2009-07-18 ---- Composite

2009-08-29 Composite Composite

2009-11-14 Composite Composite

2009-11-20 Composite Composite

2009-11-27 Composite Composite

2009-12-03 Composite Composite
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FIGURE 20. West Drain TN Bu/Wo parameter evolution.  All four runs are 

concurrently plotted per parameter.  

 

Thus, for subsequent modeling I considered all Bu/Wo parameters to be calibrated 

for both sites.  Where the parameters had converged to different parts of their feasible 

ranges across the different runs, I simply considered these to be acceptable suboptimal 

solutions across the parameter space.  Given that the Bu/Wo model is an empirical 

simplification of the processes controlling sediment and nutrient deposition, generation, 

and transport, it seems allowable to have different configurations of those models 

represent the data.  To proceed, I extracted the best Bu/Wo parameter sets from last 

generation of each ES run, and from the best parameter sets among all other runs for each 

site and analyte, and ran an additional 10,000 simulations by sampling from the retained 

Bu/Wo sets while currently varying the underlying hydrologic model.  Results from 
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running those simulations and computing load errors for the calibration and validation 

storms are summarized in TABLE 16. 

 

TABLE 16. Buildup and washoff calibration and validation fitness values.  Sum of 

the absolute load errors was used in calibration and is presented here as the percent 

of the total measured load over the calibration events (SAE%).    PBIAS is 

essentially the same quantity, but not calculated on an absolute basis, such that 

over- and under-estimation errors can cancel out.   

 

 

TABLE 16 presents the sum of the absolute errors (SAE), as a percentage of the 

total load over the calibration or validation storms, as well as percent bias (PBIAS), for 

the same simulations.  PBIAS is a more commonly used water quality model objective 

function, calculated as: 

 

�%&�� = '∑ ������ − �
�������∑ ����������� ( ∗ 100 

 

where N is the number of storm events (in calibration or validation), measi is analyte load 

calculated from measured data, and simi is the analyte load calculated from SWMM 

outputs.   While PBIAS is more commonly reported in the literature and is thus reported 

Site Fitness Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean

East SAE (%) 33.4 40.8 25.6 60.2 29.4 32.7 23.5 33.6 52.2 54.2 75.2 76.1

East PBIAS (%) 0.0 -6.6 0.0 -40.1 -0.4 18.8 0.0 15.8 29.0 30.7 62.9 70.6

West SAE (%) 23.1 46.0 29.9 60.0 22.8 27.6 74.8 81.7 33.5 39.2 40.1 44.8

West PBIAS (%) 0.0 22.7 0.0 43.1 0.0 3.1 50.8 58.2 0.0 -7.8 18.0 32.7

Calibration Validation

TSS TP TN

Calibration Validation Calibration Validation
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here, SAE exerts stronger selective pressure due to the fact that over- and under-

estimation errors cannot cancel, as they can in PBIAS.   

All mean calibration SAE values were below the PBIAS threshold 

recommendations of +/- 55% TSS and +/- 70% for TN and TP threshold 

recommendations of Moriasi et al. (2007).  This is notable as SAE is conservative relative 

to PBIAS, and similarly the PBIAS fitnesses from the calibration runs were all well 

below the previously described thresholds.  Validation fitnesses tended to be a bit worse, 

but in most cases were still within calibration guidelines.  Again, it is worth noting that I 

used event data at the temporal scale of minutes to hours, while the previously referenced 

calibration guidelines deal with monthly or daily aggregated data.      

Lastly, for validation purposes I compared simulated pollutographs from the 

10,000 calibration / validation simulations with the measured concentrations for the 

reserved portion of the discretely sampled storm event.  FIGURE 21 shows the 95% 

prediction intervals on the modeled flow and analyte concentrations, overlain by 

measured flow and analyte concentrations for the East Drain.  The earlier peak (7:30) was 

reserved for validation, while the latter peak (13:00) was used in calibration.  Hydrologic 

model performance for the period shown in FIGURE 21 was very good (mean NSE = 

0.88, mean RSR = 0.35), with the simulated flow closely matching peak rates and event 

dynamics over the three rainfall pulses.  For water quality, model performance was 

relatively good for the calibration event, with sampled concentrations generally falling 

within the 95% range of model predictions.  Results for the earlier validation event, in 

contrast, were quite poor with modeled values greatly over predicting measurements.  I 
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attribute this poor performance to limitations in the model, and to the following unusual 

circumstance in the data record.   

The Bu/Wo models are conceptually simple, but explicitly ignore key factors 

contributing to the variability in urban runoff concentrations.  Factors such as seasonal 

vegetation dynamics (e.g., leaf fall, pollen deposition), temporary construction activity, 

and accumulation of different loads over winter periods are not easily incorporated in to 

this framework and thereby limit the accuracy that can be expected.  Within the 

monitoring record, the discrete validation event performance was also limited by an 

unusually long dry period (20 days) preceding the event.  No calibration events were 

preceded by similarly long dry periods, and as result, it was not possible for parameter 

sets producing this dynamic (i.e., unrealistically high concentrations following extended 

dry periods) to be penalized within the ES calibration framework.  For the calibration 

events, the mean antecedent non-storm lengths were 6 and 6.5 days for the East and West 

Drains, with maximum dry antecedent periods of 14 and 11 days, respectively.  The 20 

day dry antecedent period affecting the validation event was also an outlier in the context 

of the storm events considered in the subsequent load analysis (Section 3.4.3).   

It can also been from FIGURE 21 that for the smaller period of event flow 

between the calibration and validation peaks, the model predicted relatively high 

concentrations, for example 0.2 mg L
-1

 TP.  While I do not have measured data for that 

event to either confirm or refute the predictions, I am of the opinion that this is a 

residually high load from the dry period preceding the validation period, and is therefore 

likely to be erroneous as well.  Thus, while an improved water quality model is clearly 
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desirable, based on both limitations in the general water quality modeling framework and 

the inherent variability in urban water quality concentrations, I deemed these results to be 

of sufficient quality such that I could proceed with a qualified loading analysis for the 

larger SW2 drainage area. 

 

 

FIGURE 21.  The 95% prediction intervals (grey envelope) resulting from the 

evolved hydrologic and water quality parameter sets for the East Drain, overlain 

with the measured data (lines or dots).  The first peak with measured concentration 

data was used for validation, while the second was used in the calibration.  The poor 

water quality performance for the validation event is partially attributable to an 

extended dry period preceding that event, outside the range of conditions included 

in the calibration data set. 
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3.4.2.4 Full Watershed Hydrologic Model (SW2) 

 The full watershed model (‘SW2’) made use of the RSA results, subwatershed 

calibration data, and manual calibration experience to define the parameterization 

approach for the 20 subcatchments within the model (the previously referenced 21 

subcatchments included SW1 which was removed from the model based on discussion in 

Section 3.3.5.3).  A subset of 12 parameters were determined to meet my criteria for 

calibration (TABLE 17), in that they are uncertain, the model was demonstrably sensitive 

to them, and narrowing of their feasible parameter space to improve model performance 

was deemed acceptable.  For the parameters to be calibrated here, I was limited by the 

available flow records in my ability to conduct a more spatially discretized framework, 

for example calibrating neighborhood lawn and offsite meadow pervious areas 

separately.  Thus, most subcatchments parameters were lumped over the SW2 watershed 

model, the exception being impervious surface characteristics, which were discretely 

identifiable based on the drain flow gauging.  In summary, the parameters over the 20 

subcatchments were either (1) fixed at central values, (2) Monte Carlo sampled from 

assumed distributions, (3) sampled with replacement from the drain calibration parameter 

sets, or (4) evolved to best value using a further implementation of the ES algorithm. 



150 

 

TABLE 17. Treatment of parameters in the Neighborhood and Pervious 

subcatchments contributing flow to the SW2 station, and subsequent results of ES 

calibration process where  ‘N’ indicates the parameter did not consistently evolve to 

best value, while ‘Y’ indicates that it did.   

 

  

As discussed in Section 3.3.5.3, the upland agricultural area draining to the SW1 

monitoring station was not well represented by any of the SWMM model structures or 

parametrizations explored in this work.   Thus, I opted instead to route the measured SW1 

flow record into the upper most node of the SW2 SWMM model, while using SWMM 

subcatchments and conveyance infrastructure to model the lower 65 hectares of 

Parameter
Neighborhood 

Subcatchments

Pervious 

Subcatchments

SW2 ES 

Result

Subcatchment

nPrv Calibrate Calibrate N

DSPrv Calibrate Calibrate N

fMax Calibrate Calibrate N

fMin Calibrate Calibrate N

ICPct MC Fixed ---

Width MC MC ---

Slp MC MC ---

nImp Drain Calib. Fixed ---

DSImp Drain Calib. Fixed ---

ZeroIC Drain Calib. Fixed ---

Area Fixed Fixed ---

fk Fixed Fixed ---

fDry Fixed Fixed ---

Groundwater

Por-FC Calibrate Calibrate Y

FC-WP Calibrate Calibrate Y

KSlp Calibrate Calibrate Y

UEvap Calibrate Calibrate Y

SElev Calibrate Calibrate Y

BElev Calibrate Calibrate Y

A1 Calibrate Calibrate Y

B1 Calibrate Calibrate Y

KSat Fixed Fixed ---

LEvap Fixed Fixed ---

GLoss Fixed Fixed ---
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neighborhood and other watershed contributing area via 20 SWMM subcatchments.  

Using this framework, I ran four ES runs, following the approach outlined in TABLE 17.   

The first objective in assessing the results was to further classify the parameters 

between those that ‘calibrated’ and those that did not.  Parameters that consistently 

converged to the same portion of their feasible parameter space were deemed calibrated, 

resulting in a reduction in the feasible parameter space in subsequent modeling.  

Parameters that did not converge, or that did so inconsistently, were not considered to be 

calibrated and retained their full feasible ranges for Monte Carlo sampling in all 

subsequent modeling.  The parameter evolution resulting from a single ES run are plotted 

in FIGURE 22, FIGURE 23, and FIGURE 24, displaying a range of evolutionary 

behaviors.   
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FIGURE 22.  Evolution of SWMM parameters (nPRv, DSPrv, fMax, and fMin) and 

ES strategy parameters during an ES run for the Full Watershed model.   
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FIGURE 23. Evolution of SWMM parameters (Por-FC, FC, KSlope, and UEF) and 

ES strategy parameters during an ES run for the Full Watershed model.   
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FIGURE 24. Evolution of SWMM parameters (BElev, SElev, A1, and B1) and ES 

strategy parameters during an ES run for the Full Watershed model.   
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Several parameters consistently evolved against upper or lower bounds through 

the ES runs.  In some cases these were physical constraints (i.e., evolved toward zero 

where negative values are not possible) though in other cases these boundaries were 

imposed.  For example, parameters B1 and Por-FC tended to evolve to upper and lower 

bounds, respectively (though Por-FC did not in the run shown in FIGURE 23).  In each 

of these cases, I chose to maintain these boundary limits, based on my a priori definition 

of the allowable parameter space.  

For other parameters, values consistently evolved to the same region of their 

parameter space, which is strongly suggestive of a best value.  For example, parameter 

UEF evolved most consistently of all parameters, converging to a very narrow range in 

the middle of the feasible parameter range during all four ES runs.  UEF governs the 

availability of shallow subsurface water to meet ET demand, and thus can be an 

important control on water balance.  Considering the evolved behavior of these 

parameters collectively, it is clear that shallow subsurface dynamics were key to the 

improvement in MAPELow that occurred during the ES runs.  In addition to UEF and Por-

FC (discussed above), SElev was among those that consistently evolved to a narrow 

range (between 0.5 and 1.0 m).  Combined, these parameters govern the subsurface 

volume over which storage, percolation and subsurface ET losses can occur.  These 

storage and flux terms appear to be important model components in maximizing the 

calibration fitness.  The importance of the aggregated parameter Por-FC in this study was 

primarily made possible as a result of our RSA work, and could not be easily detected or 

calibrated using local or manual methods (although it could hypothesized and tested 
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independently based on knowledge of soil physics and / or from SWMM algorithm 

review).  These results suggest that for other SWMM modeling applications where 

stream hydrograph recession performance is to be optimized, the aggregated subsurface 

void volume above FC (as a function of SElev, BElev, Por, and FC) should be considered 

an important parameter grouping to be considered concurrently. 

For the parameters that did converge over the ES runs, the corresponding 

evolution step sizes, or sigmas, consistently evolved toward smaller values as well.  

Compared with the East Drain ES however, the sigmas did not typically evolve to lowest 

the allowable values.  (These minimum allowable sigma values were defined arbitrarily 

as parameter range divided by 250 in initial algorithm testing.)  Rather, sigmas generally 

tended to not take on large values later in the ES runs, but without full convergence 

toward the lower bound.  I suspect that the cumulative noise of many ES and MC varying 

parameters, combined with the use of an indirect fitness function (i.e., MAPELow of SW2 

flow record) interfered with the narrowing of the optimal parameter space.  It is also 

acknowledged that given the high dimensional and interdependent parameter space there 

are potentially a large number of unique parameter sets that can minimize the MAPELow 

objective function.  Combined, the evolutionary behavior results across the various 

batches (i.e., Drains, Bu/Wo, Full Model) demonstrates that the self-adaptivity of our ES 

implementation works as intended despite the incorporation of noise, but that the ES’ 

performance appears to decline as the amount of noise is increased. 

Based on the evolutionary behavior of the SWMM parameters over the four ES 

runs, I proceeded to determine which parameters had evolved sufficiently that calibrated 
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values could be extracted, thereby limiting those parameters’ feasible space in subsequent 

modeling.  There was a large degree of variability in the evolution behavior, both for the 

same parameters across ES runs and among the different parameters evolved, requiring 

some subjective judgement in classification of the parameters.  In general, if a parameter 

repeatedly converged to a similar fraction of the allowable range I considered it 

calibrated, while allowing that one of the four ES may not have converged.  Using this 

approach, I deemed all but the four surface parameters (nPrv, DSPrv, fMax, and fMin) to 

be calibrated, with the results indicated in the last column of TABLE 17.  For those that 

were deemed calibrated, I extracted complete parameter sets from the final generations 

and the best runs in prior generations as previously described.  These parameter sets were 

then taken to be the best unique realizations of the eight dimensional calibration 

parameter space, without intermixing of parameters values from within the sets.  For 

those parameters not determined to have been successfully calibrated by this approach, I 

subjected them to simple MC sampling from their full parameter ranges in subsequent 

modeling. 

To assess the calibration and validation fitness for the Full Watershed Model, I 

next ran 40,000 blowout simulations, where for each simulation I sampled 1) an 

impervious surface parameter set randomly from the pooled sets identified in the East and 

West Drain calibrations, 2) a subsurface parameter set drawn from the parameter sets 

retained from the Full Model calibration runs, 3) other sensitive parameters randomly and 

independently sampled from assumed uniform distributions, and 4) other parameters 

fixed.  I first applied this framework to the 2009 calibration year, in doing so propagating 
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both the surface and subsurface calibration sets and the full ranges of Monte Carlo 

parameters through to the hydrograph record.  I then applied the same approach to the 

2007 and 2008 years of record as model validation.   

A last component I needed to assess was the role of routing the upland measured 

flow record through the SWMM model, as opposed to simulating flow for that area.  My 

goal here was to assess the performance of the Full Watershed model, while controlling 

to a degree for this flow routing which could be expected to produce acceptable SW2 

performance independent of any SWMM subcatchment contributions.  To do so, I 

calculated a number of objective functions both for the Full Watershed model with SW1 

measured flow routed through, and for a ‘No Rain’ scenario in which simulated flow at 

SW2 consisted solely of SW1 flow routed through the conveyance network (i.e., channel 

and culverts).  In doing so, I attempted to quantify the improvement in fitness that results 

from modeling the rainfall runoff response of the lower catchment, relative the model 

performance achieved simply by routing the measured SW1 flow record through the 

model.  Several fitness measures, on the basis of the preceding approaches, are 

summarized in TABLE 18.  In addition to MAPE, MAPELow, RSR, and PBIAS, I include 

Nash-Sutcliffe Efficiency (NSE) here, calculated as: 

 

	�� = 1 −	 ∑ ������ − �
��������∑ ������ −������ !������  

 

where all variables are as previously defined.  Measured and modeled (95%) hydrographs 

for the three years of record are shown in FIGURE 25. 
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TABLE 18.  Calibration and validation fitness for the Full Watershed model.  At 

top, the fitnesses calculated using the retained simulations from the four Full 

Watershed model ES runs.  The 40,000 blowout runs of the calibrated set are given 

below, for the calibration (2009) and validation (2007-08) years.  At the bottom, the 

‘No Rain’ scenario results are summarized.  Objective functions are Mean Absolute 

Percent Error (MAPE), MAPE of flows below the annual 75% flow (MAPELow), 

RMSE-observations standard deviation ratio (RSR), and Nash-Sutcliffe Efficiency 

(NSE). 

 

 

Best Mean Best Mean Best Mean Best Mean Best Mean

2009 Calibration Set 39.6 48.5 40.0 49.6 0.40 0.54 0.84 0.69 0.2 -13.4

2007 Blowout 40,000 88.7 97.4 76.7 83.0 0.53 0.73 0.72 0.46 -58.0 -70.1

2008 Blowout 40,000 93.8 122.7 108.3 146.5 0.36 0.45 0.87 0.23 0.0001 -3.79

2009 Blowout 40,000 38.9 41.8 39.3 42.5 0.40 0.52 0.84 0.73 2.0 -13.1

2007 Upland  Routing

2008 Upland  Routing

2009 Upland  Routing

0.57

0.66

PBIAS (%)

70.7

66.8

51.2

NSE

0.84

PBIAS (%)

NSE

0.29

0.66

0.58

RSRMAPELow (%)

Type
MAPE (%) MAPELow (%) RSR

Year

74.3

98.4

97.0

79.3

MAPE (%)

95.2

89.5
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FIGURE 25. 95% prediction intervals for the Full Watershed model calibration 

(2009) and validation (2007-08) periods.  Model predictions (grey bands) are 

overlain by measured flow (black).  

 

Model performance was generally good in both the calibration and validation 

periods, based on tabulated objective function values (TABLE 18) and visual assessment 

(FIGURE 25).  Best performance was generally seen in the calibration year 2009, with 

worse performance in validation years.  Given the use of MAPELow as the optimization 

criteria during calibration, the parameters appear to have evolved to optimize recession 

and inter-event low flow performance for the relatively numerous and evenly spaced 

storms of the 2009 calibration year.  Validation years 2007 and 2008 had temporally 
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tighter clusters of storms interspersed by generally longer inter-event periods where 

hydrograph recession dynamics have receded.  The MAPELow fitness is highly sensitive to 

inter-event dynamics since periods of either low / zero simulated or measured flow can 

compute to very high MAPE values.  While this is a useful feature during ES algorithm 

selection, it does not necessarily provide a clear picture of overall model performance, 

and can partly explain the disparate MAPE fitnesses computed between calibration and 

validation.  I also computed RSR and NSE to more broadly assess the annual records in 

their entirety.  Best values of these objective functions were good for both calibration and 

validation, and were above minimum performance thresholds identified by Moriasi et al. 

(2007) for these measures when using daily flows.  The mean values reflecting the 

broader parameter space considered acceptable or plausible simulators of the system, 

however, were considerably worse in some cases.  A key limitation in this work was that 

I did not collect data that would allow direct calibration of pervious area or subsurface 

hydrology components of this work (and in doing so, further restrict the parameter 

space).  Instead, I had to rely on low flows in the SW2 streamflow record, which are 

affected by pervious areas and subsurface, as well as conveyance, stormwater treatment 

infrastructure, impervious surfaces, climate, and measurement errors.   

I also computed the objective function PBIAS to assess the average over or 

underestimation of flow, and particularly to highlight the differences between the Full 

Model and the ‘No Rain’ / SW1 routing scenarios.  For the calibration (2009) and 2008 

validation year, the Full Model best and mean values were within the +/- 25% range 

recommended by Moriasi et al. (2007) for daily flow data; however the best simulation 
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for validation year 2007 was -58%.  I attribute this 2007 error largely to the two large 

storms in the beginning of the 2007 monitoring season, which were the largest two 

storms on record on a peak rate basis.  Given that the 2007 flow record was entirely 

unseen to the calibration algorithm, this poor performance is to be expected.  Further, I 

suspect there were headwater conditions at the culvert inlet ~10 m downstream of the 

SW1 monitoring station during this event which would have led to overestimation of 

flow from the upper catchment (SW1).  If this were the case, as I suspect, then the actual 

PBIAS for 2007 would be even higher than that reported in TABLE 18 (i.e., if the model 

were compared against ‘true’ flows rather than overestimated measured estimates).   

Lastly, the routing of just the upland flow record through the model with no 

additional participation inputs is illustrative of the degree to which good model 

performance is attributable to accurate SWMM simulation in addition to routing of 

existing hydrology.  The best values of the objective functions RSR and NSE for example, 

were both noticeably worse in the upland routing model compared to the full model.  The 

PBIAS metric, expectedly, showed significant underestimation of flow by the model 

when precipitation inputs to the lower catchment are excluded.  MAPE and MAPELow 

were for the most part equally poor in the upland routing model, as compared to the full 

model validation years.  However, since MAPE was selected primarily for its strong 

selective pressure on event recessions and inter-event dynamics during the calibration 

process, I do not take its lack of differentiation here to negate the performance gains seen 

in the other fitnesses.  Thus, overall I am comfortable attributing the acceptable objective 

function values from the calibrated and validated model (to the extent they can be 
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interpreted as such) to good model performance, and not simply the routing of the 

measured upland flow record through the catchment. 

 

3.4.3 Full Watershed Water Quality Analysis 

 In this section, I applied the calibrated and validated Bu/Wo models to the entire 

residential area within the SW2 drainage area to estimate the relative contribution of the 

neighborhoods to the total loads measured at the watershed outlet.  To do so, I randomly 

sampled complete four parameter Bu/Wo sets for each analyte from the retained 

calibration / validation sets described in Section 3.3.5.2.  The TSS, TP, and TN parameter 

sets were then coupled with a random selection of hydrologic model parameters 

following the approach used in Section 3.4.2.4 to create a complete hydrologic and water 

quality parameter set for each model run, consisting of both calibrated and random MC 

sampled parameters.   

The Bu/Wo parameters were only applied to the residential areas within the 

drainage, with the golf course and meadow areas assigned values that would produce zero 

load, based on the lack of data for estimating water quality parameters for these areas.  

This approach resulted in a simulated load at the outlet representing only total residential 

washoff load.  This process was iterated 5,000 times.  I then extracted the simulated 

washoff record and computed loads for 21 storms on record for which SW2 outlet loads 

were successfully sampled via flow weighting.  (Issues that excluded sampled events 

from this analysis included the autosampler completing a sampling program mid-storm; 

storms where autosampler aliquots missed rising limbs and/or peaks; and storms where 
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the autosampler program was not properly configured for rates/volumes that occurred 

resulting in poor flow weighting.)  For many of the SW2 events deemed usable in this 

context, we also have either sampled load data or a record of minimal or no flow at the 

SW1 monitoring station, allowing the inclusion of upland contributions of sediment and 

nutrients in this analysis.  The results of this analysis are summarized in FIGURE 26. 
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FIGURE 26.  Sampling results and model predictions for 21 storm events.  Vertical 

lines indicate 95% prediction range for the neighborhood loads stacked on SW1 

loads where available.  Asterisks indicate events for which there was measurable 

flow at SW1, but a valid flow-weighted load was not collected.  Other events with 

missing SW1 loads indicate negligible flow at SW1.  Missing events for different 

analytes are where an analyte was not analyzed, either due to a sample processing 

issue (e.g., hold time exceeded) or paperwork issue (i.e., failed to indicate that 

parameter on the chain of custody form). 
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FIGURE 26 summarizes the modeled and measured storm data by plotting the 

sampled SW2 loads adjacent to stacked plots of the SW1 loads and modeled 

neighborhood washoff estimates, with the error bars indicating 95% model predictions on 

neighborhood loads.  For the measured SW1 and SW2 loads, error estimates are not 

displayed graphically.  However, Harmel et al. (2006) provide estimates of uncertainty in 

various components of small watershed load measurements, including streamflow 

measurement, sample collection, sample preservation and storage, and laboratory 

analysis.  They compute probable error ranges of 18%, 30%, and 29% for TSS, TP and 

TN loads, respectively, as average estimates given ‘typical scenarios’.  These estimates 

are likely to be either appropriate or conservative for the data collected in this study, 

given that samples were analyzed by a multi-state certified commercial laboratory.   

Cumulatively, this data summary allows for interpretation of the relative 

magnitude of the loads that were predicted by the model and measured in stream.  The 

modeled neighborhood TSS load, for example, had the most variability out of the three 

analytes for which this analysis was completed, due in part to the order of magnitude 

peak TSS error rates seen in the discrete storm validation event (FIGURE 21).  For many 

of the storms, modeled neighborhood load plus the SW1 load (or in many cases, the 

modeled neighborhood load alone) equaled or exceeded total watershed loads.  This 

suggests that sediment loads conveyed to the lower stream channel by the closed drainage 

infrastructure and the upland area were not always fully delivered past the lower 

monitoring station at the event scale.  In other storms, notably the second half of 2009, 

the predicted inputs of sediment to the lower channel were less than the measured load at 
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SW2, suggesting additional load sources such as remobilization of previously retained 

loads. 

I attribute these discrepancies in mass balance to a combination of retention of 

sediment within the stream channel, remobilization and erosion of sediment from within 

the channel, and aggregate error.  The tributary to which the neighborhood’s closed 

conveyances discharge is a low gradient first order stream, which has dense vegetation in 

sections and includes several hydraulically inefficient culverts which provide opportunity 

for settling of coarser sized particles as entrance losses occur.  This dynamic (i.e., loss of 

neighborhood event loads within the conveyance network) is also anecdotally supported 

by visual observations made of the collected samples.  The storm drain samples appeared 

to have a greater presence of coarse sediment and coarse organic matter, compared to the 

instream sampling which tended to have more fines and turbidity in general.   

It should also be noted that during the years of sampling there was active bank 

erosion in sections of the channel through the native clay soil, such that during event 

flows the channel could conceivably both remove coarse sediment from transport and 

contribute finer sediment endogenously.  Lastly, given the discrete storm validation error 

(FIGURE 21), the neighborhood washoff loads are more likely biased toward 

overestimation of sediment export than to underestimation.  If so, that would suggest 

channel retention is being overestimated to some extent in FIGURE 26 and that the 

system is either more balanced or includes greater unaccounted sediment loads.   Further, 

there was a weak but significant linear relationship (F test p-value = 0.035, adjusted R
2
 =  

0.19) between the event peak flow rates at SW2 and the difference between SW2 TSS 
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load and the sum of SW1 and neighborhood loads (data not shown).  This provides 

additional circumstantial evidence that upland and neighborhood loads were retained in 

the channel during smaller events (when the difference between SW2 TSS load and the 

sum of SW1 and neighborhood loads was negative) and that the lower channel acted as a 

sediment source during larger events.   

 For TP in contrast, the sum of the measured SW1 load and the modeled 

neighborhood load was often less than or close to the measured SW2 load.  Further, it 

should be noted that total neighborhood loads were often small compared to 

corresponding SW1 loads, suggesting that TP loads from neighborhood washoff were not 

disproportionate given the contributing drainage area.  While the data in FIGURE 26 are 

presented on the basis of total loads rather than area normalized loads, the total SW1 

drainage area is only 35% larger than the neighborhood, while the agricultural area of 

SW1 is approximately equal to the neighborhood area.  Thus, total loads from SW1 and 

the neighborhood can be compared directly.  Since SW1 typically produced more TP than 

the neighborhood during storms for which SW1 produced flow, it can be inferred that 

surface washoff loads from the neighborhood were not the dominant source of TP for this 

tributary.  

For many storms the SW2 TP load was more than other estimated sources 

combined suggesting important roles for unaccounted sources of TP to the system and 

model error.  The modeling framework used does not account for contributions from 

channel erosion, yard waste disposal within the brook, sanitary sewer leakage, or inputs 

from the golf course or meadow.  Thus, some of the discrepancies between sum of SW1 
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and neighborhood loads and what was measured at SW2 may be attributable to those 

sources.  However, it should also be noted that two of the largest unaccounted load 

discrepancies in FIGURE 26 occurred during the late fall 2009.  These discrepancies 

could potentially be attributed to the Bu/Wo model not capturing autumn leaf fall 

dynamics since the Bu/Wo model was calibrated on a composite basis across storms from 

spring, summer and fall.  The concentration data collected are weakly suggestive of 

higher fall TP concentrations in the West Drain, however the small number of storms 

sampled limits further analysis.  Thus, it is possible that the fall TP load discrepancies are 

attributable in part to underestimation of leaf contributions by the Bu/Wo model, and to 

direct leaf inputs to the upper channel which have begun to decompose prior to reaching 

the SW2 monitoring station.    

The TN analysis showed the best agreement in cumulative loads among the 

measured and modeled quantities and produced the strongest linear relationship between 

peak flow rate at SW2 and unaccounted load (the TP regression was not significant).  The 

modeled range plus the measured SW1 load frequently summed to approximately the 

SW2 measured load, though there were exceptions.  For the larger summer storms, there 

were substantial SW2 loads that were not accounted for.  Similar to what was speculated 

for TP, it is possible that storm flows mobilized additional material via bed or bank 

erosion, resuspension of material from the main channel or connection with transient 

storage pools within the drainage network.  This is further supported by the linear 

relationship between SW2 peak flow rates and unaccounted for TN load data, which was 

significant (F-test p-value < 0.001) and explained 62% of the variance in TN load 
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difference.  The TP discussion also considered the role of leaf inputs in the set of three 

late 2009 storms with large TP load discrepancies.  The same discrepancies do not exist 

for TN, which is consistent with this interpretation.   

TN is potentially subject to denitrification losses in addition to transport and 

retention via bio-assimilation and burial pathways to which TP is subject.  For inorganic 

nitrogen, 50% or more can be retained along a reach (Peterson et al. 2001) with retention 

in first order streams typically occurring within 101-478 meters (Ensign and Doyle 

2006).  Among inorganic nitrogen retention and loss pathways, the role of denitrification 

losses is highly variable, which Mulholland et al. (2009) have estimated as accounting for 

between 0.5% and 100% of inorganic nitrogen removal from transport, with a median 

denitrification loss of 16% across a range of study sites including reference, agricultural 

and suburban-urban streams.  Lastly, debris dams in urban streams have been found to be 

hotspots for denitrification, relative to similar geomorphic features in forested stream 

reaches, with denitrification potential increasing with ambient stream nitrate 

concentrations (Groffman et al. 2005).   

There is no evidence to suggest that the preceding inorganic nitrogen dynamics 

would not exist within the headwater Potash Brook tributary studied in this work.  The 

neighborhood had relatively high nitrate concentrations (combined East and West Drain 

storm interquartile range of 0.41 – 0.87 mg L
-1

), suggesting that nitrate was available for 

loss and that levels may have been high enough to stimulate elevated denitrification 

potential within the channel sediments (Groffman et al. 2005).  And although the channel 

was straightened at one time, likely removing heterogeneous channel features that could 
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maximize denitrification potential, it has since revegetated along portions of the riparian 

corridor creating a new supply of terrestrial debris.  Further, the many hydraulically 

inefficient culverts along the channel create areas of slower flow where organic matter 

can accumulate, potentially leading to conditions that would favor denitrification losses.  

While nitrogen retention and losses cannot be quantified given the data that were 

collected in this study, these factors do provide a plausible explanation for the 2009 fall 

storm differences in TN and TP export dynamics.    

Some important caveats limit the interpretation and analysis that can be made 

from these data.  First among them are the inherent limitations in the buildup and washoff 

algorithms.  The model uses time between events to predict accumulation of surface 

loads, and thus cannot account for autumn shedding of leaves from the deciduous trees 

which line the streets throughout the neighborhood, or other episodic loads such as pollen 

deposition or winter detrital accumulation.  Thus, to the extent that those processes add 

variability to the buildup of pollutants at the land surface, the Bu/Wo algorithm cannot be 

calibrated to match those processes.  Rather, the calibration will have identified best 

parameter sets on average, given the range of conditions contained in the sampling 

records.  This can be noted from FIGURE 26 where modeled loads generally had lower 

inter-event variability than either the SW1 or SW2 loads.  However, the generally 

acceptable Bu/Wo model performance in model calibration and validation (TABLE 16) 

suggests that unaccounted for inter-event variability was not so great as to prevent 

interpretation of these data. 
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 Another limitation stems from the other processes and factors affecting load 

delivery that are not accounted for.  For example, channel processing and meadow and 

golf course contributions are not accounted for in the SWMM water quality modeling, 

but are reflected in the SW2 measured loading.  Thus, any discrepancies between the 

measured and modeled loads can be attributed to both error in the modeled and measured 

loads, and the effects of channel processing and additional loading from the golf and 

meadow areas.  Lastly, the areas of the neighborhood used in water quality calibration 

and validation include parts of 23 of 245 lots within the neighborhood.  This provides an 

opportunity for any atypical lot dynamics on those parcels to skew this analysis.  

However, the construction and layout of this neighborhood are quite uniform which was 

reflected in the fact the correlation between paired East Drain and West Drain EMCs was 

high (data not shown).  Considering the preceding, I judge the sediment and nutrient 

dynamics discussed in this section as more likely to be correct than incorrect.  However, 

the uncertainties and limitations in methodology discussed herein limit the strength of the 

conclusions that can be drawn. 

 

3.5 Conclusions 

In this work I have applied a global sensitivity analysis and evolutionary 

calibration approach to EPA SWMM, and conducted a watershed loading analysis for a 

developed headwater tributary to Potash Brook.  Key conclusions from this work include: 

• Even using the global RSA method to sensitivity analysis, substantial differences 

in parameters’ sensitivity can emerge as result of differences in model structure 
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and configuration.  Study-specific sensitivity analysis is therefore clearly 

warranted in cases where a sufficiently similar structure and parameter space have 

not previously been assessed. 

• For the sensitivity analysis of the previously unassessed subsurface flow model, a 

collection of parameters defining free draining subsurface storage volume and 

evapotranspiration were of high importance.  For other workers attempting 

manual calibration of the SWMM subsurface model, these RSA plots may 

provide useful information for efficiently perturbing the high dimensional 

parameter space. 

• I compared the traditional SWMM User’s Manual approach to subcatchment 

Width calibration with the more recently proposed Guo Method (Guo and 

Urbonas 2009).  In the two subcatchments that I assessed, a priori Monte Carlo 

calculations using the Guo Method closely matched the data calibrated results 

following the SWMM User’s Manual approach.  That I was able to calculate the 

same values of this key sensitive parameter without using any calibration data 

provides further confirmation of the approach. 

• A canonical evolution strategies algorithm proved to be a useful approach to 

calibrate uncertain conceptual and empirical parameters and generally worked 

well even with the incorporation of noise, as implemented by concurrent MC 

sampling of non-calibration parameters.  The algorithm work less well (i.e., lack 

of sigma convergence toward lower bounds) as the varied search space size 

increased, however poorer performance under those circumstances was at least 
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partially attributable to noncommensurability and low information content in the 

calibration data.   Isolating model processes and collecting commensurate 

calibration data where possible should be a high priority in future work to allow 

for further narrowing of the high dimensional parameter space. 

• A loading analysis comparing modeled neighborhood loads with measured 

watershed loads suggested that neighborhood sediment loads were both retained 

in the channel and derived from unaccounted sources (e.g., the channel), that 

additional unaccounted for sources (e.g., channel erosion) contributed TP loading 

to the lower sampling stations, and that TN loads were relatively balanced among 

the sources explicitly considered.  A number of limitations in methodology were 

discussed which suggest additional measurements and modeling that could be 

employed to more tightly close watershed mass balance of these analytes. 

 

There are several limitations and caveats on this work that warrant elaboration 

and summary here.  For the RSA work, while the global approach employed provides 

strong insight into various SWMM component sensitivity, this work does not eliminate 

the need for additional study specific SA.  Differences between parameter sensitivity in 

the SW1 and East Drain subcatchments highlights the role that model structural 

configuration and base parameterization play in determining sensitivity, in addition to the 

magnitude of parameter perturbation used.   

In the calibration work, I attempted to employ an objective approach to narrow 

the feasible parameter space where possible and elsewhere propagate parameter 



175 

 

uncertainty through to model predictions where that parameter uncertainty could not be 

eliminated.  Nonetheless, the approach required a large number of subjective decisions to 

implement, such that other modelers employing the same approach might generate 

disparate results.  It should also be noted that, while I dealt explicitly with the issues of 

uncertainty in parameters, uncertainties in forcings / inputs and model structure were not 

assessed.  A more holistic uncertainty assessment would likely generate a wider range of 

predictions than was presented here.  

   Lastly, the loading analysis findings are best viewed as exploratory given the 

various limitations inherent in the approach.  The buildup and washoff model calibration 

and validation produced generally acceptable results, however its simplified empirical 

form provides at best an average accounting of seasonal or annual conditions.  I 

attempted to interpret the difference between measured and modeled loads on a process 

basis, while allowing that those differences include both unaccounted processes and 

cumulative error.  Combined, these factors prevent the drawing of more conclusive 

findings about channel contributions to the watershed TSS, TN and TP loads and 

dynamics considered. 
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CHAPTER 4 COMPARISON OF VERMONT TOTAL PHOSPHORUS AND TOTAL 

NITROGEN EVENT MEAN CONCENTRATION DATA WITH NATIONAL 

DATASETS 

 

4.1 Abstract 

Eutrophication is a leading source of water quality impairment in the U.S., and 

urbanized nonpoint phosphorus sources are recognized to be high (relative to receiving 

water targets) and variable.  Comprehensive regional and national sampling efforts to 

characterize nutrient concentrations in urban runoff have excluded Vermont, due in part 

to its lack of Phase 1 MS4 systems.  The pipe outfall total nitrogen (TN) and total 

phosphorus (TP) data collected in the studies detailed in the two preceding chapters are 

therefore somewhat unique in their applicability to Vermont urban runoff management.  

Here, I summarize the previous data compilations and compare the data collected in this 

dissertation’s work with previous findings from elsewhere in the U.S.  While TN 

concentrations sampled in this work were generally commensurate with what has been 

previously reported elsewhere, TP concentrations were not.  Drainage area attributes and 

an event based rainfall runoff analysis of the study catchments provide circumstantial 

support for a conclusion that lawns contribute a disproportionate proportion of the high 

TP concentrations at the Englesby study area.  Similar analyses in Butler Farms suggest 

that many of the sampled storms were driven entirely by directly connected impervious 

surfaces, which corresponded with relatively low TP concentrations.  Combined, this 

analysis suggests current Vermont State stormwater quality regulations (based solely on 

impervious cover) could be more precisely targeted at developed land pervious areas if 

the circumstantial findings of this research can be further verified.  
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4.2 Introduction 

Non-point source pollution is the cause of considerable water quality impairment 

throughout the U.S. (U.S. EPA 2013).  This is not for lack of understanding or 

management efforts, but rather due to the relative intractability of controlling diffuse 

sources (Novotny 2003).  When considering stormwater (i.e., non-agricultural diffuse 

source pollution), there are a range of impacts from land surface development which can 

adversely affect water quality.  Impervious surfaces and associated development can alter 

the storm driven and baseflow hydrologic responses (Leopold 1968; Simmons and 

Reynolds 1982), the sediment and solute loads (U.S. EPA 1983) and temperatures of 

runoff (Galli 1990), and can produce geomorphic impacts (Hammer 1972; Booth 1990) 

and changes in riparian communities (Naiman and Decamps 1997; Lyons et al. 2000), all 

of which can degrade physical habitat or directly affect organisms in streams (Paul and 

Meyer 2001).   

While each of these impacts can be highly consequential under specific 

circumstances, increased nutrient loadings and eutrophication are of particular 

importance for several reasons.  First, nutrients are the second and third leading causes of 

water quality degradation in lakes and ponds and rivers and streams, respectively, with 

the other leading causes of impairments not shared among these freshwater groupings 

(U.S. EPA 2013).  Additionally, the ubiquity of nutrients in the environment, both at 

background levels and from a variety of anthropogenic sources, complicates 

management.  The variety of potential sources of nutrients requires detailed knowledge of 
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the relative contributions of the various sources to formulate effective management 

strategies such as Total Maximum Daily Loads (TMDLs). 

In freshwater ecosystems, phosphorus is often the limiting nutrient and thus key 

for managing eutrophication (Novotny 2003; Schindler 1977).  While there are 

background sources of phosphorus that affect freshwater ecosystems (e.g., geologic, 

Abrams and Jarrell 1995; atmospheric deposition, Litke 1999; canopy leaching 

Waschbusch et al. 1999), land surface development has frequently been found to 

correlate with elevated phosphorus runoff concentrations, relative to pre-development or 

background levels (Pitt et al. 2004; U.S. EPA 1983).  Some of the sources of phosphorus 

to which elevated stormwater concentrations have historically been attributed include 

phosphates in detergents, pet wastes, and turf grass runoff.  While these potential 

contributing factors vary in their manageability, on a combined basis they are important 

controls on the elevated phosphorus concentrations that have been measured in previous 

stormwater research (U.S. EPA 1983).  

Phosphates (primarily sodium tripolyphosphate) were initially added to soaps and 

detergents as chelating agents in the 1940s, based on their ability to form complexes with 

calcium and magnesium thereby enhancing cleaning efficacy of detergents (Baird 1999).  

Recognition of the role of phosphates in freshwater eutrophication eventually led to their 

phase-out and replacement with other compounds, beginning in 1967 and progressing 

through the 1990s (Litke 1999).  During the period of their use, detergent based 

phosphates would primarily enter surface waters through collected wastewater flows or 

septic return flow, as opposed to entrainment in stormwater.  However, their presence in 
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automobile detergents provided a direct link to surface runoff and stormwater (just as 

their presence in marine detergents provided a direct link to surface waters).  This 

stormwater source is unlikely persist following the 1990s phase out of phosphates in 

detergents, however initial research into stormwater pollutant concentrations (e.g., US 

E.P.A NURP culminating in 1983) was likely affected by this source.  

Pet wastes are another source of developed land stormwater pollutants, based on 

the nutrients, coliform bacteria, and oxygen demanding substances contained therein (U.S 

EPA 1993).  Early pet wastes management efforts included so called “curbing laws”, 

whereby pet wastes were to be concentrated near curbs where they could subsequently be 

managed through street sweeping.  However, later efforts shifted focus to pet owner 

collection (i.e., so called “pooper-scooper laws”) given the questionable efficacy of street 

sweeping for pet wastes and the opportunities for stormwater transport of curbside pet 

wastes between sweeping instances.  While pet wastes have been linked to bacterial 

contamination of surface waters (e.g., Long Island Regional Planning Board 1982), little 

research or documentation exists on the nutrient content or conditions affecting transport 

of pet wastes under typical stormwater mobilization scenarios.  Given the tendency of 

these wastes to accumulate within the right of way of densely developed areas (i.e., 

where stormwater transport is plausible) this potential source warrants consideration.   

Another source of nutrients to which elevated nutrient runoff concentrations have 

repeatedly been linked is lawns or managed turf grass.  For example, Waschbusch et al. 

(1999) identified lawns as having the highest total phosphorus concentrations from a set 

of eight surface types (pervious and impervious) assessed in two developed Wisconsin 
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basins, with mean total phosphorus runoff concentrations from lawns of 1.03 and 2.34 mg 

L
-1

.  Bierman et al. (2010) measured mean annual flow-weighted phosphorus 

concentrations from constructed turf plots in Minnesota ranging from 0.75 to 4.98 mg L
-1

 

under different fertilization and clipping management treatments.  Clipping management 

was found to be a non-significant factor for phosphorus losses, however 80% of 

phosphorus losses over the three-year period of sampling occurred under frozen soil 

conditions, suggesting that late fall fertilizer application has a high potential for nutrient 

losses.  Steinke et al. (2013) measured surface runoff and phosphorus losses from prairie 

and turf grass plots in Wisconsin and found turf grass TP concentrations ranging from 

0.02 to 7.43 mg L
-1

, with annual averages of 1.27 and 1.95 mg L
-1

 in the two study 

basins.  Frozen soil conditions were found to dominate the surface runoff regime, with as 

much as 99% of annual runoff occurring under frozen soil conditions.  This hydrologic 

dynamic was similar to what was reported by Bierman et al. (2010), and has been 

reported by others for northern climates (Steinke et al. 2007; Timmons and Holt 1977).  

This suggests that hydrologic management of turf grass systems (i.e., lawns) may be a 

key consideration in managing phosphorus losses from turf grass portions of the 

developed landscape. 

In the remainder of this chapter I provide a summary of the total nutrient sampling 

data collected during this research project and place these data in context with previously 

published studies on nutrient concentrations in stormwater.  Four previously compiled 

sources of data on the topic (three national and one regional) are reviewed, which 

combined, provide a broad estimate of what is known about total nutrient concentrations 
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in stormwater.  Next, the details of the two studies in this work, namely Englesby Brook 

and Butler Farms / Oak Creek Village, are summarized in this context.  Additionally, I 

conducted a rainfall-runoff analysis for these study areas to further examine potential 

factors contributing to the notable TP findings from my research.  Lastly, potential causes 

of differences between these local data and national data sources are discussed, which 

may help to inform local management of eutrophication in cases where urban loads are 

thought to contribute. 

The focus on total nitrogen (TN) and TP concentrations in this chapter is based on 

several factors.  First, nitrogen and phosphorus are key nutrients that support biological 

production, and thus important in the consideration of eutrophication (Sterner and Elser 

2002; Conley et al. 2009).  Second, in many cases the total stock of nutrients (i.e., 

particulate and dissolved, organic and inorganic) is a better descriptor of the state and 

function of the ecological system than an instantaneous bioavailable fraction given the 

dynamic fluxes between these states over ecologically relevant temporal and spatial 

scales (Meybeck 1982; Howarth 1988; Sterner 2008).  Further, total nutrient 

concentrations are often the focus of regulation and eutrophication management and 

regulation (U.S. EPA 2010; U.S. EPA 2015), giving them further relevance.  Lastly, total 

nutrients or their respective components were sampled for and analyzed in my research, 

allowing for a direct comparison in this context. 
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4.3 Previous Data Compilations  

Four compiled data sets have been identified, spanning different geographic and 

temporal ranges, which have sought to characterize baseline piped stormwater quality.  

These are the U.S. EPA’s Nationwide Urban Runoff Program (U.S. EPA 1983), the 

Nationwide Urban Runoff Quality Database (Smullen et al. 1999) , the National 

Stormwater Quality Database (Pitt et al. 2004; Pitt 2011), and the Western Washington 

NPDES Stormwater Data Characterization (Hobbs et al. 2015).  While other localized 

datasets exist and have been incorporated into the larger national datasets 

(e.g.,Bannerman et al. 1993; Steuer 1997), the Western Washington data are recent and 

comprehensive, and thus summarized separately here.  The following sections review 

these data sets with a focus on the characteristics of the included data and on total 

nutrient results.  This in turn provides a basis for comparison of total nutrient data 

collected in this dissertation’s original research with other national and regional 

summaries.  

 

4.3.1 Nationwide Urban Runoff Program 

Perhaps the largest concerted effort to characterize the quality of collected 

stormwater was the National Urban Runoff Program (NURP), a large scale stormwater 

sampling initiative intended to establish a baseline for stormwater quality that could 

inform water quality management decision making (U.S. EPA 1983).  The work was 

carried out at 28 sites across the U.S. over five years, with sampling of urban stormwater 

outfalls and data analysis managed by USGS and in collaboration with state and local 
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partners.  NURP assessed runoff quality from the diverse range of urban sources 

contributing flow to the outfall points, including single land use (i.e., residential, 

commercial) and mixed land use areas.  At each of the study sites event mean 

concentration (EMC) samples of the selected analytes were measured during storm 

events, and the dominant land cover, population density, and percent impervious cover 

within the contributing drainage areas were recorded. 

Among the NURP EMC data collected, some of the key findings included a high 

degree of variability and lognormal distributions for most analytes.  Relatively high 

concentrations of metals (e.g., copper, lead, zinc) were noted, relative to ecological 

thresholds, as well as sediment, oxygen demanding substances, and coliform bacteria 

levels that could be problematic.  In general, NURP analyses were not able to attribute 

differences in pollutant levels to particular urban cover types within the urban landscape, 

concluding: 

 

“geographic location, land use category (residential, commercial, 

industrial park, or mixed), or other factors (e.g.,, slope, population 

density, precipitation characteristics) appear to be of little utility in 

consistently explaining overall site-to-site variability in urban runoff 

EMCs…” 

 

However, NURP did summarize EMCs by contributing land type, and these data have 

been used on that basis regardless of the lack of statistical differentiation in the data.  
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This speaks to the high demand for generalized urban land cover EMC data for various 

management applications and scenarios. 

 

4.3.2 Updating the U.S. Nationwide Urban Runoff Quality Database  

Numerous urban runoff studies were completed in the decades following the 

NURP efforts, which spanned different geographic areas, more recent time frames, and 

different contributing land surface characteristics.  The first formal effort to combine the 

NURP data with subsequent studies was reported on by Smullen et al. (1999).  They 

combined NURP data with data from the USGS National Urban-Storm-Runoff Database, 

and available sources of data from National Pollutant Discharge Elimination System 

(NPDES) permit monitoring.   These data were pooled and then compared to the original 

NURP data to investigate the degree to which more recent data suggest changes in the 

quality of urban runoff.  The resulting analysis suggested some differences in specific 

pollutant concentrations (e.g., median sediment EMCs appear to have declined 

significantly in the studies conducted after NURP), but in general the additional data 

confirmed the log-normally distributed character of many parameters and the generally 

high variability.  Future work was planned to assess the importance of land use 

characteristics in accounting for variation in pollutant distributions, however it is not 

clear that those analyses were ever completed or published. 
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4.3.3 National Stormwater Quality Database 

More recently, Pitt (2004; 2011) has compiled stormwater outfall sampling data 

from a variety of sources to characterize urban runoff concentrations in the National 

Stormwater Quality Database (NSQD).  The largest data source has been the more than 

200 regulated Phase 1 Municipal Separate Storm Sewer Systems (MS4s) (those serving 

populations of 100,000 or more), which were required to collect monitoring data as a 

permit condition. (By summarizing Phase 1 MS4s sampling data, this analysis best 

reflects the characteristics of stormwater that drains more highly developed areas.)  The 

later Version 3.1 of the NSQD (Pitt 2011) incorporated the MS4 data, NURP data, as 

well as data from a few other sources including USGS studies, highway runoff studies, 

and the International Stormwater BMP Database.  

Preliminary analysis of Version 1.1 of the NSQD suggested that there were 

differences in analyte concentrations among the 11 identified contributing land covers 

present in the data (e.g., residential, mixed commercial, freeways) (Pitt et al. 2004).  

However, they stated that additional analysis remained to confirm those differences given 

the confounding factors.  The original database (Pitt et al. 2004) was also summarized in 

tabular form by contributing land cover, with number of observations, detection 

frequency, median and coefficient of variation values given for the included analytes.  

The more recent Version 3.1 NSQD (Pitt 2011) is available as a spreadsheet download 

and does not appear to have been subject to detailed contributing land use analysis at this 

point in time. 
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4.3.4 Western Washington 

As a part of their Phase 1 MS4 permit, Washington Department of Ecology 

prescribed monitoring conditions on permittees with the goal to characterize local runoff 

quality and inform management objectives.  The eight permittees, a mix of cities, 

counties and ports, were required to implement a robust flow weighted sampling program 

for a suite of contaminants.  Study areas were selected to include primarily low-density 

residential, high-density residential, commercial, or industrial land uses, with allowances 

for mixed-use areas where suitable single use areas were not available.  The resulting 

data were analyzed for differences among seasons (i.e., wet season vs dry season) and 

land uses with the goals of identifying a local baseline and informing the most cost 

effective management strategies for local water quality concerns (Hobbs et al. 2015).   

In a certain respect, these are localized western Washington State data which are 

best viewed when pooled with other MS4 data, as was done in the NSQD.  However, the 

recent nature of the data (collected between 2007 and 2013) and the robust sampling 

methods across land uses and detailed reporting and analysis warrant individual 

consideration here.  Key findings from this work included that total nutrients and metals 

were higher among commercial and industrial land uses than residential land uses, 

although residential lands tended to have higher dissolved nutrient concentrations.  This 

finding in particular was in contrast to NURP, where differences among contributing land 

covers were not detected (U.S. EPA 1983).  Additionally, Western Washington 

concentrations tended to be higher in the dry season than in the wet season, suggesting 
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that dry season management (e.g., street sweeping) could be employed to effectively 

reduce total annual loads. 

 

4.4 Englesby 

As described in Chapter 2 of this dissertation, we gauged flow and collected 

samples of influent into an extended wet detention pond in the Englesby Brook 

watershed, in Burlington, Vermont.  While our primary goal was to assess the 

performance of the detention pond, the data collected at the pond inlet provides an 

opportunity to assess piped stormwater quality from the contributing drainage area.  

Thus, further aspects of the Englesby study are reviewed and reported here to 

characterize the quality of stormwater that drains from a mixed land use developed area 

in Burlington, Vermont. 

 

4.4.1 Study Site Characteristics 

The contributing area draining to the discharge point of the study area (i.e., the 

detention pond inlet) is 47.4 hectares, or 19.3% of the total Englesby Brook watershed 

area (though water that infiltrates in pervious areas within those 47.4 ha does not 

necessarily route to the pond).  The land cover attributes within the pond’s drainage area 

are predominantly developed, including single and multi-family residential, commercial, 

and educational / institutional uses (TABLE 1; FIGURE 27).  The majority of the lots are 

single family residential, with a median lot size of 790 m
2
 (0.20 acres).  Development 

within the area dates to the late 1800s, but with the majority of the residential 

development having occurred in the early to mid-1900s.  Underlying soils are diverse, 
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including Hydrologic Soils Groups A, B, C, and D (each at 15% extent or more), while 

14% of the area soils are classified as hydric, and 41% of the areas soils are classified as 

Potentially Highly Erodible or Highly Erodible.   

 

 

FIGURE 27. Study area contributing flow to the Englesby Brook Detention Pond.  

Surface runoff from the red cross hatched area is reported to drain to combined 

sewers, and thus not to our sampling location.  (Imagery date is May 2004, 

downloaded from Vermont Center for Geographic Information.) 
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Closed conveyance stormwater drainage is believed to have been installed 

concurrent with development, with discharges direct to the nearby Englesby Brook.  In 

areas with hydric soils or otherwise poor drainage, catch basins are installed in pervious 

areas providing a direct connection from lawns to the brook (and later, following 

rerouting, to the study detention pond).   Many areas of the drainage also lack curbing or 

have sunken / deteriorated curbing such that pervious areas extend to the pavement 

interface (FIGURE 28).  This provides an opportunity following extensive winter 

plowing for road runoff to collect along the disturbed interface of pervious and pavement, 

and could conceivably result in larger sediment and nutrient loads in spring conditions as 

compared to a more typical curbing scenario.  Alternately, depending on grading, the lack 

of curbing could allow road runoff to flow on to pervious areas rather than to storm 

drains, resulting in lower unit area loads.     

 

 

FIGURE 28. Yard drains installed within the study area, mapped as flowing into the 

detention pond.  Note the lack of curbing.  (Photos taken in July 2015.) 
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While the treatment area falls entirely within the Englesby Brook watershed, it is 

partially located within the Burlington (35%) and South Burlington (65%) municipalities.  

Both Burlington and South Burlington are regulated small MS4s with active management 

programs in place over the period of sampling.  Burlington reported sweeping all city 

streets at least twice per year (but as many as six times) over the period of our sampling 

(City of Burlington 2008; City of Burlington 2009; City of Burlington 2010).  A catch 

basin cleaning, assessment and repair program was also concurrent with sampling, which 

would have resulted in catch basins with the drainage area being cleaned (most likely 

repeatedly) over the period of our sampling.  Similarly, the City of South Burlington had 

an active MS4 management program over this period.  Street sweeping was reported to 

have occurred on all South Burlington streets at least twice a year during the period of 

sampling (City of South Burlington 2010).  Catch basin cleaning occurred throughout the 

City since 2005, with parts of the study area cleaned in 2009, and other parts cleaned in 

years prior.  Thus, dependent on the timing of the cleaning in 2009, many of the catch 

basins with the South Burlington portion of the study area may not have been cleaned 

concurrent or prior to our sampling, or in fact at any time preceding our sampling.  

A last drainage area factor worth mentioning is the Lake Champlain phosphorus 

impairment, which over the past decades has likely increased awareness of water quality 

issues in ways that could translate to better parcel scale management.  For example, the 

Lake Champlain Basin Program initiated the ‘Lawn to Lake’ outreach program in 2006, 

which included a highly visible campaign connecting pet wastes, car washing, and lawn 

fertilizers to eutrophication and impairment (Lake Champlain Basin Program 2014).  
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Combined with the outreach work of the Burlington and South Burlington Stormwater 

Programs (including catch basin stenciling), as well as media coverage of these issues, 

general awareness of nutrient runoff issues may have been elevated among residents 

within the drainage area.  However, the extent to which awareness of these issues has 

been increased, and more importantly, what if any changes in behavior are attributable to 

increased awareness, is not known. 

 

4.4.2 Sampling Setup and Collection 

USGS personnel installed monitoring equipment at the inlet of the detention pond 

in the summer of 2007.  Flow gauging equipment was installed inside the detention pond 

inlet riser, which receives flow from the contributing drainage area via a 0.91 m collector 

pipe.  A Sutron bubble gage was installed within a PVC stilling well, inside the inlet 

riser.  Stage and flow records were recorded at a 5-minute interval.  The stage-discharge 

ratings were developed using a combination of design drawings, site surveys, and 

temporary weir plates.   

Storm event samples were collected using an ISCO 3700 autosampler positioned 

on top of the inlet diversion structure, linked to and triggered by the flow gaging through 

a Campbell Scientific Datalogger.  Continuous temperature and conductivity readings 

were also collected at the inlet location.  Water sample collection was flow proportional, 

into a single composite jug for individual storm events.  The start of event sampling was 

either triggered by exceedance of a predefined stage threshold or was triggered manually 

during a site visit in advance of a storm.  The auto-sampler program ran until either the 
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composite jug was filled, or a site visit occurred for collection of the sample.  We made 

an effort to sample as many storms as possible during the monitoring period, resulting in 

43 sampled and analyzed storms over the period of record. 

Composite and grab dry weather samples were also collected at the pond inlet.  

To collect the composite dry weather samples, the autosampler was reprogramed to fill 

the composite jug via flow proportional sampling over a period of approximately 24 

hours.  The resulting composite samples included between 45-75 ISCO aliquots per daily 

sample and were collected on days when it had not rained more than 2 mm in the forty-

eight hours preceding the onset of sampling.  These 1-day dry weather composite samples 

were collected once during spring, summer, and fall seasons.  Several single grab samples 

were also collected during summer months.  These were collected by positioning a 

sample container where free discharge entered the forebay at the inlet. 

After collection, all storm and dry weather samples were either transported 

directly to the State of Vermont’s National Environmental Laboratory Accreditation 

Program (NELAP) accredited analytical laboratory for analysis, or were preserved and 

stored at a University of Vermont laboratory until subsequent transport to the State lab.  

The collected samples were analyzed for total nitrogen (SM-4500 N C persulfate 

digestion) and total phosphorus (EPA-4500-P F), both on an unfiltered basis. 

 

4.4.3 Englesby Brook Results 

Total nitrogen (TN) and total phosphorus (TP) storm sampling results from the 

inlet of the detention pond are summarized in TABLE 19.  As discussed in Chapter 2, I 
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attempted to ascribe the variation in inlet concentrations to various potential explanatory 

variables using best subsets regressions.  A large set of predictor variables related to flow, 

precipitation, and time of year were investigated using linear regression and best subsets 

multiple regression.  The best predictors identified (i.e., month of year, days since storm 

with peak flow of at least X) were generally of low predictive value for TN and TP event 

mean concentrations.  Many of the sampled events in our data set included what could be 

identified post-hoc as multiple discrete events.  Due to the relatively small area and high 

connected impervious cover of the treatment area, discrete events at the inlet can occur 

within periods of a few hours, so that during a day’s sampling more than one discretely 

identifiable inlet hydrograph was often sampled.  Thus, a single composite sampled event 

mean concentration often included multiple discretely identifiable inlet events, each of 

which would differ in event characteristics (e.g., peak q, time since previous event).  This 

makes it difficult to detect the effect of these predictors.   

 

TABLE 19. Sampling results from pond inlet.  Difference in n between Q Peak and 

nutrient sampling is due to a non-finalized portion of the hydrologic record as of the 

time of writing.  

 

  

ISCO 

Aliquots

TP                 

(mg L
-1

)

TN                        

(mg L
-1

)

Q Peak          

(m
3
 s

-1
)

n --- 43 43 40

Mean 25 0.77 1.55 0.230

Median 21 0.50 1.45 0.140

Geometric Mean 17 0.53 1.38 0.141

Range 2 - 75 0.10 - 3.69 0.53 - 5.20 0.022 - 1.264
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Concentrations of TP and TN at the pond inlet included large values that did not 

group well with the rest of the data set, which is not unexpected given the lognormal 

distribution of the datasets.  For example, the highest two TP concentrations (3.69 and 

3.60 mg L
-1

) were more than double the third highest value of 1.67 mg L
-1

.  Similarly, the 

highest two TN values (5.20 and 3.63 mg L
-1

) suggest the characteristics of the tail of the 

inlet TN distribution, with all other values more closely grouped in the range of 0.53- 

2.83 mg/L (FIGURE 6; FIGURE 7).  The maximum EMCs for TN and TP occurred 

during the same storm in which 7.8 mm of rain that fell on 2009-03-26, with the 

composite sample comprised of seven aliquots.  As an early spring storm, it is plausible 

that accumulated winter pet wastes, late fall deciduous organics, and senescent turf grass 

residuals were mobilized in that event resulting in the high nutrient concentrations.  It 

should be noted it had been a relatively mild month (i.e., warm), with sustained above 

freezing temperatures and 24 mm of rainfall fell over 4 days earlier in the month (i.e., it 

was not the first flow event of the year).  However, as a relatively small event, the 

constituent load would have been disproportionately composed of “first-flush” 

contaminants, which could partially explain the high EMCs. 

 The second highest TN concentration, 3.63 mg L
-1

, was measured during a 

rainfall event on 2009-02-11 (the TP value for the same storm was above median at 1.33 

mg L
-1

, but not among the highest recorded).  This was a 25 mm rainfall event that was 

not closely preceded by a period of warming or rainfall and is typical of what might be 

expected given a first spring rain on snow event.  Finally, the second highest TP value 

(3.6 mg L
-1

) was recorded about 6 weeks after the highest value, on 2009-05-07.  Two 
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other storms were sampled in the intervening period with TP concentrations that were 

above the median but not exceptionally high.  Like the 2009-02-11 event, the 2009-05-07 

storm was small, while the two events sampled in between had peak flow rates that were 

roughly double those of the smaller, bracketing events. This pattern is consistent with a 

first flush producing the high values measured during the smaller storms.  However, 

because we composited sample aliquots within storm events we cannot confirm this 

assumption.          

  

4.5 Butler Farms 

As described in Chapter 3 of this dissertation, we gauged flow and collected 

samples from two residential storm drain outfalls in South Burlington, Vermont.  These 

data were collected to characterize runoff quality of the Butler Farms and Oak Creek 

Village neighborhoods and to aid in a pollutant source assessment for Potash Brook 

Tributary 7.  However, the study subcatchments are in many ways typical of single 

family residential development in Vermont and thus can provide some insight into likely 

runoff concentrations for similar types of development.  Here I review the data we 

collected in greater detail to provide additional information to the relative paucity of 

localized urban runoff data sets. 

 

4.5.1 Study Site Characteristics 

The two instrumented drainage areas are referred to herein as the ‘East Drain’ and 

‘West Drain’, based on their position relative to the Potash Brook channel.   These 
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drainage areas are shown in FIGURE 29, with summary attributes provided in TABLE 

20.  Both drainages are small, encompassing parts of 16 or fewer residential lots each.    

Lots within the instrumented portions of the neighborhood were constructed between 

1987-1999, atop underlying soils mapped as Vergennes Clay and Covington Silt Clay 

(hydric), both of which are classified as poorly drained with a high runoff potential.  The 

residential lots include fill of unknown origin to create positive drainage and to allow for 

residential construction in low-lying hydric soils.  Lot drainage to the street flows to 

catch basins connected to a closed drainage system discharging directly to Potash Brook 

(FIGURE 30). 

 

FIGURE 29. East Drain and West Drain drage areas.  (Imagery date is May 2004, 

downloaded from Vermont Center for Geographic Information.) 
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TABLE 20.  East Drain and West Drain drainage area characteristics. 

 

 

Over the period of sampling (2008-2009), the storm drain system for the study 

area was managed by the South Burlington Stormwater Utility as a part of its regulated 

MS4 system.  This resulted in street sweeping in the spring and fall of both years of 

sampling (as well as the year preceding sampling), and catch basins in the study area 

were reported to have been cleaned in 2008.  Other MS4 management (e.g., outreach and 

education) described in Section 4.4.1 (Englesby Brook) occurred similarly in this area.   

An additional unique set of circumstances within the study area was the 

combination of ‘permit’ issues for the neighborhood, and the involvement of the 

Redesigning the American Neighborhood (RAN) Research Program.  The permitting 

issues stem from the neighborhoods having had a stormwater conveyance / management 

system and an associated stormwater discharge permit at the time of initial construction, 

but neither the system nor the permit were maintained over the following decades.  By 

2004, regulatory changes and the 303(d) listing of Potash Brook for stormwater 

impairment had made it impossible to bring the permit into compliance within the 

existing regulatory framework, creating issues for real estate transactions in the 

East Drain West Drain

Area (ha) 1.24 1.61

Partial Lots 16 12

Median Lot Size (m
2
) 1,674 1,396

TIA (%) 49.4 41.4

DCIA (%) 46.6 33.8

Canopy Cover 2004 (%)
*

1.2 1.3

* Hand digitized from 2004 color orthophotos. 
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neighborhood that may have incentivized residents to engage with the issue of 

stormwater management.  

Over the same period, a collaborative effort among University of Vermont 

researchers, City of South Burlington officials, and other stakeholders was initiated with 

a focus on the Butler Farms and Oak Creek Village neighborhoods (McIntosh et al. 

2006).  Full research goals and rationale are contained in grant work plans, however 

several aspects are directly relevant to land management within these study 

neighborhoods.  For example, RAN outreach efforts included the creation of a 

stormwater workgroup to bring together residents, researchers, municipal officials, and 

others to discuss stormwater management in the context of the neighborhoods.  Survey 

work was conducted among residents to gage background knowledge and attitudes about 

stormwater, as well as to assess preferences for various management scenarios (Kofstad 

2011).  Various information modules about general stormwater effects and treatment 

options were compiled on the RAN website, as well as stormwater content specific to the 

neighborhoods.  Lastly, two Stormwater Field Days were held at the neighborhoods, 

giving stakeholders an opportunity to discuss on site their concerns and alternative 

approaches to stormwater management.  Cumulatively, these actions could be expected to 

have raised both general awareness and knowledge about stormwater issues among 

residents.   
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FIGURE 30.  Looking east in the East Drainage (left) and northwest in the West 

Drainage (right). (Photos taken in July 2015.) 

 

4.5.2 Sampling Setup and Collection 

As previously described in Chapter 3, flow measurements and water quality 

samples were collected from within two piped stormwater outfalls (i.e., East Drain and 

West Drain, FIGURE 29).  In each location, vented In-Situ Level Troll 500 pressure 

transducers were mounted with ISCO mounting rings inside of the existing 47 cm 

diameter PVC storm pipes, with the pipes discharging via flared concrete aprons into the 

brook.  Flow rates in the pipes were calculated as a function of depth using Manning’s 

equations with a variable roughness coefficient as described by Wong and Zhou (2003).  

The pressure transducers connected to ISCO 6712 auto-samplers positioned on the stream 

bank above the outfalls.  Storm water quality samples were collected using a flow-

weighted sampling program, triggered by stage exceedance and stage rate of change 

thresholds.  Samples were collected by sample intake lines affixed to the cable conduit 

(protective shielding for the transducer cables), approximately 0.25 m downslope of the 

sensors, near where the storm pipes terminated at the concrete aprons.  In addition to the 
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composite storm samples, we collected samples during one storm using 24-bottle kits 

within the auto-samplers, allowing us to sample analyte concentrations throughout an 

event.  All collected samples were transported to a commercial lab for analysis, where 

they were analyzed for total suspended sediment (TSS) (EPA 160.2), unfiltered total 

phosphorus (TP) (EPA 365.1), nitrate (EPA 300.0), nitrite (EPA 300.0, discontinued 

following repeated non-detects), total Kjeldahl nitrogen (EPA 351.3 / 350.1), and 

chloride (EPA 300.0). 

 

4.5.3 Butler Farms Results 

Total nitrogen (computed as total Kjeldahl nitrogen plus nitrate plus ½ nitrite 

detection limit) and TP storm sampling results from the East Drain and West Drain are 

summarized in TABLE 21.  It can be seen that a greater number of samples were 

collected in the West Drain, which was a result of the physical configurations of the 

outfalls.  That is, at the West Drain we were able to better collect samples at low flow due 

to a slight gap between the terminating storm drain PVC and the entrance to the concrete 

apron, which created a small depth of water downstream of the sensor.  The ISCO 

strainer used to collect samples was 32 mm diameter, though it did not need to be entirely 

submerged to collect a sample.  However, this small depth of water at the West Drain 

resulted in substantially fewer errors caused by ‘No Liquid’ at the sampling strainer 

compared to the East Drain.  Given the very flashy timing of these systems, the failure to 

collect a sample (including an attempted line rinse cycle and second attempt at collection) 

can result in the rising limb and peak of the first storm pulse passing with no sample 
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collected.  These circumstances led us to discard collected samples for some storms due 

to the poor flow weighted coverage of the hydrograph and the costs of sample analyses, 

and is the primary cause of the discrepancy in the number of storms analyzed in the East 

and West Drains (TABLE 21).  

 

TABLE 21.  Sampled storm attributes and nutrient results for East Drain and West 

Drain storm sampling.  

 

 

Among the data collected, there was a greater range in EMCs for TP at the West 

Drain, though this is mostly attributable to a number of storms with high TP EMCs but 

for which samples were not collected and analyzed in the East Drain.  There were four 

West Drain storms where TP concentrations of 0.200 mg L
-1

 or more were measured, 

while all other West Drain concentrations were 0.103 mg L
-1

 or lower.  The four West 

Drain storms with 0.200 mg L
-1

 and greater included a storm with a long antecedent dry 

period (14 days) and the sampled storm with the highest peak flow rate, although not all 

ISCO   

Aliquots

TP               

(mg L
-1

)

TN         

(mg L
-1

)

Q Peak        

(m
3
 s

-1
)

East Drain

n --- 11 11 11

Mean 19 0.071 1.33 0.046

Median 11 0.073 1.33 0.042

Geometric Mean 13 0.063 1.27 0.041

Range 3 - 38 0.030 - 0.160 0.73 - 1.99 0.010 - 0.989

West Drain

n --- 19 19 19

Mean 19 0.102 1.44 0.033

Median 21 0.084 1.09 0.025

Geometric Mean 15 0.087 1.30 0.025

Range 3 - 38 0.034 - 0.240 0.57 - 3.32 0.006 - 0.092
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of these storms included high flow rates or long antecedent dry periods.  For these same 

storms, only one of the four was sampled and analyzed at the East Drain.  That storm at 

the East Drain had the highest East Drain TP concentration on record (0.160 mg L-1) and 

had the third highest East Drain peak flow rate on record (0.076 m
3
 s

-1
), although the dry 

antecedent period was not especially long (~5 days).  This all suggests that peak flow rate 

and antecedent dry time have an effect, although the small size of these data sets limits a 

more extensive analysis. 

For TN, concentrations at both sites appear to come from relatively continuous 

distributions, without apparent outliers.  Values were generally higher in the West Drain, 

although the highest values were not consistently differentiated by higher peak flow rates 

or antecedent dry periods.  Lastly, it is worth noting that the higher TN values at the East 

Drain were associated with higher TN values at the West Drain, suggesting that similar 

factors were important (i.e., a single outlier lot was not responsible).  However, for TP 

the same cannot be said due to a failure to collect and analyze East Drain samples for 

many of the West Drain storms that produced high concentrations.   

 

4.6 Comparison of Englesby and Butler Farms Data with National and Regional 

Datasets 

The various data sources considered in this chapter have been summarized in 

TABLE 22.  It can be seen that for TN, the data reported here for the Englesby and Butler 

Farms sites were generally in the range of reported values from studies conducted in 

other locations.  Given the previously reported high variability in urban runoff 
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concentrations (U.S. EPA 1983; Pitt et al. 2004) and the relatively small number of 

samples in this work, I don’t consider the difference noted in TN in this work versus 

national data to be meaningful.  However, the differences in TP concentrations reported 

in this study versus previously reported national data are notable and warrant additional 

analysis.  Again, due to the high reported variability in urban runoff data it is not entirely 

unexpected to encounter this variability among sites, and between local and national data.  

Nonetheless, any greater understanding of the factors responsible for this variability 

could inform local management efforts.  

 

TABLE 22.  Total nutrient concentration data from previous work, and from the 

studies reported on in this work.  

 
 

Consideration of the factors potentially driving TP EMCs in this work focused on 

land cover attributes and drainage characteristics.  A number of physical characteristics 

of the study drainage areas, including the presence of yard drains within the Englesby 

drainage and the relatively recent grading and engineered drainage within the East and 

Reference TN (mg/L) TP (mg/L)

Previous Studies

NURP (1983) 2.18* 0.266

Smullen et al. (1999) 2.0* 0.259

Pitt et al. (2004) 2.0* 0.27

Western Washington DOE (2015) 1.18* 0.11

This Research

Englesby Pond Inlet 1.41* 0.498

West Drain 1.09* 0.084

East Drain 1.33* 0.073

* TKN + NO2 + NO3

Median Urban Runoff EMCs
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West Drains, suggest that greater lawn contributions were responsible for the elevated 

Englesby TP concentrations.  Previous research has measured TP in stormwater runoff 

from lawns as being in excess of 1 mg L
-1 

(Bannerman et al. 1993; Bierman et al. 2010; 

Garn 2002; Steinke et al. 2007; Steinke et al. 2013; Waschbusch et al. 1999), and thus 

this dynamic would not be unprecedented. 

Because we measured flow and nutrient EMCs at pipe outfalls of mixed land use 

and mix land surface drainage areas, the role of developed pervious area as a driver of 

variation in TN and TP concentrations cannot be directly assessed.  Instead, I resort to an 

indirect means of investigation as described by Boyd et al. (1993).  This methodology 

uses a post hoc event based hydrologic analysis to infer the types of watershed area 

contributing flow.  To do so, a period of hydrologic record (runoff and rainfall) is 

reduced to the series of discretely identifiable storm events.  Area normalized runoff and 

rainfall depths are then plotted in a scatter plot for interpretation.  If storm runoff for all 

events is generated solely by an effective impervious subset of the watershed area, then 

all points will fall along a straight-line that can be interpreted as having a slope equal to 

the effective impervious watershed fraction and an intercept equal to initial watershed 

abstraction.  Alternately, points that deviate from the straight line can be attributed to 

storms occurring under wet antecedent conditions (i.e., initial abstraction met by 

preceding event), storms that generate runoff from areas other than the effective 

impervious fraction (e.g., pervious area runoff), and error.   

There are a number of potential difficulties in applying these interpretations to 

watershed runoff data, including hydrologic error in the rainfall and runoff terms, 
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handling of non-surface runoff, conceptual over simplification of watershed responses 

(e.g., gravel or earthen drive surfaces which may produce runoff at a frequency between 

that of hard impervious and previous), and subjectivity in the classification of individual 

events.  However, many of these difficulties are significantly reduced when this analysis 

framework is applied to relatively small areas where flow is collected and routed through 

engineered conveyance, as opposed to whole watershed stream response.  Thus, it has 

potential applicability for considering the surface types contributing flow to the sampled 

storm flow and nutrient loads measured in this research.   

A collection of R (statistical programming language) scripts were developed for 

this task, which allowed for relatively fast analysis of seven years of site / event flow 

records to be considered (i.e., two years of East Drain, two years of West Drain, three 

years of Englesby).  In brief, the R scripts first use a collection of user defined parameters 

to identify flow events based on a combination of peak rate detection, followed by 

beginning and end of event detection based on rate of change.  The resulting hydrographs 

and hyetographs are next visualized and edited using a set of command line scripts which 

allow the user to quickly add and delete events from consideration, and to precisely edit 

the start and end times for the discretely identified storm events using arithmetic and log 

transformed hydrographs.  Lastly, using the resulting table of start and end times for 

runoff and rainfall, event rainfall and runoff totals as well as other event based statistics 

of interest were computed by an additional script developed for this analysis. 

  Graphical results from the East Drain event identification analysis are presented 

in FIGURE 31.  From the 2008-09 period of hydrologic record, 97 discrete rainfall runoff 
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event pairs were identified.  It can be seen that many rainfall events less than 5 mm depth 

produced very little runoff response in the storm drains.  Thus, initial abstraction for the 

area can be interpreted as being approximately 4 mm.  It is important to note that small 

rainfall depths producing no runoff response are not captured by this analysis, and thus it 

will at best identify the upper bound on initial abstraction.  Except for a subset of four 

storms that occurred at or after mid-November, all East Drain storms we sampled were 

among those falling at the low end of the scatter plot, with respect to runoff depth.  This 

suggests that these storm flow volumes were produced by an effective impervious subset 

of the watershed area that produces runoff linearly as a function of incident rainfall.  It 

should be noted that the three highest values of TN and TP EMCs that were measured in 

the East Drain (not specifically annotated in FIGURE 31) were among the non-winter 

storms falling at the bottom of the graph.  That is, the relatively low maximum nutrient 

concentrations in the East Drainage set (as compared to national data) are likely to be due 

to effective impervious surface runoff alone.   
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FIGURE 31. East Drain event identification analysis. The three highest TP and TN 

EMC samples were among the non-winter storm set. 

 

Results from the West Drain event identification analysis are shown in FIGURE 

32.  A total of 156 discrete rainfall runoff events were identified and plotted, exhibiting a 

relationship similar to that observed in the East Drain.  Many of the rainfall events up to 

~3.5 mm of rainfall depth resulted in little to no runoff, which can be interpreted as an 

estimate of initial abstraction.  Many of the rainfall runoff points fall along a relatively 

well defined bottom edge of the scatter, which can again be interpreted as storm flows 

resulting from the effective impervious subset of the drainage area.  Also highlighted are 

the four sampled storms with TP concentrations greater than or equal to 0.200 mg L
-1

, as 
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compared to the rest of the West Drain data set.  In three of four cases, these storms did 

not fall along the interpreted effective impervious response region.  Rather, these storms 

had close to 1:1 runoff to rainfall ratios, suggesting all areas of the watershed contributed 

flow.  This provides circumstantial evidence that the ≥ 0.200 mg L
-1

 TP EMCs were 

driven by previous area response (i.e., residential lawns in this case), whereas the 

primarily impervious driven storms that were sampled were generally of lower TP EMC.   

 

 

FIGURE 32. West Drain event identification analysis.  Sampled storms occurring in 

winter conditions (i.e., mid- late-November and or December) and storms with high 

TP concentrations are highlighted. 
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Lastly, it should be noted that the highest (though not exceptionally high) TN 

values from the West Drain were not recorded for the same storms with the highest TP 

concentrations.  Rather, they were generally measured during what are interpreted here as 

impervious flow storms and were not easily attributable to runoff ratios, peak flow rates 

or antecedent periods.   

For the Englesby detention pond area, this analysis was complicated by the 

availability of commensurate rainfall data.  For the East Drain and West Drain sites, no 

point in the contributing drainage areas was more than 304 m from the tipping bucket 

rain gage maintained for the period of record.  This produced excellent visual 

correspondence between storm hyetographs and hydrographs, facilitating this analysis.  

For the Englesby Brook analysis, I relied primarily on data collected for Englesby Brook 

by the UVM Flow Monitoring Project.  This rain gage was maintained within the 

Englesby Brook watershed to the northeast of the study drainage area and was at most 1.7 

km from any point within the study drainage area.  For many of the storms in the flow 

record these hyetograph data corresponded well with the shape of the runoff response.  

However, for many storms, including most of 2009, these either did not correspond in 

shape to the runoff record (e.g., a single rainfall tip, but a multi-peak hydrograph 

response) or were missing.  Attempts were made to incorporate precipitation data from 

Butler Farms, other nearby FMP sites, and data from Burlington airport, which agreed 

well in some cases.  In general, I excluded from this analysis any storms for which there 

was not a satisfactory, matching event hyetograph.  The exception was for storms that 

were sampled for water quality, which importantly included winter storms and many 
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early spring storms before the FMP rain gage was operational.  For these storms, I relied 

on less precise hourly Burlington Airport data which was collected ~4 km to the 

northeast.  These data generally lacked the close event shape correspondence that could 

be seen in the hydrograph and hyetograph data using 5 min rainfall data.  However, 

importantly, the Burlington Airport hourly data allowed this analysis to be extended to 

the many late fall / winter / early spring storms that were sampled and upon which the 

following analysis relies.  

Using this approach, I was able to include 208 storm events from the period of 

record in this analysis (FIGURE 33).  Similar to the observations from the East Drain and 

West Drain at the Butler Farms study site, the event based rainfall runoff-analysis for the 

Englesby site showed a mix of storms that fell along a line that could be inferred as the 

effective impervious response region and other storms that had higher runoff ratios that 

could be inferred to have larger contributing runoff areas.  The storms sampled during 

winter months tended to have high runoff to rainfall ratios compared to the larger data 

set, which is consistent with meltwater runoff and / or frozen ground conditions 

increasing the land contributing surface flow.   
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FIGURE 33.  Englesby pond inlet event identification analysis.  Sampled storms 

occurring in winter conditions (i.e., mid-November through March) and storms with 

high TP concentrations are highlighted. 

 

 

Nutrient results are focused on the TP data collected since those were generally 

higher than data reported elsewhere.  As discussed in Section 4.4.3, the two highest TP 

concentrations occurred during relatively small storms (less than 10 mm rainfall) in early 

to mid-spring.  Thus, from a rainfall-runoff analysis perspective the storms producing 

these concentrations do not stand out.  FIGURE 33 highlights the sampled storms with 

TP concentrations greater than or equal to the median value from the Englesby data set.  

There is no clear pattern in these data, with median or greater TP values measured during 

both small and large storms, winter and non-winter storms, and high rainfall runoff ratio 
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and low rainfall runoff ratio storms (though the use of median Englesby TP as a threshold 

is arbitrary).  This suggests there are elevated TP loads within the contributing drainage 

area that are mobilized during a variety of event conditions over the year.   

As previously discussed, the presence of yard drains and lack of curbing in parts 

of the drainage area provides an opportunity for fertilizers, grass clippings, pet wastes, 

and other materials to flow off of residential lawns into storm drains.  Previous research 

has documented that lawns can produce TP runoff concentrations that are among the 

highest in the urban landscape (Bannerman et al. 1993; Bierman et al. 2010; Garn 2002; 

Steinke et al. 2013), so to the extent that these areas were routinely producing surface 

runoff within the Englesby study area, it is plausible that hydrologically connected lawns 

account for the elevated TP concentrations measured in this work.   

Canopy cover is another factor that has been identified as having a positive 

correlation with TP concentration in runoff (Waschbusch et al. 1999).  The Englesby 

study area had canopy cover of approximately 30% (TABLE 1), compared to less than 

2% at Butler Farms (TABLE 20), which is in general agreement with the correlation 

identified by Waschbusch et al. (1999).  A final possible source of elevated TP 

concentrations considered was illicit sewage connections or subsurface inflow of sanitary 

loads into the stormwater system.  However, these sources are not likely to be major 

factor based on the low TP values sampled at the pond inlet under dry weather conditions 

when wastewater inflows would be at their maximum proportion of total inflow (TABLE 

3).   
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4.7 Conclusions 

 

Since the first intensive stormwater quality assessment (NURP), stormwater 

quality has been known to be quite variable.  The data collected and reported on in this 

dissertation are consistent with that understanding.  TN and TP concentrations at Butler 

Farms were generally lower than median estimates from other studies.  I attribute this to 

parcel scale drainage patterns and the subset of storms sampled, such that most sampled 

storms appeared to represent directly connected imperious runoff response only.  Given 

the relatively well maintained pavement surfaces throughout the Butler Farms drainages 

and the relatively low traffic levels (i.e., not through streets), the potential sources of 

nutrients in runoff are limited.  A small number of storms from the West Drain sampling 

appeared to have pervious area hydrologic contributions, and had elevated TP 

concentrations as well.  This circumstantially supports a case that residential lawns are a 

relatively large source of TP among residential surfaces, consistent with prior research.   

That even the high Butler Farms TP concentrations were relatively low is more 

difficult to explain.  It is possible that UVM / RAN educational outreach and other water 

quality outreach efforts have resulted in lawn care and pet waste habits within Butler 

Farms that produce low TP concentrations.  Another possibility is that the relatively new 

fill at Butler Farms is well-drained, has high phosphorus sorptive potential, or both.  

However, these explanations are entirely speculative given the lack of data about the fill 

characteristics or residential lot management practices.   

For the Englesby dataset, the manner in which the samples were collected limits 

the conclusions that can be drawn about factors responsible for the high TP values that 
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were measured.  I speculate that based on the event based rainfall runoff analysis (and the 

obvious presence of yard drains), the Englesby dataset includes a high level of lawn 

runoff with elevated TP runoff concentrations.  The deciduous canopy cover, smaller lot 

sizes (potentially leading to increased pet wastes in the right of way, and also placing 

potentially fertilized decorative gardening closer to the right of way), lack of or general 

disrepair of curbing, and age of lawns (and potential exhaustion of phosphorus sorptive 

capacity) can all potentially explain the greater TP losses.  These are, however, entirely 

post-hoc explanations that were not directly assessed or controlled for in this research. 
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CHAPTER 5 CONCLUDING REMARKS 

 

Under the overarching theme of stormwater quality, modeling and management, 

the original research in this dissertation has generated several useful findings and 

suggested areas for further research.  These cumulative findings can generally be 

categorized under the headings of SWMM Modeling, Loading Analysis, Modeling 

Framework, Detention Pond Performance, and Nutrient Concentration Data, and are 

summarized in the following sections. 

 

5.1 SWMM Modeling 

There are several findings from the SWMM modeling reported in Chapter 3 that 

are likely to be of value to others within the SWMM users community.  The inclusion of 

the subsurface hydrology components within the global sensitivity analysis (SA) and the 

resulting insights are among the findings expected to be most useful for others.  While 

previous SAs have included the surface hydrology parameters (with generally 

comparable results to those reported here), the subsurface components have not 

previously been reported on in the published literature.  The subsurface model includes 

many conceptual or practically immeasurable parameters, making it difficult to manually 

calibrate or assess the sensitivity using the deterministic SWMM graphical user interface.  

The results of Chapter 3 demonstrate the sensitivity of simulated watershed runoff to the 

depth of the subsurface reservoir, the free draining void space (computed from porosity 

and field capacity), and the upper evaporation fraction, which is likely to provide useful 
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information for other modelers that cannot be easily gleaned from reviews of the 

algorithms used.  Existing guidance on this topic is to my knowledge limited to a series 

of narrative descriptions of parameter importance that have been posted by experienced 

modelers to the SWMM user’s listserv over time in response to questions.  Importantly, 

that narrative guidance does not necessarily agree with the findings of this SA.  Thus, the 

publication of Chapter 3 in this dissertation and the subsequent peer-reviewed publication 

of this work is likely to find an audience among the SWMM community.  

Another key finding of this work is the additional confirmed usefulness of the 

Guo Method for transforming the shape of a natural irregularly shaped watershed to a 

rectangular kinematic plane representation.  While Guo and Urbonas (2009) published 

the initial dimensional analysis and findings, and Guo et al. (2012) demonstrated that the 

approach worked on several real watersheds, it does not appear to have been adopted and 

published outside of Dr. Guo’s research group.  Thus, the independent use and robust 

confirmation in this work showing that a priori Guo estimates were virtually 

indistinguishable from computationally expensive ES calibrated values, albeit on two 

small homogenous subcatchments, may further validate this approach among the SWMM 

community.     

A final SWMM modeling conclusion that should be mentioned from my work 

relates to the Buildup and Washoff (Bu/Wo) algorithm calibration and validation.  Initial 

results from calibration runs of the Bu/Wo algorithms using composite EMC data were 

generally unsuccessful given that a wide range of pollutographs (including unrealistically 

high peaks) can compute to the same EMC.  Using the limited discrete sampling data 
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collected in this study, I was able to constrain these parameterizations to a degree while 

reserving part of the discrete data set for model validation as modeling best practices 

dictate, and as described in Chapter 3.  However, additional exploratory analysis 

suggested that ignoring the need for discrete data validation (i.e., simply calibrating 

against the full available record) can greatly increase the accuracy and precision of 

modeled water quality concentrations and loads.  Composite EMC data have several 

advantages, including reduced analysis costs and relative simplicity in sampling when 

using an autosampler.  However, it is clear from the results of this work that a single 

discrete event pulse for calibration (even combined with a larger set of composite 

sampled loads) may be insufficient to narrow the parameter space.   

In hindsight, a greater number of storms should have been sampled by discrete 

means to improve the usefulness of the sampling data for this task.  Nonetheless, 

calibration against the full data set (albeit without validation data to compare against) 

shows that good agreement can be found with just two discretely sampled storm pulses, 

as were collected in this work.  This suggests there may be an acceptable compromise 

between the approach of this work and a complete discrete bottle approach to sampling 

that maximizes usefulness while also limiting the cost and labor associated with operation 

of (in this case, four) automated, discrete bottle samplers. 

The most useful extension of this work into future research would be an extension 

of the SA approach used herein (or a similar global approach) to stormwater treatment 

practices represented in SWMM, particularly the new LID (low impact design) features 

that have been incorporated.  This additional functionality has introduced new parameters 
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that have not yet been assessed for sensitivity, and thus the SWMM user community 

would strongly benefit from a close examination.  However, given that the LID 

functionality has been frequently updated with additional functionality and bug fixes, and 

as of yet lacks comprehensive documentation, it may be premature for such an 

assessment at this time.   

 

5.2 Loading Analysis 

 

 The SWMM modeling just discussed was used to facilitate a measurement and 

modeling load analysis in the Potash Brook tributary study area.  This analysis suggests 

the stream channel is often a sink for sediment at the event scale and may be the source of 

unaccounted loads for other events.  A comparison of unaccounted TSS loads with event 

peak flow rates at the lower monitoring station provided further support for this 

interpretation by linking increased unaccounted TSS loads with increasing peak flow rate 

at the SW2 (lower) monitoring station.  The TP analysis was suggestive of an 

unaccounted for source of TP which I speculate is derived from channel erosion, however 

I lack additional circumstantial evidence for this conclusion due in part to the non-

significant linear relationship between peak flow rates and unaccounted TP loads.  

Analysis of the TN data suggested the most closed mass balance of the three analytes 

considered, although there were exceptions where considerably more TN was measured 

at the lower monitoring station than could be accounted for by SW1 (upstream) loads and 

neighborhood washoff.   
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Overall, there are limits on the conclusiveness of these findings due to 

uncertainties in the Bu/Wo model and the fact that I did not measure channel effects or 

golf and meadow inputs directly.  However, plausible physical mechanisms exist to 

explain the dynamics discussed, including channel erosion, channel retention, autumn 

leaf inputs and denitrification losses.  Thus, these findings can be used in localized 

watershed scale management on that basis, or as the basis for further work into these 

dynamics. 

 

5.3 Hybrid Monte Carlo and Evolution Strategies Modeling Framework 

The hybrid modeling framework I used, whereby uncertain parameters are either 

fixed at best estimates, subject to Monte Carlo sampling, or calibrated by (in this case) 

using the Evolution Strategies algorithm, all informed by the SA results, is not limited in 

its applicability to SWMM.  Rather, it draws on previous work on parameter uncertainty 

analysis and watershed calibration, and could be equally applicable to other modeling 

contexts.  Specifically, the idea that the uncertainty in some parameters must be 

manifested as noise in the model parameter space, while other uncertain parameters can 

be calibrated to improve model performance addresses a fundamental issue present in 

models with uncertain parameters.  While this specific approach is presented as new in 

this work, the volume of modeling literature precludes a definitive conclusion of the 

same.  However, to my knowledge the specific approach I took to this complex problem 

has not been employed previously and may be of use to others. 
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An additional observation that should be made regarding this work stems from the 

relatively precise simulated flow estimates that were produced by this approach.  That is, 

while the hydrologic model objective function values were not excellent in most cases, 

the range of estimates produced by the model were relatively small given the robust 

approach to extrapolating parameter uncertainty through the model.  A perceived 

disadvantage to uncertainty analysis in general has been the large uncertainty bands often 

generated in hydrologic applications, and the resulting difficulty in using highly uncertain 

predictions for management (Beven 2006).  In this work, the high resolution local rainfall 

data coupled with a relatively simple runoff response mode (i.e., impervious dominated) 

seems to have effectively constrained the model predictions.  (Although it should be 

noted that I did not explicitly account for uncertainty in input forcings (i.e., rainfall and 

ET) or model structure, and thus inherently underestimate total prediction uncertainty.)  

That the impervious surface conceptual model of SWMM closely matched the runoff 

dynamics of the studied system certainly should have helped to constrain predictions as 

well.  In other watershed modeling contexts, for example using highly parameterized / 

distributed models, the approaches I employed in this project would likely produce very 

wide uncertainty bands in many cases, limiting the perceived value of model results for 

management purposes.  While this could be viewed to render a model useless, it can also 

highlight limitations in input data and process understanding, thereby providing a basis 

for additional research and model refinement. 

 

 



221 

 

5.4 Detention Pond Performance 

Detention ponds have been frequently studied, however, as discussed in Chapter 2 

much of the research on detention ponds is at this point in time dated and not entirely 

reflective of current design practices.  The recently constructed detention pond that was 

the focus of this study was found to perform better than average, relative to the many 

previously studied ponds, despite the relatively high TP concentrations flowing in.  This 

suggests that modern design features, such as forebays, large permanent pools, and long 

flow paths may add to a pond’s ability to reduce total nutrient loads.  However, this 

single pond is insufficient to isolate those factors or make generalized conclusions about 

the efficacy of various pond features. 

Sediment is frequently a stormwater contaminant of concern, both as an impairing 

pollutant and as a surrogate for other pollutants.  An effort was made in this work to 

collect discrete suspended sediment concentration (SSC) samples and to record 

continuous turbidity measurements with our USGS partners towards development of a 

turbidity-SSC rating curve which could estimate sediment fluxes on event and seasonal 

scales.  However, maintenance of the turbidity probe was problematic given the condition 

of the influent, and thus the resulting data were not usable in this manner.  It is not known 

how reflective these circumstances are of other influent and turbidity meter pairings. 

Given the conditions encountered in this study, it may be that others should not rely on 

measuring sediment via turbidity and either dedicate an entire second sampler for parallel 

SSC sampling or simply use TSS subsampling with the reduced accuracy that entails. 
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This is not the first study to report elevated stormwater runoff temperatures or the 

ability of stormwater treatment permanent pools to accumulate heat during warmer 

months.  However, it does highlight the need to be attentive to this issue in Vermont and 

elsewhere.  Under Vermont’s current stormwater regulations, permanent pool detention 

ponds are quite common as a multi-purpose treatment strategy that can be configured to 

contribute toward or meet the Water Quality, Channel Protection (1-year), Overbank 

Flooding (10-year), and Extreme Flood Protection (100-year) standards (i.e., all 

regulatory standards but the Groundwater Recharge Standard).  This has led to the 

construction of hundreds if not thousands of these throughout the state.  There is a 

thermal mitigation design feature, in that the length of time the 1-year storm volume must 

be detained on average is reduced for sites draining to cold water fisheries from 24 hours 

to 12 hours.  It is worth noting that the design of the pond studied in this work provided 

only 4.6 hours of detention, and that this pond is somewhat of an outlier in many respects 

as a large municipal retrofit.  Nonetheless, it seems possible that for cold water systems a 

moderate development density with extensive use of stormwater management ponds 

could produce thermal alteration that would affect biota.  Current state efforts to rewrite 

the Stormwater Management Manual governing treatment standards for regulated sites is 

attentive to this dynamic, but would likely not require substantial retrofitting of the many 

existing ponds.   

 Lastly, the analysis of the TMDL flow metrics using different temporal resolution 

data highlighted the sensitivity of these metrics, and thus stormwater management, to the 

resolution used.  It is of course obvious that highly aggregated flow records (e.g., daily 
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flow) might be used in a large river basin whereas smaller drainage areas (e.g., storm 

drain subcatchments) would warrant higher resolution data to capture flow dynamics.  

Intuitively, this can be linked to drainage area, time of concentration, watershed lag, or 

other hydrologic concepts (Dingman 2002).  However, operationally this creates a 

challenge in Vermont’s stormwater impaired watersheds.  For TMDL development, 

watershed flows were modeled at an hourly resolution and then aggregated to mean daily 

flows for calculation of the TMDL metrics and inter-watershed comparison.  

Management practices, however, are most often designed at the parcel scale where a 

much finer temporal resolution may be warranted.   

For instance, the design of a treatment practice at different temporal precisions for 

a ‘typical’ 0.40 ha parking lot with a time of concentration of 4.4 minutes is illustrative.   

Using the USDA NRCS TR-20 runoff approach for the Chittenden County regulatory 

design storm depths (Soils Conservation Service type II distribution) at 1-hour time step 

produces a peak runoff rate of 11.6 L s
-1

for this parking lot.  Routing this flow through a 

typical regulatory grass channel for water quality treatment, a designer would need 107 m 

of grass channel to meet the 10 minutes of residence time that would be required under 

current regulations.  When remodeled at a 1-minute time step the resulting peak flow rate 

from the parking lot increases to 38.2 L s
-1

, which is only detained for 7 minutes when 

routed through the same grass channel.  At 1-minute temporal resolution the grass 

channel would need to be extended to 137 m to meet regulatory requirements.  A similar 

analysis extended to water quality filters, which are often used at sites with space 

constraints, would scale similarly.  Other detention based treatment practices are less 



224 

 

easily generalized, however could be affected by this dynamic as well.  The Englesby 

Brook watershed, among other stormwater impaired watersheds, will require numerous 

stormwater management installations to achieve the flow remediation targets and water 

quality goals as specified in the stormwater TMDLs.  Given that many of the needed 

installations may be for smaller sites where peak flow rates are sensitive to modeling time 

step, lack of attention to temporal precision could result in unforeseen difficulties in 

meeting TMDL targets.  

 

5.5 Concentration Data 

The concentration data summary in Chapter 4 provided a combination of analysis 

and speculation about the causes of differences between the Butler Farms, Englesby, and 

national TN and TP datasets, with the high TP concentrations measured at the Englesby 

site being the most notable aspect of this analysis.  FIGURE 33 showed that relatively 

high Englesby TP concentrations occurred along the inferable effective impervious front 

of the scatter plot, and while not displayed graphically, the points along that front were 

distributed throughout the year (March through October).  Lawns are certain to contribute 

within the Englesby drainage area given that portions of lawn are directly connected to 

the piped drainage system and previous research has documented lawn runoff to be high 

in TP under a variety of circumstances with respect to fertilization, soil phosphorus 

levels, and clippings management (Bannerman et al. 1993; Bierman et al. 2010; Garn 

2002; Steinke et al. 2007; Steinke et al. 2013; Waschbusch et al. 1999).  However, if 

lawns were the dominant factor in the study area I would expect the highest TP 
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concentrations to have occurred for large storms and winter storms during which runoff 

from lawns would be greatest.  Instead, high concentrations measured for small storms 

including during warmer months is more consistent with a combination of typical turf 

grass runoff and other TP sources within hydrologically connected areas which I 

speculate are dominated by pet wastes.   

While pet wastes are suspected of playing a key role in elevated Englesby TP 

loads, neither the rate at which pet waste nutrient loads accumulate in the landscape nor 

their transport potential cannot be directly estimated.  This is both because we did not 

assess pet wastes in our sampling, and previous research has not assessed this dynamic in 

sufficient detail to generalize to our site.  For example, many municipal, local, and 

international government sources cite pet wastes as a source of nutrients and bacteria, but 

without explicit quantification.  An extensive Web of Science and Google search did not 

produce useful quantitative estimates for pet waste nutrient loads.  Despite the lack of 

quantification and accounting, the small residential lots, potentially high pet density, and 

lack of park areas within the Englesby sampling area circumstantially supports the 

hypothesis that pet wastes contribute to year round loads in connected road shoulder 

areas.  Additional data on pet waste nutrient loads from the right way is needed to 

confirm or refute this hypothesis, which could, if further supported, inform management 

approaches to more precisely target pet waste nutrient loads. 

The other potential sources of TP in Englesby runoff include deciduous leaf fall 

and lawn management exclusive of pet wastes (e.g., fertilizer, grass clippings) and 

sewage inputs to the stormwater system.  Deciduous leaf fall is unlikely to be the 



226 

 

dominant factor given the timing of effective impervious TP loads throughout the year.  

However, the moderate deciduous canopy cover throughout the Englesby study area may 

contribute to higher pervious area runoff and phosphorus loss due to shading and thus 

lower quality turf.  Similarly, the composite and grab water samples collected on days 

without wet weather flow did not have elevated TN or TP concentrations, which suggests 

wastewater inputs were not a dominant factor.  Finally, while I discount turf grass loads 

alone as the dominant factor based on the relatively high concentrations measured during 

small summer storms, it cannot be ruled out that aesthetic concerns coupled with the 

difficulty of maintaining high quality turf in partially shaded conditions has led to heavy 

phosphorus fertilization of front lawns and road shoulder areas throughout the study area.  

These are the same areas that I have speculated would be ‘hot spots’ for pet wastes, and 

could plausibly produce elevated nutrient loads based on disproportionate management 

(e.g., fertilization).  Ultimately the data collected in this study do not allow for more 

conclusive separation of contributing sources of TP. 

As a final consideration, current Vermont Stormwater rules regulate water quality 

using a site-specific water quality volume calculation, which is strictly a function of 

regulated impervious surfaces and total site area and therefore ignores turf grass 

contributions.  Under this framework, it is common for impervious surfaces to be graded 

to drain to pervious areas (i.e., ‘disconnection’), which on moderately steep slopes or 

relatively poorly drained soils can result in mobilization of high loads of nutrients from 

lawns that receive runoff from relatively clean (from a nutrients perspective) roofs, 

driveways, and other surfaces.  It is also common for stormwater catch basins to be set 
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back within pervious areas, with impervious surfaces draining to those areas.  This can 

provide water quality benefits in some circumstances by diverting the runoff of many 

smaller storms to an area where volumes can infiltrate prior to reaching the engineering 

conveyance.  However, during storms for which surface runoff flows to the catch basins 

via pervious areas (i.e., large or intense storms, or those influenced by frozen soils or 

meltwater), lawn loads and impervious run-on loads can then be jointly mobilized.  

Simple educational outreach stressing the importance of management of fertilizers and 

pet wastes in areas near catch basins or other discharge points could help to reduce these 

loads, if confirmed by further research.  However, the inherently high TP concentrations 

presumably emanating from many existing turf grass surfaces irrespective of fertilizer 

and pet waste management will be difficult to manage if needed. 

 

 

5.6 Summary 

In summary, this work provides a mix of actionable findings, incremental 

progress and confirmation of present understanding that may be of use for stormwater 

modelers, researchers and managers.  To maximize visibility of these insights to the 

relevant communities, publication of this dissertation will be followed by peer-reviewed 

publication of key findings, as well as submittal of the detention pond data to the 

International Stormwater BMP Database and summary findings to the SWMM users 

listserv.   

 



228 

 

REFERENCES 

 

Aad, M. P. A., M. T. Suidan and W. D. Shuster (2010). Modeling techniques of best 

management practices: rain barrels and rain gardens using EPA SWMM-5.  Journal of 

Hydrologic Engineering 15(6): 434-443. 

  

Aguilar, C. and M. J. Polo (2011).  Generating reference evapotranspiration surfaces 

from the Hargreaves equation at watershed scale.  Hydrology and Earth System Sciences 

15(8): 2495-2508. 

  

Arnold, D. V. and H. G. Beyer (2003).  A comparison of evolution strategies with other 

direct search methods in the presence of noise.  Computational Optimization and 

Applications 24(1): 135-159. 

  

Aronica, G., G. Freni and E. Oliveri (2005).  Uncertainty analysis of the influence of 

rainfall time resolution in the modelling of urban drainage systems.  Hydrological 

Processes 19(5): 1055-1071. 

  

AVMA (2012). U.S. Pet Ownership and Demographic Sourcebook. Schaumburg, Il, 

American Veterinary Medical Association. 

  

Bäck, T. and H. P. Schwefel (1993).  An Overview of evolutionary algorithms for 

parameter optimization.  Evolutionary Computation 1(1): 1-23. 

 

Baird, C.  (1999). Environmental Chemistry.  2
nd

 Edition.  New York, NY, W.H. 

Freeman and Company. 

 

Balascio, C. C., D. J. Palmeri and H. Gao (1998).  Use of a genetic algorithm and multi-

objective programming for calibration of a hydrologic model.  Transactions of the ASAE 

41(3): 615-619. 

  

Bannerman, R. T., D. W. Owens, R. B. Dodds and N. J. Hornewer (1993).  Sources of 

pollutants in Wisconsin stormwater.  Water Science and Technology 28(3-5): 241-259. 

  

Barco, J., K. M. Wong and M. K. Stenstrom (2008).  Automatic calibration of the US 

EPA SWMM model for a large urban catchment.  Journal of Hydraulic Engineering-

ASCE 134(4): 466-474. 

  

Barrett, M. E. (2008).  Comparison of BMP performance using the International BMP 

Database.  Journal of Irrigation and Drainage Engineering-ASCE 134(5): 556-561. 

  

Bayer, P. and M. Finkel (2004).  Evolutionary algorithms for the optimization of 

advective control of contaminated aquifer zones.  Water Resources Research 40(6): 

W06506. 



229 

 

  

Bayer, P. and M. Finkel (2007).  Optimization of concentration control by evolution 

strategies: formulation, application, and assessment of remedial solutions.  Water 

Resources Research 43(2): 402410. 

  

Benaman, J., C. A. Shoemaker and D. A. Haith (2005).  Calibration and validation of soil 

and water assessment tool on an agricultural watershed in upstate New York.  Journal of 

Hydrologic Engineering 10(5): 363-374. 

  

Beven, K. (1993).  Prophecy, reality and uncertainty in distributed hydrological 

modeling.  Advances in Water Resources 16(1): 41-51. 

  

Beven, K. (2006).  On undermining the science?  Hydrological Processes 20(14): 3141-

3146. 

  

Beven, K. and A. Binley (1992).  The future of distributed models: model calibration and 

uncertainty prediction.  Hydrological Processes 6: 279-298. 

  

Beven, K. and A. Binley (2014).  GLUE: 20 years on.  Hydrological Processes 28(24): 

5897-5918. 

  

Beven, K. J., P. J. Smith and J. E. Freer (2008).  So just why would a modeller choose to 

be incoherent?  Journal of Hydrology 354(1-4): 15-32. 

  

Beyer, H. G. and D. V. Arnold (2003).  Qualms regarding the optimality of cumulative 

path length control in CSA/CMA-evolution strategies.  Evolutionary Computation 11(1): 

19-28. 

  

Bicknell, B. R., J. C. Imhoff, J. L. Kittle, T. H. Jobes and A. S. Donigan (2001). HSPF 

user's manual. Mountain View, California. 

 

Bierman, P. M., B. P. Horgan, C. J. Rosen, A. B. Hollman and P. H. Pagliari (2010).  

Phosphorus runoff from turfgrass as affected by phosphorus fertilization and clipping 

management.  Journal of Environmental Quality 39(1): 282-292. 

 

Blasone, R. S., J. A. Vrugt, H. Madsen, D. Rosbjerg, B. A. Robinson and G. A. 

Zyvoloski (2008).  Generalized likelihood uncertainty estimation (GLUE) using adaptive 

Markov chain Monte Carlo sampling.  Advances in Water Resources 31(4): 630-648. 

  

Booth, D. B. (1990).  Stream-channel incision following drainage-basin urbanization.  

Water Resources Bulletin 26(3): 407-417. 

  



230 

 

Booth, D. B. and C. R. Jackson (1997).  Urbanization of aquatic systems: degradation 

thresholds, stormwater detection, and the limits of mitigation.  Journal of the American 

Water Resources Association 33(5): 1077-1090. 

  

Borah, D. K. and M. Bera (2003).  Watershed-scale hydrologic and nonpoint-source 

pollution models: review of mathematical bases.  Transactions of the ASAE 46(6): 1553-

1566. 

  

Box, M. J. (1965).  A new method of constrained optimization and comparison with other 

methods.  Computer 8(1): 42-52. 

  

Boyd, M. J., M. C. Bufill and R. M. Knee (1993).  Pervious and impervious runoff in 

urban catchments.  Hydrological Sciences Journal-Journal Des Sciences Hydrologiques 

38(6): 463-478. 

  

Brazier, R. E., K. J. Beven, J. Freer and J. S. Rowan (2000).  Equifinality and uncertainty 

in physically based soil erosion models: Application of the glue methodology to WEPP-

the water erosion prediction project-for sites in the UK and USA.  Earth Surface 

Processes and Landforms 25(8): 825-845. 

  

Burszta-Adamiak, E. and M. Mrowiec (2013).  Modelling of green roofs' hydrologic 

performance using EPA's SWMM.  Water Science and Technology 68(1): 36-42. 

  

Cantone, J. P. and A. R. Schmidt (2009).  Potential dangers of simplifying combined 

sewer hydrologic/hydraulic models.  Journal of Hydrologic Engineering 14(6): 596-605. 

  

City of Burlington. (2008). City of Burlington phase II stormwater annual report 2007..  

Burlington Dept. of Public Works.  Burlington, VT 

  

City of Burlington. (2009). City of Burlington phase II stormwater annual report 2008.  

Burlington Dept. of Public Works. Burlington, VT 

  

City of Burlington. (2010). City of Burlington phase II stormwater annual report 2009.   

Burlington Dept. of Public Works. Burlington, VT 

  

City of South Burlington. (2010). City of South Burlington 2009 annual stormwater 

report. South Burlington Stormwater Services Division. South Burlington, VT 

 

Comings, K. J., D. B. Booth and R. R. Horner (2000).  Storm water pollutant removal by 

two wet ponds in Bellevue, Washington.  Journal of Environmental Engineering-ASCE 

126(4): 321-330. 

  

Comprehensive Environmental and NH DES (2008). New Hampshire stormwater 

manual, vol. 2. NH Dept. of Env. Services. Concord, NH. 



231 

 

  

Conley, D. J., H. W. Paerl, R. W. Howarth, D. F. Boesch, S. P. Seitzinger, K. E. Havens, 

C. Lancelot and G. E. Likens (2009).  ECOLOGY cntrolling eutrophication: nitrogen and 

phosphorus.  Science 323(5917): 1014-1015. 

  

Cook, S. E. K. (1976).  Quest for an index of community structure sensitive to water 

pollution.  Environmental Pollution 11(4): 269-288. 

  

Center for Watershed Protection (2000). Englesby brook watershed restoration project 

draft final report.  Center for Watershed Protection. Ellicott City, MD.   

  

Deb, K., A. Pratap, S. Agarwal and T. Meyarivan (2002).  A fast and elitist 

multiobjective genetic algorithm: NSGA-II.  IEEE Transactions on Evolutionary 

Computation 6(2): 182-197. 

  

Dietz, M. E. and J. C. Clausen (2008).  Stormwater runoff and export changes with 

development in a traditional and low impact subdivision.  Journal of Environmental 

Management 87(4): 560-566. 

  

Dingman, S. L. (2002). Physical Hydrology. Upper Saddle River, N.J., Prentice Hall. 

  

Doherty, J. and J. M. Johnston (2003).  Methodologies for calibration and predictive 

analysis of a watershed model.  Journal of the American Water Resources Association 

39(2): 251-265. 

  

Dow, C. L. and D. R. DeWalle (2000).  Trends in evaporation and Bowen ratio on 

urbanizing watersheds in eastern United States.  Water Resources Research 36(7): 1835-

1843. 

  

Downing, D. J., R. H. Gardner and F. O. Hoffman (1985).  An examination of response-

surface methodologies for uncertainty analysis in assessment models.  Technometrics 

27(2): 151-163. 

  

Duan, Q. Y., S. Sorooshian and V. Gupta (1992).  Effective and efficient global 

optimization for conceptual rainfall-runoff models.  Water Resources Research 28(4): 

1015-1031. 

  

Eiben, A. E., and J.E. Smith (2003). Introduction to Evolutionary Computing.  New 

York, NY, Springer. 

  

Elliott, A. H. and S. A. Trowsdale (2007).  A review of models for low impact urban 

stormwater drainage.  Environmental Modelling & Software 22(3): 394-405. 

  



232 

 

Ensign, S. H. and M. W. Doyle (2006).  Nutrient spiraling in streams and river networks.  

Journal of Geophysical Research-Biogeosciences 111: G04009. 

  

Fang, T. J. and J. B. Ball (2007).  Evaluation of spatially variable control parameters in a 

complex catchment modelling system: a genetic algorithm application.  Journal of 

Hydroinformatics 9(3): 163-173. 

  

Fennessey, L. A. J., A. C. Miller and J. M. Hamlett (2001).  Accuracy and precision of 

NRCS models for small watersheds.  Journal of the American Water Resources 

Association 37(4): 899-912. 

  

Ferrey, S. (2004). Environmental Law. New York, NY, Aspen Publishers. 

  

Fitzgerald, E. P., W. B. Bowden, S. P. Parker and M. L. Kline (2012).  Urban impacts on 

streams are scale-dependent with nonlinear influences on their physical and biotic 

recovery in Vermont, United States.  Journal of the American Water Resources 

Association 48(4): 679-697. 

  

Foley, J. and W. B. Bowden (2005). University of Vermont stormwater project:  

statistical analysis of watershed variables. University of Vermont. Burlington, VT. 

  

Fraley-McNeal, L. (2007). National pollutant removal performance database version 3.  

Center for Watershed Proteciton. Ellicott City, MD.   

  

Freer, J., K. Beven and B. Ambroise (1996).  Bayesian estimation of uncertainty in runoff 

prediction and the value of data: an application of the GLUE approach.  Water Resources 

Research 32(7): 2161-2173. 

  

Galli, J. (1990). Thermal impacts associated with urbanization and stormwater 

management best management practices.  Final report to:  Sediment and Stormwater 

Administation of Maryland Department of the Environment, Metropolitian Washington 

Council of Governments. 

  

Garn, H. S. (2002). Effects of lawn fertilizer on nutrient concentration in runoff from 

lakeshore lawns, Lauderdale Lakes, Wisconsin. Middleton, WI. USGS WRI 02-4130. 

  

Gaume, E., J.-P. Villeneuve and M. Desbordes (1998).  Uncertainty assessment and 

analysis of the calibrated parameter values of an urban storm water quality model.  

Journal of Hydrology 210(1-4): 38-50. 

  

Geotech Consultants and Wright Water Engineers (2012). International stormwater BMP 

database pollutant catergory summary statistical addendum: TSS, bacteria, nutrients and 

metals. Feb. 2014 from http://www.bmpdatabase.org. 

  



233 

 

Gilbert, J. K. and J. C. Clausen (2006).  Stormwater runoff quality and quantity from 

asphalt, paver, and crushed stone driveways in Connecticut.  Water Research 40(4): 826-

832. 

  

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine 

Learning. Reading, MA, Addison-Wesley Publishing Company. 

  

Gray, J. R., G. D. Glysson, L. M. Turcios and G. E. Schwarz (2000). Comparability of 

suspended-sediment concentration and total suspended solids data.  Reston, VA.  USGS 

WRI 00-4191. 

  

Groffman, P. M., A. M. Dorsey and P. M. Mayer (2005).  N processing within 

geomorphic structures in urban streams.  Journal of the North American Benthological 

Society 24(3): 613-625. 

  

Guo, J. C. Y., J. C. Y. Cheng and L. Wright (2012).  Field test on conversion of natural 

watershed into kinematic wave rectangular plane.  Journal of Hydrologic Engineering 

17(8): 944-951. 

  

Guo, J. C. Y. and B. Urbonas (2009).  Conversion of natural watershed to kinematic 

wave cascading plane.  Journal of Hydrologic Engineering 14(8): 839-846. 

  

Gupta, H. V., S. Sorooshian and P. O. Yapo (1998).  Toward improved calibration of 

hydrologic models: multiple and noncommensurable measures of information.  Water 

Resources Research 34(4): 751-763. 

  

Gupta, V. K. and S. Sorooshian (1985).  The automatic calibration of conceptual 

catchment models using derivative-based optimization algorithms.  Water Resources 

Research 21(4): 473-485. 

  

Hammer, T. R. (1972).  Stream channel enlargement due to urbanization.  Water 

Resources Research 8(6): 1530-1540. 

  

Hansen, N. and A. Ostermeier (1996). Adapting arbitrary normal mutation distributions 

in evolution strategies: the covariance matrix adaptation. Proceedings of the 1996 IEEE 

International Conference on Evolutionary Computation, Piscataway, New Jersey, IEEE 

Press. 

  

Hargreaves, G. H. and Z. A. Samani (1982).  Estimating potential evapo-transpiration.  

Journal of the Irrigation and Drainage Division-ASCE 108(3): 225-230. 

  

Harmel, R. D., R. J. Cooper, R. M. Slade, R. L. Haney and J. G. Arnold (2006).  

Cumulative uncertainty in measured streamflow and water quality data for small 

watersheds.  Transactions of the ASABE 49(3): 689-701. 



234 

 

Hendrickson, J. D., S. Sorooshian and L. E. Brazil (1988).  Comparison of newton-type 

and direct search algorithms for calibration of conceptual rainfall-runoff models.  Water 

Resources Research 24(5): 691-700. 

  

Herb, W. R., B. Janke, O. Mohseni and H. G. Stefan (2008).  Thermal pollution of 

streams by runoff from paved surfaces.  Hydrological Processes 22(7): 987-999. 

  

Hjelmfelt, A. T. (1991).  Investigation of curve number procedure.  Journal of Hydraulic 

Engineering-ASCE 117(6): 725-737. 

  

Hobbs, W., B. Lubliner, N. Kale and E. Newell (2015). Western Washington NPDES 

phase 1 stormwater permit: final data characterization 2009-2013. Olympia, WA. 

  

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, 

Michigan, University of Michigan Press. 

  

Hossain, M. A., M. Alam, D. R. Yonge and P. Dutta (2005).  Efficiency and flow regime 

of a highway stormwater detention pond in Washington, USA.  Water Air and Soil 

Pollution 164(1-4): 79-89. 

  

Houle, J. J., R. M. Roseen, T. P. Ballestero, T. A. Puls and J. Sherrard (2013).  

Comparison of maintenance cost, labor demands, and system performance for LID and 

conventional stormwater management.  Journal of Environmental Engineering 139(7): 

932-938. 

  

Howarth, R. W. (1988).  Nutrient limitation of net primary production in marine 

ecosystems.  Annual Review of Ecology and Systematics 19: 89-110. 

  

Huff, F. A. and S. A. Changnon, Jr. (1973).  Precipitation modification by major urban 

areas.  Bulletin of the American Meteorological Society 54(12): 1220-1232. 

  

Ibbitt, R. P. and T. O'Donnell (1971).  Fitting methods for conceptual catchment models.  

Journal of the Hydraulics Division-ASCE 97(9): 1331-1342. 

 

International Stormwater BMP Database. (2012).  Retrieved Jan. 7, 2014, from 

www.bmpdatabase.org. 

  

Jang, S., M. Cho, J. Yoon, Y. Yoon, S. Kim, G. Kim, L. Kim and H. Aksoy (2007).  

Using SWMM as a tool for hydrologic impact assessment.  Desalination 212(1-3): 344-

356. 

  

Janke, B. D., O. Mohseni, W. R. Herb and H. G. Stefan (2011).  Heat release from 

rooftops during rainstorms in the Minneapolis/St. Paul Metropolitan Area, USA.  

Hydrological Processes 25(13): 2018-2031. 



235 

 

Jeon, J. H., C. G. Park and B. A. Engel (2014).  Comparison of performance between 

genetic algorithm and SCE-UA for calibration of SCS-CN surface runoff simulation.  

Water 6(11): 3433-3456. 

  

Kertesz, R. and J. Sansalone (2014).  Hydrologic transport of thermal energy from 

pavement.  Journal of Environmental Engineering 140(8): 04014028. 

  

Kim, B., B. F. Sanders, K. Han, Y. Kim and J. S. Famiglietti (2014).  Calibration of 

stormwater management model using flood extent data.  Proceedings of the Institution of 

Civil Engineers-Water Management 167(1): 17-29. 

  

Knighton, J., E. White, E. Lennon and R. Rajan (2014).  Development of probability 

distributions for urban hydrologic model parameters and a Monte Carlo analysis of model 

sensitivity.  Hydrological Processes 28(19): 5131-5139. 

  

Kofstad, A. (2011). Stormwater management and the American neighborhood: a survey 

of New England residents. Rubenstein School of the Environment and Natural Resouces. 

Burlington, VT, University of Vermont. MS. 

  

Kollat, J. B. and P. M. Reed (2006).  Comparing state-of-the-art evolutionary multi-

objective algorithms for long-term groundwater monitoring design.  Advances in Water 

Resources 29(6): 792-807. 

  

Krebs, G., T. Kokkonen, M. Valtanen, H. Koivusalo and H. Setala (2013).  A high 

resolution application of a stormwater management model (SWMM) using genetic 

parameter optimization.  Urban Water Journal 10(6): 394-410. 

  

Kumar, S. and S. C. Jain (1982).  Application of SCS infiltration-model.  Water 

Resources Bulletin 18(3): 503-507. 

  

Lake Champlain Basin Program (2014).  Lawn to lake:  lawn care tips for green lawns 

not green lakes! . Retrieved Jun. 16, 2015, from http://www.lawntolake.org/index.htm. 

  

Lee, S. C., I. H. Park, J. I. Lee, H. M. Kim and S. R. Ha (2010).  Application of SWMM 

for evaluating NPS reduction performance of BMPs.  Desalination and Water Treatment 

19(1-3): 173-183. 

  

Lenat, D. R. and J. K. Crawford (1994).  Effects of land-use on water-quality and aquatic 

biota of 3 North Carolina piedmont streams.  Hydrobiologia 294(3): 185-199. 

  

Leopold, L. B. (1968). Hydrology for urban land planning- a guidebook on the 

hydrologic effects of urban land use. Geologic Survey Circular 554. 

  



236 

 

Liong, S. Y., W. T. Chan and J. Shreeram (1995).  Peak-flow forecasting with genetic 

algorithm and SWMM.  Journal of Hydraulic Engineering-ASCE 121(8): 613-617. 

 

Litke, D. (1999). Review of phosphorus control measures in the United States and their 

effects on water qualtiy.  Denver, CO.  USGS WRIR 99-4007. 

 

Long, D. L. and R. L. Dymond (2014).  Thermal pollution mitigation in cold water 

stream watersheds using bioretention.  Journal of the American Water Resources 

Association 50(4): 977-987. 

 

Long Island Regional Planning Board 1982. The Long Island segment of the Nationwide 

Urban Runoff Program.  Hauppauge, NY.  

  

Lucas, W. C. (2010).  Design of integrated bioinfiltration-detention urban retrofits with 

design storm and continuous simulation methods.  Journal of Hydrologic Engineering 

15(6): 486-498. 

  

Lyons, J., S. W. Trimble and L. K. Paine (2000).  Grass versus trees: managing riparian 

areas to benefit streams of central North America.  Journal of the American Water 

Resources Association 36(4): 919-930. 

  

MacRae, C. R. (1993). An alternate design approach for the control of instream erosion 

potential in urbanizing watersheds. Proceedings of the Sixth International Conference on 

Urban Storm Drainage. Niagra Falls, Ontario, Canada. 

  

Maier, U., C. DeBiase, O. Baeder-Bederski and P. Bayer (2009).  Calibration of 

hydraulic parameters for large-scale vertical flow constructed wetlands.  Journal of 

Hydrology 369(3-4): 260-273. 

  

Mallin, M. A., S. H. Ensign, T. L. Wheeler and D. B. Mayes (2002).  Pollutant removal 

efficacy of three wet detention ponds.  Journal of Environmental Quality 31(2): 654-660. 

  

Mantovan, P. and E. Todini (2006).  Hydrological forecasting uncertainty assessment: 

incoherence of the GLUE methodology.  Journal of Hydrology 330(1-2): 368-381. 

  

McCuen, R. H. (1979).  Downstream effects of stormwater management basins.  Journal 

of the Hydraulics Division-ASCE 105(11): 1343-1356. 

  

McCuen, R. H. and G. E. Moglen (1988).  Multicriterion stormwater management 

methods.  Journal of Water Resources Planning & Management 114(4): 414-431. 

  

McIntosh, A., A. Hackman, B. Kirk, B. Bowden, E. Fitzgerald and J. Todd (2006). RAN: 

working with neighborhoods to manage stormwater. Stormwater May/June: 95-99. 

  



237 

 

McKay, M. D., R. J. Beckman and W. J. Conover (1979).  A comparison of three 

methods for selecting values of input variables in the analysis of output from a computer 

code.  Technometrics 21(2): 239-245. 

  

Md. Code, Env. Art. §4-201.1 and §4-203.  Maryland's stormwater managment act of 

2007. 2007.  

 

ME DEP (2006). BMP technical design manual. Augusta, ME. Maine Dept.of the 

Environment.  

  

Medalie, L. (2012). Effects of urban best management practices on streamflow and 

phosphorus and suspended-sediment transport on Englesby Brook in Burlington, 

Vermont, 2000-2010. Montpelier, VT.  USGS SIR 2012-5103. 

  

Meybeck, M. (1982).  Carbon, nitrogen, and phosphorus transport by world rivers.  

American Journal of Science 282(4): 401-450. 

  

Monteith, J. L. (1965).  Evaporation and environment.  Symposia of the Society for 

Experimental Biology 19: 205-224. 

  

Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel and T. L. 

Veith (2007).  Model evaluation guidelines for systematic quantification of accuracy in 

watershed simulations.  Transactions of the ASABE 50(3): 885-900. 

  

Mulholland, P. J., R. O. Hall, D. J. Sobota, W. K. Dodds, S. E. G. Findlay, N. B. Grimm, 

S. K. Hamilton, W. H. McDowell, J. M. O'Brien, J. L. Tank, L. R. Ashkenas, L. W. 

Cooper, C. N. Dahm, S. V. Gregory, S. L. Johnson, J. L. Meyer, B. J. Peterson, G. C. 

Poole, H. M. Valett, J. R. Webster, C. P. Arango, J. J. Beaulieu, M. J. Bernot, A. J. 

Burgin, C. L. Crenshaw, A. M. Helton, L. T. Johnson, B. R. Niederlehner, J. D. Potter, R. 

W. Sheibley and S. M. Thomas (2009).  Nitrate removal in stream ecosystems measured 

by N-15 addition experiments: denitrification.  Limnology and Oceanography 54(3): 666-

680. 

  

Naiman, R. J. and H. Decamps (1997).  The ecology of interfaces: riparian zones.  

Annual Review of Ecology and Systematics 28: 621-658. 

  

Naranjo, R. C., R. G. Niswonger, M. Stone, C. Davis and A. McKay (2012).  The use of 

multiobjective calibration and regional sensitivity analysis in simulating hyporheic 

exchange.  Water Resources Research 48: W01538. 

  

Nelder, J. A. and R. Mead (1965).  A simplex method for function minimization.  

Computer Journal 7(4): 308-313. 

  



238 

 

Nielson, L. and C. L. Smith (2005).  Influences on residential yard care and water quality: 

Tualatin watershed, Oregon.  Journal of the American Water Resources Association 

41(1): 93-106. 

  

Novotny, V. (2003). Water Quality:  Diffuse Pollution and Watershed Managament. 

Hoboken, N.J., Jon Wiley and Sons, Inc. 

  

National Research Council (2009). Urban stormwater management in the United States. 

Committee on Reducing Stormwater Discharge Contributions to Water Pollution. 

National Research Council. Washington, D.C. 

  

Obropta, C. C. and J. S. Kardos (2007).  Review of urban stormwater quality models: 

deterministic, stochastic, and hybrid approaches.  Journal of the American Water 

Resources Association 43(6): 1508-1523. 

  

Ostermeier, A., A. Gawelczyk and N. Hansen (1994).  A derandomized approach to self-

adaptation of evolution strategies.  Evolutionary Computation 2(4): 369-380. 

  

Paul, M. J. and J. L. Meyer (2001).  Streams in the urban landscape.  Annual Review of 

Ecology and Systematics 32: 333-365. 

  

Peterson, B. J., W. M. Wollheim, P. J. Mulholland, J. R. Webster, J. L. Meyer, J. L. Tank, 

E. Marti, W. B. Bowden, H. M. Valett, A. E. Hershey, W. H. McDowell, W. K. Dodds, 

S. K. Hamilton, S. Gregory and D. D. Morrall (2001).  Control of nitrogen export from 

watersheds by headwater streams.  Science 292(5514): 86-90. 

  

Peterson, E. W. and C. M. Wicks (2006).  Assessing the importance of conduit geometry 

and physical parameters in karst systems using the storm water management model 

(SWMM).  Journal of Hydrology 329(1-2): 294-305. 

  

Peterson, J. R. and J. M. Hamlett (1998).  Hydrologic calibration of the SWAT model in 

a watershed containing fragipan soils.  Journal of the American Water Resources 

Association 34(3): 531-544. 

  

Pickup, G. (1977).  Testing the efficiency of algorithms and strategies for automatic 

calibration of rainfall-runoff models.  Hydrological Sciences Bulletin 22(2): 257-274. 

  

Pitt, R. (2011). The National Stormwater Quality Database, Version 3.1. Tuscaloosa, AL, 

Department of Civil and Environmental Engineering, University of Alabama. 

  

Pitt, R., A. Maestre and R. Morquecho (2004). The National Stormwater Quality 

Database, Version 1.1. Tuscaloosa, AL, Department of Civil and Environmental 

Engineering, University of Alabama. 

  



239 

 

Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. 

Sparks and J. C. Stromberg (1997).  The natural flow regime.  Bioscience 47(11): 769-

784. 

  

Ponce, V. M. and R. H. Hawkins (1996).  Runoff curve number: has it reached maturity?  

Journal of Hydrologic Engineering 1(1): 11-19. 

  

Pratt, J. M. and R. A. Coler (1976).  A procedure for the routine biological evaluation of 

urban runoff in small rivers.  Water Research 10(11): 1019-1025. 

  

Reed, P. M., D. Hadka, J. D. Herman, J. R. Kasprzyk and J. B. Kollat (2013).  

Evolutionary multiobjective optimization in water resources: The past, present, and 

future.  Advances in Water Resources 51: 438-456. 

  

Rossman, L. A. (2010). Storm water management model user's manual. U.S. EPA Office 

of Research and Development. Cincinatti, OH. 

  

Rossman, L. A. (2014). Re: [SWMM-USERS] Applications of SWMM in 

rural/undeveloped areas. SWMM  User’s Listserve. Posted on: Jan. 7, 2014. 

  

Roux, H. and D. Dartus (2008).  Sensitivity analysis and predictive uncertainty using 

inundation observations for parameter estimation in open-channel inverse problem.  

Journal of Hydraulic Engineering-ASCE 134(5): 541-549. 

  

Sabouri, F., B. Gharabaghi, A. A. Mahboubi and E. A. McBean (2013).  Impervious 

surfaces and sewer pipe effects on stormwater runoff temperature.  Journal of Hydrology 

502: 10-17. 

  

Saltelli, A. (2002).  Sensitivity analysis for importance assessment.  Risk Analysis 22(3): 

579-590. 

  

Saltelli, A., S. Tarantola and K. P. S. Chan (1999).  A quantitative model-independent 

method for global sensitivity analysis of model output.  Technometrics 41(1): 39-56. 

 

Schindler, D. W. (1977).  Evolution of phosphorus limitation in lakes. Science 

195(4275): 260-262. 

 

Schueler, T. (2000). Irreducible pollutant concentrations discharged from stormwater 

practices. Watershed Protection Techniques. Center for Watershed Protection. Ellicott 

City, MD. 

  

Schueler, T. R., L. Fraley-McNeal and K. Cappiella (2009).  Is impervious cover still 

important? review of recent research.  Journal of Hydrologic Engineering 14(4): 309-315. 

  



240 

 

Shaw, S. B., J. R. Stedinger and M. T. Walter (2010).  Evaluating urban pollutant 

buildup/wash-off models using a Madison, Wisconsin catchment.  Journal of 

Environmental Engineering-ASCE 136(2): 194-203. 

  

Shenk, G. W., J. Wu and L. C. Linker (2012).  Enhanced HSPF model structure for 

Chesapeake Bay watershed simulation.  Journal of Environmental Engineering-ASCE 

138(9): 949-957. 

  

Sieber, A. and S. Uhlenbrook (2005).  Sensitivity analyses of a distributed catchment 

model to verify the model structure.  Journal of Hydrology 310(1-4): 216-235. 

  

Simmons, D. L. and R. J. Reynolds (1982).  Effects of urbanization on base-flow of 

selected south-shore streams, Long Island, New York.  Water Resources Bulletin 18(5): 

797-805. 

  

Singer, M. B., R. Aalto, L. A. James, N. E. Kilham, J. L. Higson and S. Ghoshal (2013).  

Enduring legacy of a toxic fan via episodic redistribution of California gold mining 

debris.  Proceedings of the National Academy of Sciences of the United States of 

America 110(46): 18436-18441. 

  

Smullen, J., A. Shallcross and K. Cave (1999).  Updating the U.S. Nationwide Urban 

Runoff Quality Database.  Water, Science and Technology 39(12): 9-16. 

  

Sobol', I. M. (2001).  Global sensitivity indices for nonlinear mathematical models and 

their Monte Carlo estimates.  Mathematics and Computers in Simulation 55(1-3): 271-

280. 

  

Song, X. M., J. Y. Zhang, C. S. Zhan, Y. Q. Xuan, M. Ye and C. G. Xu (2015).  Global 

sensitivity analysis in hydrological modeling: review of concepts, methods, theoretical 

framework, and applications.  Journal of Hydrology 523: 739-757. 

  

Spear, R. C. and G. M. Hornberger (1980).  Eutrophication in peel inlet--II. identification 

of critical uncertainties via generalized sensitivity analysis.  Water Research 14(1): 43-

49. 

  

Spinello, A. G. and D. L. Simmons (1992). Base flow of 10 south-shore streams, Long 

Island, New York, 1976-85, and the effects of urbanization on base flow and flow 

duration. Syosset, NY. USGS WRI 90-4205. 

  

Spronken-Smith, R. A. and T. R. Oke (1998).  The thermal regime of urban parks in two 

cities with different summer climates.  International Journal of Remote Sensing 19(11): 

2085-2104. 

  



241 

 

Stedinger, J. R., R. M. Vogel, S. U. Lee and R. Batchelder (2008).  Appraisal of the 

generalized likelihood uncertainty estimation (GLUE) method.  Water Resources 

Research 44: W00B06. 

 

Steinke, K., W. R. Kussow and J. C. Stier (2013).  Potential contributions of mature 

prairie and turfgrass to phosphorus in urban runoff.  Journal of Environmental Quality 

42(4): 1176-1184. 

  

Steinke, K., J. C. Stier, W. R. Kussow and A. Thompson (2007).  Prairie and turf buffer 

strips for controlling runoff from paved surfaces.  Journal of Environmental Quality 

36(2): 426-439. 

 

Sterner, R. W. (2008).  On the phosphorus limitation paradigm for lakes.  International 

Review of Hydrobiology 93(4-5): 433-445. 

  

Sterner, R. W. and J. J. Elser (2002). Ecological Stoichiometry: the Biology of Elements 

from Molecules to the Biosphere. Princeton, NJ, Princeton University Press. 

  

Steuer, J., W. Selbig, N. Hornewer, and J. Prey (1997). Sources of contamination in an 

urban basin in Marquette, Michigan and an analysis of concentrations, loads, and data 

quality. Middleton, WI. USGS WRI 97-4242. 

  

Strecker, E. W., M. M. Quigley, B. R. Urbonas, J. E. Jones and J. K. Clary (2001).  

Determining urban storm water BMP effectiveness.  Journal of Water Resources 

Planning & Management 127(3): 144. 

  

Sun, N., B. G. Hong and M. Hall (2014).  Assessment of the SWMM model uncertainties 

within the generalized likelihood uncertainty estimation (GLUE) framework for a high- 

resolution urban sewershed.  Hydrological Processes 28(6): 3018-3034. 

  

Tang, Y., P. Reed, T. Wagener and K. van Werkhoven (2007).  Comparing sensitivity 

analysis methods to advance lumped watershed model identification and evaluation.  

Hydrology and Earth System Sciences 11(2): 793-817. 

  

Temprano, J., O. Arango, J. Cagiao, J. Suarez and I. Tejero (2006).  Stormwater quality 

calibration by SWMM: a case study in northern Spain.  Water SA 32(1): 55-63. 

  

Tetra Tech Inc. (2005). Stormwater modeling for flow duration curve development in 

Vermont: final report. Fairfax, VA.  Prepared for: U.S. EPA Region 1 and VT DEC. 

  

Thompson, A. M., K. Kim and A. J. Vandermuss (2008). Thermal characteristics of 

stormwater runoff from asphalt and sod surfaces. Journal of the American Water 

Resources Association 44(5): 1325-1336. 

  



242 

 

Thompson, A. M., A. J. Vandermuss, J. M. Norman and A. Roa-Espinosa (2008).  

Modeling the effect of a rock crib on reducing stormwater runoff temperature.  

Transactions of the ASABE 51(3): 947-960. 

  

Timmons, D. R. and R. F. Holt (1977).  Nutrient lossess in surface runoff from a native 

pararie.  Journal of Environmental Quality 6(4): 369-373. 

 

Trimble, S. W. (1997).  Contribution of stream channel erosion to sediment yield from an 

urbanizing watershed.  Science 278(5342): 1442-1444. 

  

Tsihrintzis, V. A. and R. Hamid (1998).  Runoff quality prediction from small urban 

catchments using SWMM.  Hydrological Processes 12(2): 311-329. 

 

UNH Stormwater Center (2009). University of New Hampshire stormwater center 2009 

biannual report. University of New Hampshire Stormwater Center.  Durham, NH. 

  

UNH Stormwater Center (2014).  Urban watershed renewal in Berry Brook.  Retrieved 

Dec. 14, 2014, from http://www.unh.edu/unhsc/berrybrook. 

 

U.S. EPA. (1983). Results of the nationwide urban runoff program- fnal report. Water 

Planning Division.  Washington, DC. 

  

U.S. EPA (1993). Guidance specifying management measures for sources of nonpoint 

pollution in coastal waters. Chapter 4: management measures for urban areas. U.S. EPA 

Office of Water.  Washington, D.C. 

 

U.S. EPA (2010). Chesapeake Bay total maximum daily load for nitrogen, phosphorus 

and sediment. U. S. EPA, Regions 2 and 3.  Philladelphia, PA, Annapolis, MD, and New 

York, NY. 

  

U.S. EPA (2013).  EPA water quality assessment and TMDL information: national 

summary of state information.  Retrieved Dec. 3, 2013, from 

http://ofmpub.epa.gov/waters10/attains_nation_cy.control. 

 

U.S. EPA (2015). Phosphorus TMDLs for Vermont segments of Lake Champlain. U.S. 

EPA Region 1.  Boston, MA. 

 

U.S. SCS (1965). National engineering handbook section 4 hydrology. U.S. Soils 

Conservation Service.  Washington, DC. 

 

Van Buren, M. A., W. E. Watt, J. Marsalek and B. C. Anderson (2000).  Thermal 

enhancement of stormwater runoff by paved surfaces.  Water Research 34(4): 1359-1371. 

  



243 

 

van Werkhoven, K., T. Wagener, P. Reed and Y. Tang (2008).  Characterization of 

watershed model behavior across a hydroclimatic gradient.  Water Resources Research 

44(1): W01429. 

  

van Werkhoven, K., T. Wagener, P. Reed and Y. Tang (2009).  Sensitivity-guided 

reduction of parametric dimensionality for multi-objective calibration of watershed 

models.  Advances in Water Resources 32(8): 1154-1169. 

  

Vrugt, J. A. and B. A. Robinson (2007).  Improved evolutionary optimization from 

genetically adaptive multimethod search.  Proceedings of the National Academy of 

Sciences of the United States of America 104(3): 708-711. 

  

VT ANR (2002). The Vermont sormwater management manual. vol. 1:  stormwater 

treatment standards. VT Agency of Natural Resouces.  Waterbury, VT. 

 

VT ANR (2006). Total maximum daily load to address biological impairment in Potash 

Brook, Chittenden County, Vermont. VT Agency of Natural Resouces. Waterbury, VT. 

  

VT ANR (2007). Total maximum daily load to address biological impairment in 

Englesby Brook, Chittenden County, Vermont. VT Agency of Natural Resouces. 

Waterbury, VT. 

  

VT ANR (2007b). Total maximum daily load to address biological impairment in 

Morehouse Brook, Chittenden County, Vermont. VT Agency of Natural Resouces. 

Waterbury, VT. 

  

VT ANR (2014). Vermont water quality standards. VT Agency of Natural Resources.  

Montpelier, VT. 

 

Vt. Env. Pro. Rules, § 18-302. Stormwater management rule. 2011. 

 

Vt. Stat. Ann. tit. 10, § 1266b.  Application of phosphorus fertilizer. 2012 

 

Wagener, T., D. P. Boyle, M. J. Lees, H. S. Wheater, H. V. Gupta and S. Sorooshian 

(2001).  A framework for development and application of hydrological models.  

Hydrology and Earth System Sciences 5(1): 13-26. 

  

Wagener, T. and J. Kollat (2007).  Numerical and visual evaluation of hydrological and 

environmental models using the Monte Carlo analysis toolbox.  Environmental 

Modelling & Software 22(7): 1021-1033. 

  

Walker, W. W. (1990). P8 urban catchement model program documentation. 

  



244 

 

Walsh, C. J., A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M. Groffman and R. P. 

Morgan (2005).  The urban stream syndrome: current knowledge and the search for a 

cure.  Journal of the North American Benthological Society 24(3): 706-723. 

  

Wang, Q. J. (1991).  The genetic algorithm and its application to calibrating conceptutal 

rainfall-runoff models.  Water Resources Research 27(9): 2467-2471. 

 

Waschbusch, R.J., W.R. Selbig, and R.T. Bannerman (1999).  Sources of phosphorus in 

stormwater and street dirt from two urban residential basins in Madison, Wisconsin, 

1194-95. USGS WRIR 99-4021. 

 

Weiss, P. T., J. S. Gulliver and A. J. Erickson (2007).  Cost and pollutant removal of 

storm-water treatment practices.  Journal of Water Resources Planning and Management-

ASCE 133(3): 218-229. 

  

WERF (2010).  Bellevue, Washington- merging stormwater features with parks and 

recreation.  Retrieved Jun. 10, 2015, from 

http://www.werf.org/liveablecommunities/studies_bell_wa.htm. 

  

Whittemore, R. C. (2004).   Discussion “Methodologies for calibration and predictive 

analysis of a watershed model,  by John Doherty and John M. Johnston”.  Journal of the 

American Water Resources Association 40(1): 267-267. 

 

Willeke, G.E. (1997).  Discussion “Runoff curve number: has it reached maturity?, by 

V.M. Ponce and R. H. Hawkins.”  Journal of Hydrologic Engineering 2(3): 145-148. 

 

Wilson, C. E., W. F. Hunt, R. J. Winston and P. Smith (2015).  Comparison of runoff 

quality and quantity from a commercial low-impact and conventional development in 

Raleigh, North Carolina.  Journal of Environmental Engineering 141(2). 

  

Winer, R. (2000). National pollutant removal database for stormwater treatment 

practices.  Center for Watershed Protection.  Ellicott City, MD. 

  

Wissmar, R. C., R. K. Timm and M. G. Logsdon (2004).  Effects of changing forest and 

impervious land covers on discharge characteristics of watersheds.  Environmental 

Management 34(1): 91-98. 

  

Wolman, M. G. (1967).  A cycle of sedimentation and erosion in urban river channels.  

Geografiska Annaler. Series A, Physical Geography 49(2/4): 385-395. 

  

Wong, T. S. W. and M. C. Zhou (2003).  Kinematic wave parameters and time of travel 

in circular channel revisited.  Advances in Water Resources 26(4): 417-425. 

  



245 

 

Wright Water Engineers and Geosyntec Consultants (2012). International stormwater 

BMP database:  narrative overview of BMP database study characteristics. Retrieved 

Feb. 2014 from http://www.bmpdatabase.org. 

  

Wu, J. S., R. E. Holman and J. R. Dorney (1996).  Systematic evaluation of pollutant 

removal by urban wet detention ponds.  Journal of Environmental Engineering-ASCE 

122(11): 983-988. 

  

Yapo, P. O., H. V. Gupta and S. Sorooshian (1998).  Multi-objective global optimization 

for hydrologic models.  Journal of Hydrology 204(1-4): 83-97. 

  

Yatheendradas, S., T. Wagener, H. Gupta, C. Unkrich, D. Goodrich, M. Schaffner and A. 

Stewart (2008).  Understanding uncertainty in distributed flash flood forecasting for 

semiarid regions.  Water Resources Research 44(5): W05S19. 

  

Yoon, J. H. and C. A. Shoemaker (1999).  Comparison of optimization methods for 

ground-water bioremediation.  Journal of Water Resources Planning and Management-

ASCE 125(1): 54-63. 

  

Zhang, C., J. G. Chu and G. T. Fu (2013).  Sobol''s sensitivity analysis for a distributed 

hydrological model of Yichun River Basin, China.  Journal of Hydrology 480: 58-68. 

  

Zhang, G., J. M. Hamlett, P. Reed and Y. Tang (2013).  Multi-objective optimization of 

low impact development designs in an urbanizing watershed.  Open Journal of 

Optimization 2(4): 95-108. 

  

Zhang, W. and T. Li (2015).  The influence of objective function and acceptability 

threshold on uncertainty assessment of an urban drainage hydraulic model with 

generalized likelihood uncertainty estimation methodology.  Water Resources 

Management 29(6): 2059-2072. 

  

Zoppou, C. (2001).  Review of urban storm water models.  Environmental Modelling & 

Software 16(3): 195-231. 

  

 

 



246 

 

APPENDIX A 

 

TABLE 23. Englesby detention pond inlet sampling details.  Sampled flow 

computed as volume of flow between time of first sample and time of last sample 

plus the average volume between sample aliquots.  

 

First Sample Last Sample Aliquots
TN           

(mg L
-1

)

TP           

(mg L
-1

)

Sampled 

Flow (m
3
)

Peak Flow 

(m
3
 s

-1
)

2007-09-09 09:52 2007-09-09 19:47 2 0.580 0.303 388 0.045

2007-09-11 18:25 2007-09-11 19:09 2 1.455 0.232 360 0.150

2007-10-19 20:30 2007-10-20 02:51 57 0.880 0.101 2,410 0.582

2007-10-23 11:14 2007-10-25 07:22 36 1.010 0.187 1,562 0.262

2007-10-26 21:19 2007-10-28 16:24 51 0.530 0.105 3,099 0.225

2007-11-15 00:09 2007-11-16 08:20 75 0.730 0.135 3,277 0.094

2008-04-01 11:43 2008-04-02 10:17 54 2.010 0.480 2,150 0.151

2008-04-11 11:43 2008-04-12 22:55 75 1.720 0.625 3,132 0.355

2008-04-28 12:19 2008-04-30 03:38 26 1.470 1.120 2,220 0.130

2008-06-03 13:26 2008-06-04 11:05 21 1.970 0.945 527 0.066

2008-06-10 13:28 2008-06-11 07:14 40 2.830 0.875 1,037 0.376

2008-06-14 19:15 2008-06-15 11:11 14 1.360 0.414 712 0.220

2008-06-28 15:09 2008-06-30 01:05 9 1.730 1.010 1,599 0.558

2008-07-09 12:49 2008-07-09 14:33 5 1.320 0.644 1,044 0.548

2008-07-13 14:37 2008-07-13 22:09 8 1.270 1.097 1,647 0.144

2008-07-23 04:17 2008-07-24 10:47 39 0.960 0.212 2,008 0.468

2008-07-30 15:11 2008-07-31 06:36 9 1.960 0.630 444 0.030

2008-08-08 17:49 2008-08-11 05:13 9 1.450 0.494 1,021 0.078

2008-08-18 20:37 2008-08-19 08:25 18 0.820 0.498 1,870 0.288

2008-09-09 06:34 2008-09-09 10:07 4 2.225 1.190 478 0.203

2008-09-26 17:48 2008-09-26 21:48 7 1.770 1.185 476 0.074

2008-10-21 07:47 2008-10-22 01:37 7 2.320 1.350 536 0.022

2008-10-25 15:44 2008-10-27 12:38 63 1.050 1.670 4,122 0.619

2008-11-08 18:26 2008-11-10 23:34 22 1.100 0.281 1,393 0.119

2009-02-11 06:15 2009-02-13 04:05 25 3.630 1.330 4,002 0.134

2009-03-26 18:31 2009-03-26 23:14 7 5.200 3.690 434 0.046

2009-04-03 17:26 2009-04-06 06:50 30 1.790 1.110 2,112 0.079

2009-04-06 12:04 2009-04-08 07:14 27 1.650 0.615 1,810 0.092

2009-05-07 02:08 2009-05-07 23:54 8 2.470 3.600 588 0.028

2009-05-24 05:07 2009-05-24 17:08 3 0.600 0.194 245 0.030

2009-05-27 00:48 2009-05-29 09:15 30 0.800 0.362 2,012 0.044

2009-06-07 17:55 2009-06-10 07:55 15 1.300 1.040 1,111 0.136

2009-06-11 16:11 2009-06-13 10:19 45 0.850 0.387 2,972 0.237

2009-06-18 15:07 2009-06-19 23:25 8 1.450 0.468 598 0.031

2009-06-26 16:34 2009-06-27 05:35 21 2.040 1.150 1,065 0.661

2009-06-29 05:27 2009-06-30 13:19 15 1.130 0.414 824 0.057

2009-06-30 15:18 2009-07-01 05:16 14 1.290 0.590 767 0.267

2009-07-06 14:12 2009-07-07 02:03 3 1.710 0.304 169 0.057

2009-07-07 15:07 2009-07-08 12:05 54 1.455 0.738 2,851 1.264

2009-07-11 14:55 2009-07-13 04:51 33 1.330 0.310 1,950 0.240

2009-11-14 12:05 2009-11-16 08:23 40 1.850 0.488 --- ---

2009-11-26 23:40 2009-11-30 08:54 41 0.840 0.138 --- ---

2009-12-03 00:31 2009-12-04 05:07 26 0.940 0.204 --- ---


