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ABSTRACT 

Transportation infrastructure is a major source of stormwater runoff that can alter 

hydrology and contribute significant loading of nutrients, sediment, and other pollutants 

to surface waters. These increased loads can contribute to impairment of streams in 

developed areas and ultimately to Lake Champlain. In this study we selected six 

watersheds that represent a range of road types (gravel and paved) and road densities 

(rural, suburban, and urban) present in Chittenden County, one of the most developed 

areas in Vermont. The location and density of road networks were characterized and 

quantified for each watershed using GIS analysis. Monitoring stations in each watershed 

were constructed and instrumented to measure discharge and water quality parameters 

continuously from spring through early winter. Storm event composite samples and 

monthly water chemistry grab samples were collected and analyzed for total nitrogen, 

total phosphorus, chloride, and total suspended sediments. Results from this study show 

that road type and road density are closely linked with the level of impairment in each 

watershed. Total phosphorus and total nitrogen from storm event composite samples and 

monthly grab samples significantly increased along a gradient of increasing road network 

density. Chloride concentrations increased several orders of magnitude along this same 

gradient. With the exception of Alder Brook where total suspended sediment (TSS) 

concentrations tended to be high, there were no significant differences in TSS 

concentrations between rural and developed watersheds. The elevated storm event TSS 

concentrations in the rural streams suggest that the unpaved roads in the rural watersheds 

contribute to stormwater runoff loads and that sediment control, at least in the developed 

watersheds, might be fairly effective. The overall results from this study show that local 

roads are a significant source of impairment for streams in the Chittenden County area. 

Most of these roads are municipal roads that are not under management of the Vermont 

Agency of Transportation. Thus, local actions will be necessary to reduce runoff and 

pollutant loading from these roads. 



 

i 

DEDICATION 

This thesis is dedicated to my mother Holly and my grandmother Josephine. They have 

both cultivated my love and appreciation of the environment and pushed me to be a better 

scientist. This work is also dedicated to my wife Sarah who shares my love of Vermont 

and passion for protecting our environment and natural resources. I very much look 

forward to the adventures we have in store for us.  

  



 

ii 

ACKNOWLEDGEMENTS 

I would like to acknowledge and thank my advisor and mentor Dr. Breck Bowden. Breck 

has shaped my academic and professional path since his arrival at the University of 

Vermont. My thesis advisors Drs. Mary Watzin and Donald Ross also provided important 

advice and support for this project. The extensive field and lab work required for the 

project required an army of researchers, friends, and family. Colin Penn, Patrick Tobin, 

Dan Freedman, Bianca Rodriguez, and Kelsey McAuliffe helped me through floods, 

mosquitos, snow, and ice. Susan Fuller and Leman Bronson helped with laboratory 

assistance and sample analysis. I would like to thank Steve Fiske and the Vermont 

Department of Environmental Conservation BASS lab for collaboration on the benthic 

macroinvertebrate sampling and analysis. The Bowden Watershed Research Team 

provided invaluable feedback and support over the years and the diverse background of 

its members was an invaluable resource. This project was supported by funding from the 

US DOT through the Transportation Research Center at the University of Vermont. 

 

  



 

iii 

TABLE OF CONTENTS 

DEDICATION ..................................................................................................................... i 

ACKNOWLEDGEMENTS ................................................................................................ ii 

LIST OF FIGURES .............................................................................................................v 

LIST OF TABLES ............................................................................................................. vi 

CHAPTER 1: COMPREHENSIVE LITERATURE REVIEW ..........................................2 

Introduction ......................................................................................................................2 

Characterizing Watershed Urbanization ..........................................................................3 

Urban Stream Syndrome ..................................................................................................4 

Water Chemistry Impacts. ........................................................................................... 6 

Biological Impacts. ...................................................................................................... 8 

Physical Impacts. ....................................................................................................... 10 

Spatial Scale of Watershed Impacts ...............................................................................12 

Specific Impacts from Transportation Infrastructure .....................................................13 

Sediment Impacts from Non-Paved Roads. ............................................................... 15 

Winter Deicing Chemical Impacts. ........................................................................... 16 

CHAPTER 2: JOURNAL ARTICLE ................................................................................18 

Project Background ........................................................................................................18 

Local Context .................................................................................................................19 

Research Goal, Objective, and Hypotheses....................................................................20 

Study Area ......................................................................................................................20 

METHODS ........................................................................................................................24 

Monitoring Station Location, Construction, and Instrumentation .................................24 

Continuous Monitoring and Maintenance ......................................................................24 

Discharge Rating Curves ................................................................................................25 

Storm Event Sampling ...................................................................................................25 

Monthly Grab Sampling .................................................................................................26 

Water Sample Processing and Analysis .........................................................................27 

Benthic Macroinvertebrate Sampling .............................................................................28 

Rapid Habitat Assessment ..............................................................................................29 

GIS Analysis ..................................................................................................................29 

Data Analysis .................................................................................................................30 



 

iv 

RESULTS ..........................................................................................................................31 

GIS Results .....................................................................................................................31 

Stream Flow ...................................................................................................................33 

Continuous Water Quality Results .................................................................................36 

Baseflow and Storm Event Water Quality Results. ................................................... 38 

Macroinvertebrate Results. ........................................................................................ 42 

RHA Results. ............................................................................................................. 43 

Road Network/Water Quality Parameter Relationships. ........................................... 44 

DISCUSSION ....................................................................................................................47 

COMPREHENSIVE BIBLIOGRAPHY ...........................................................................51 

 

APPENDIX A: Chloride Concentration and Specific Conductance in Developed              

Watersheds  

APPENDIX B: Macroinvertebrate Community Summary  



 

v 

LIST OF FIGURES 

FIGURE 1. Summary of impervious cover impacts on stream quality  ............................. 6 
FIGURE 2. Hydrograph for an urban and rural watersheds  ............................................ 11 

FIGURE 3. Study area location map. ............................................................................... 23 
FIGURE 4. Example of a two-part rating curve from Mill Brook. .................................. 33 
FIGURE 5. Flow duration curves based three-years of hourly flow data. ....................... 35 
FIGURE 6. Continuous water quality data from storm on September 29, 2009. ............. 37 
FIGURE 7. Mean TP concentrations for storm event and baseflow grab samples. ......... 39 

FIGURE 8. Mean TN concentrations for storm event and baseflow grab samples . ........ 40 
FIGURE 9. Mean Cl concentrations for storm event and baseflow grab samples . ......... 41 

FIGURE 10. Mean TSS concentrations for storm event and baseflow grab samples  ..... 42 
FIGURE 11. Regression of stream crossing density and TN concentrations. .................. 46 
FIGURE 12. Regression of stream crossing density and Cl concentrations..................... 46 
FIGURE 13. Regression of stream crossing density and EPT Richness. ......................... 47 

 

  



 

vi 

LIST OF TABLES 

TABLE 1. Watershed and landuse characteristics for the study area. .............................. 22 
TABLE 2. Length of road (km) by type in each study watershed. ................................... 32 

TABLE 3. Characteristics of the road network in each study watershed. ........................ 32 
TABLE 4. Discharge rating curve equations. ................................................................... 33 
TABLE 5. Daily mean flow duration summary................................................................ 36 
TABLE 6. Water temperature and dissolved oxygen concentration summary data. ........ 38 
TABLE 7. Benthic macroinvertebrate community results. .............................................. 43 

TABLE 8. Rapid habitat assessment results. .................................................................... 43 
TABLE 9. Road network and watershed imperviousness correlation. ............................. 44 

TABLE 10. Road network metric correlation with water quality results. ........................ 45 
TABLE 11. Road network metric correlation with BMI and habitat results. ................... 45 



 

2 

CHAPTER 1: COMPREHENSIVE LITERATURE REVIEW 

Introduction 

This literature review will briefly discuss the suite of biological, chemical, and 

physical effects of urbanization on surface waters. These impacts are commonly known 

as the “urban stream syndrome” and are well described in scientific literature; however 

these studies were typically conducted in watersheds with much higher development 

densities than are present in Vermont. Next, the review will focus on the types of impacts 

specifically related to road networks. While dirt and gravel roads have a unique set of 

associated impacts, much of the discussion of these roads is based on studies of 

temporary logging roads, not the types of well-maintained gravel roads found throughout 

rural Vermont.  

Urbanized areas have disproportionately large ecological footprints even though 

they only cover 2% of the earth’s land surface (Paul and Meyer 2001). As a result of 

these large ecological footprints, very few watersheds remain unimpacted by 

anthropogenic activities (Eyles and Meriano 2010). Streams and rivers are the low points 

of the landscape and are therefore potentially affected by any anthropogenic changes to 

the natural environment. Over 130,000 km of streams and rivers in the U.S. are impacted 

by urbanization (Paul and Meyer 2001). Chittenden County in northwestern Vermont is 

the most developed county in the State with a population of 156,545 in 2010 (U.S Census 

Bureau 2010). Several streams in Chittenden County and Lake Champlain are listed as 

impaired waters as a result of stormwater runoff (VTDEC 2010).   
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Transportation infrastructure is an important component and driver of 

urbanization. Road networks are constructed and expanded concurrently with 

urbanization, and existing roads are shown to drive future development patterns (Wheeler 

et al. 2005). Numerous recent studies have identified transportation infrastructure as a 

major source of stormwater runoff and pollutant loading to receiving waterbodies 

(Wheeler et al. 2005; Kang and Marston 2006; Eyles and Meriano 2010). Transportation 

infrastructure is a ubiquitous feature of the developed landscape and can represent as 

much as half of the impervious surfaces in developed watersheds (Eyles and Mariano 

2010). The 6,300,000 km of public roads in the U.S. directly affect approximately 20% of 

the landscape and 50% of the U.S. land area is within 382 m of a road (Wheeler et al. 

2005). 

Characterizing Watershed Urbanization 

The total impervious area (TIA) in a watershed is the most prevalent metric for 

characterizing the level of urbanization and therefore the degree of impact on receiving 

waterbodies (CWP 2003; Kang and Marston 2006). The most common method for 

quantifying TIA, especially in larger watersheds, is through the use of spatial land use/ 

land cover classification data (CWP 2003). Each land use class (forest, commercial, light 

residential, etc.) has an associated TIA value and the relative percent land cover for each 

class is summed and weighted to estimate watershed TIA. The TIA values commonly 

used for these studies were calculated from direct measurements of orthophotos from 

numerous datasets, mainly in the 1970’s. The accuracy of %TIA estimates are closely 

linked to data quality and to the level of data processing effort; however these original 
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studies noted that considerable variation was present within each land use class (Brabec 

et al. 2002; CWP 2003).  

Estimates of TIA represent the paved impervious surfaces in the watershed 

(Booth and Jackson 1997; Kang and Marston 2006). These calculations ignore compacted 

impervious surfaces and the complex network of pipes and connectivity present in a 

developed watershed (Booth and Jackson 1997; CWP 2003; Kang and Marston 2006). 

Effective Impervious Area (EIA) is a more detailed and comprehensive method for 

quantifying watershed imperviousness, taking into account the complex drainage 

networks that define an urban watershed (Hatt et al. 2004; Jacobson 2011). EIA 

calculations require ground truthing of drainage infrastructure and connectivity and are 

much more time intensive (Booth and Jackson 1997; Brabec et al. 2002; CWP 2003). As 

a result of the different methods and range of effort level required for calculating EIA or 

TIA, it can be challenging to compare findings from different studies of watershed 

impacts from development (CWP 2003; Jacobson 2011). 

Urban Stream Syndrome 

A broad range of scientific studies have found strong evidence that increasing 

watershed development leads to physical, biological, and chemical impairment in 

receiving streams and rivers, known as the “urban stream syndrome” (Meyer et al. 2005; 

Walsh et al. 2005). The location of streams in the landscape makes them particularly 

vulnerable to the myriad impacts of the urban stream syndrome (Walsh et al. 2005). Most 

studies consider mid to high levels of urbanization to be as high as 30-40% TIA. Much 

less research has been conducted in watersheds with lower levels of development as is 
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typically found in Vermont (Wang et al. 2003; Wheeler et al. 2005; Chadwick et al. 

2006). 

Significant relationships between TIA and a range of biotic and abiotic factors 

have been documented in numerous studies; many of these relationships suggest a 

threshold response at a specific level of watershed development (Booth and Jackson 

1997; Paul and Meyer 2001; Brabec et al. 2002; CWP 2003). A threshold of 10% 

watershed development has been associated with a wide range of physical (i.e. altered 

hydrology), chemical (i.e. increased nutrient concentrations), and biological impacts (i.e. 

loss of pollution sensitive organisms) (Booth and Jackson 1997; Paul and Meyer 2001; 

Wang et al. 2003; Wheeler et al. 2005). However, many studies have observed watershed 

impacts at very low levels of development and suggest response thresholds as low as 5% 

particularly for some biologic and physical stream indicators (Paul and Meyer 2001; 

Wang et al. 2003; Schiff and Benoit 2007). Recent updates of the impervious cover 

model and threshold responses defined by CWP (2003) show the range of observed 

impacts at a given level of watershed imperviousness (white cone in Figure 1) and 

indicate a range of imperviousness where overall stream quality is expected to decrease 

in contrast to the specific degradation thresholds previously included in the model 

(Schueler et al. 2009). 
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FIGURE 1. Summary of impervious cover impacts on stream quality from 

Schueler et al. (2009). 

Water Chemistry Impacts. 

Stormwater drainage infrastructure collects and concentrates the diffuse sources 

of nutrients and other chemicals across an urbanized watershed and routes these directly 

to receiving waters (Hatt et al. 2004; Berhnardt et al. 2008). Effective impervious area 

calculations which account for drainage infrastructure and increased hydrologic 

connectivity are shown to best explain chemical loading and impacts in developed 

watersheds (Hatt et al. 2004). Most studies have found that stream chemistry impacts are 

typically observed at higher levels of urbanization (30-40% TIA) and that highly 

urbanized watersheds may have extensive chemical and nutrients impairments, including 

levels of total phosphorus (TP) and total nitrogen (TN) higher than those observed in  

agricultural watersheds (Paul and Meyer 2001; Wheeler et al. 2005). Chloride and a suite 
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of chemicals that can be toxic to stream biota are well documented components of the 

urban stream syndrome and both are predominantly generated on roads and parking lots 

and will be discussed in a later section describing road network specific water chemistry 

impacts.  

Phosphorus (P) is a critical nutrient in freshwater aquatic systems and increased 

loading of this nutrient can dramatically change receiving waters. Wastewater treatment 

plants are a major point-source of P in some watersheds; however most of the P loading 

originates from diffuse sources such as lawn fertilizer, animal waste, and septic systems 

(Paul and Meyer 2001). Phosphorus loading from septic systems can be particularly 

important in rural watersheds and may lead to significant nutrient enrichment of smaller 

streams (Withers et al. 2011). Phosphorus concentrations in urban streams are typically 

closely linked to sediment, sources of which will be discussed in a following section. 

Nitrogen (N) has a complex life cycle in urban watersheds and many recent 

studies have been devoted towards understanding N dynamics in these streams 

(Mulholland and Webster 2010). Nitrogen loading in developed watersheds shares many 

of the same sources as P, and biologically available forms of N (fixed N) are also 

important nutrients in freshwater systems. Developed watersheds also receive significant 

loading of NH3, NOx, and N2O that is fixed from inert N2 in automobile engines. The 

total inputs of anthropogenic fixed N in urban watersheds can equal or exceed natural 

sources (Bernhardt et al. 2008; Collins et al. 2010). Drainage infrastructure and stream 

habitat simplification in urban watersheds increase the hydrologic connectivity between 

N sources and surface waters. This creates a direct pathway for N export and removes or 
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reduces the opportunity for natural denitrification processes in riparian soils or instream 

on features such as debris jams (Walsh et al. 2005; Bernhardt et al. 2008; Collins et al. 

2010). 

Total Suspended Sediment (TSS) loading has a variable response across studies of 

urban watersheds (Walsh et al. 2005). This is in part due to shifts in TSS sources based 

on the development trends within a watershed. During the clearing and building phase of 

watershed development, the primary loading is fine sediments from terrestrial sources. 

Following urbanization, increased flashiness and increased peak flows lead to stream 

morphological changes and stimulate channel, bed, and bank erosion (Booth and Jackson 

1997; Schoonover et al 2007). 

Biological Impacts. 

Watershed urbanization is shown to dramatically reduce riparian and instream 

habitat complexity and function, and to impact the biodiversity and community 

composition of fish and benthic macroinvertebrate communities (Paul and Meyer 2001; 

Wang et al. 2003; Walsh et al. 2005; Wheeler et al. 2005; Chadwick et al. 2006). 

Degradation of the riparian zone is observed at the lowest levels of watershed 

development (<5% TIA) and the riparian zone may be completely removed along surface 

waters in watersheds with higher development (Wheeler et al. 2005). Any impacts to the 

riparian zone are likely to decrease runoff and nutrient attenuation, de-stabilize 

streambanks, reduce stream shading, and reduce important inputs of woody debris to the 

channel (Booth and Jackson 1997; Paul and Meyer 2001; Walsh et al. 2005; Wheeler et 

al. 2005; Schiff and Benoit 2007).  
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Benthic macroinvertebrates are the most studied component of urban streams.  

Because of their widespread research base, macroinvertebrates are one of the most useful 

tools for comparing interregional variation in responses to urbanization or other land use 

change (Walsh et al. 2005). Increased TIA is linked to shifts in macroinvertebrate 

community from high diversity of sensitive species to populations dominated by 

pollution tolerant taxa (Chadwick et al. 2006). Organisms from the families 

Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) represent 

a large portion of the pollution sensitive macroinvertebrate community and therefore are 

most responsive to urbanization (Wheeler et al. 2005). Macroinvertebrate communities in 

impaired streams have altered functional feeding group composition that can strongly 

impact nutrient cycling, processing of organic matter, and secondary production 

(Chadwick et al. 2006). Leaf shredding taxa are typically the least pollution tolerant and 

the loss of these organisms can impact the processing of terrestrial organic matter and the 

overall food web within the stream (Wheeler et al. 2005). However, some studies have 

found that reduced biological processing rates for terrestrial organic matter may be offset 

by increased physical abrasion during high flow periods associated with streams in 

developed watersheds (Meyer et al. 2005; Chadwick et al. 2006).  

Fish communities show a very similar response to urban impacts with decreased 

biodiversity, loss of pollution sensitive species, and a loss of functional feeding group 

diversity (Wheeler et al. 2005). Stream temperature increases, from the loss of riparian 

shading and from warm water inputs through connected impervious surfaces, are a key 

factor for fish communities (CWP 2003; Wang et al. 2003; Herb et al. 2008). A study in 
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Vermont found that fish communities were impacted by geomorphic instability and 

habitat fragmentation associated with development (Sullivan et al. 2006).  

Physical Impacts. 

Stream hydrology alterations are the most widespread and consistently visible 

changes associated with urbanization (Walsh et al. 2005). The changes begin with the 

conversion of natural lands to a developed setting (i.e. paving) which causes a drastic 

reduction in the permeability of the soil and increases the amount of rainfall that flows 

over land surfaces as runoff (Paul and Meyer 2001). The drainage infrastructure that 

accompanies watershed development further impacts stream hydrology by creating 

pathways that increase the rate of delivery of runoff to receiving waters (Hatt et al. 2004; 

Galster et al. 2006). Until very recently, the primary purpose of drainage infrastructure 

was to convey water away from buildings and roads as quickly as possible; current 

stormwater management efforts now focus on slowing and storing stormwater runoff 

where possible (Booth and Jackson 1997; Brabec et al. 2002). Stream channel 

modification (i.e. straightening) and floodplain disconnection or degradation are 

associated with all levels of development and increase the speed and efficiency of 

drainage through a watershed (Paul and Meyer 2001; Schiff and Benoit 2007; Jacobson 

2011).  

The hydrologic impacts associated with urbanization result in stream hydrographs 

that are altered during high flow events and under baseflow conditions. Urban streams are 

described as “flashy” and have taller and narrower flow peaks during runoff events as 

compared to undeveloped watersheds as shown in Figure 2 (Paul and Meyer 2001; Walsh 
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et al. 2005). Reduced infiltration in these watersheds decreases groundwater recharge 

from precipitation leading to reduced baseflow in receiving streams (Paul and Meyer 

2001; Konrad and Booth 2005; Wheeler et al. 2005; Jacobson 2011). Reduced summer 

baseflow amplifies the stream temperature, dissolved oxygen, and chemical impacts also 

associated with the urban stream syndrome and represent a major stressor for aquatic 

biota (Richter et al. 1996; Herb et al. 2008).  

 

FIGURE 2. Hypothetical hydrograph for an urban watershed (yellow) as  

compared to an undeveloped watershed (green) from USEPA (2012). 

 

Stream geomorphic processes are impacted by the altered sediment supply and 

hydrology in urban watersheds. The construction phase of watershed development 

introduces large volumes of terrestrial sediment to stream channels leading to 

aggradation. Floodplain access may actually increase during this phase as bar building 

processes decrease the channel area. Sediment supply decreases following the completion 

of construction and the stream channel enters the erosional phase (Paul and Meyer 2001). 
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The increased frequency of high flow events associated with flashy streams cause 

channel forming flows to occur more frequently than in undeveloped watersheds (Paul 

and Meyer 2001; Walsh et al. 2005). These events lead to channel incision as the channel 

bed and banks erode, resulting in streams that are typically deeper and wider than 

undeveloped streams (Booth and Jackson 1997; Wheeler et al. 2005; Kang and Marston 

2006; Jacobson 2011). As erosion becomes the dominant geomorphic process, channel 

derived fine sediment loading can increase by several orders of magnitude and have 

widespread impacts on biota (CWP 2003; Wheeler et al. 2005; Schoonover et al. 2007).  

Riparian forests are typically impacted at even the lowest levels of development. 

Removal of native woody vegetation along stream banks and adjacent floodplain reduces 

bank protection and further increases erosion (Kang and Marston 2006). If banks are re-

vegetated after development is it typically by shallow-rooting plants and grasses that 

provide much less stability than native vegetation (Booth and Jackson 1997). The linear 

nature of road networks and the prevalence of roads constructed near or immediately 

adjacent to surface waters increases impacts to the riparian buffer and many other road-

specific geomorphic impacts that are discussed later in this review.  

Spatial Scale of Watershed Impacts 

Many studies have found spatial scale to be an important consideration for 

predicting and understanding different impacts from development (Urban et al. 2006; 

Schiff and Benoit 2007). Impervious surfaces that are located close to surface waters are 

very likely to be directly connected via overland runoff or drainage infrastructure (Schiff 

and Benoit 2007; Wemple 2013). Studies have defined a buffer zone ranging from 30m 
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to 100m to describe connected impervious surfaces with the greatest impact on receiving 

waters (Wang et al 2003; Schiff and Benoit 2007; Wemple 2013). Schiff and Benoit 

suggest that a 100m buffer area is the best predictor of biota and stream habitat impacts, 

and that stream chemistry impacts are best correlated with watershed scale predictors 

(2007). Macroinvertebrate community responses at very local scales have also been 

observed from samples collected upstream and downstream of a single road crossing 

(Wheeler et al. 2005).  

 Specific Impacts from Transportation Infrastructure 

Road networks represent a major feature in the developed landscape. Many of the 

impacts observed with watershed urbanization are closely linked with transportation 

infrastructure (Eyles and Meriano 2010). A study of roads networks in rural Vermont 

watersheds found that 33-75% of roads were within 50m of streams and were likely 

directly hydrologically connected (Wemple 2013). The linear nature of roads and the 

associated drainage infrastructure can significantly increase the portion of connected 

impervious surfaces within a watershed and can extend the drainage area outside of the 

topographic watershed boundary (Noll and Magee 2009). Roadway drainage 

infrastructure may also intercept natural topographic flow paths and bypass floodplains 

and other storage areas (Wemple 2013). 

Three phases of road impacts are described in Angermeier et al. (2004) and 

Wheeler et al (2005): road construction, road presence, and watershed urbanization. The 

road construction phase begins at the onset of development within a watershed and is 

characterized by short-term and typically local impacts from severe fine sediment loading 
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and mechanical disturbance. The road presence phase will be discussed in greater detail; 

this is characterized by long-term impacts to hydrology, geomorphology, and stream 

chemistry, resulting in significant and permanent responses from biotic communities. 

Intermittent maintenance activities and seasonal road treatments (winter deicing 

practices) can further stress biota. The final phase of road impacts is the general increase 

in watershed development that is facilitated and directed by transportation infrastructure, 

these impacts were described earlier as the “urban stream syndrome”. 

Stream geomorphology is impacted during road construction as channelization 

and bank armoring are frequently used to lock the channel in place and protect 

infrastructure. Streambank and riparian vegetation may also be removed or degraded 

(Wheeler et al. 2005; Sullivan et al. 2006). Bridges and culverts at road crossings can 

have major geomorphic impacts on streams that can extend upstream and downstream far 

beyond the actual structure. Structures with fixed bottoms (e.g. culverts) can cause 

sudden changes in channel slope (Paul and Meyer 2001; Wheeler et al. 2005). Bridges 

and more commonly culverts may constrict channel flow and floodplain width, altering 

the downstream transport of organic matter, woody debris, sediment, and floodwaters 

(Angermeier et al 2004; Wheeler et al. 2005). Road crossings are particularly vulnerable 

to debris jamming during large flood events potentially causing catastrophic damage to 

adjacent infrastructure and the downstream channel (Wheeler et al. 2005). 

Many of the water chemistry impacts associated with urbanization are closely 

associated with roads and automobiles. In non-industrial watersheds, traffic residues on 

roads are the most common source of heavy metals (cadmium, chromium, copper, iron, 
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lead, nickel, and zinc) and polycyclic aromatic hydrocarbons (PAHs), which are 

important toxicity concerns for stream biota and human health (Wheeler et al. 2005; 

Yang 2010). Chemicals stored in road dust and oil and grease from crankcase drippings 

are typically stored on the road surface or in roadside ditches. These chemicals rapidly 

move into receiving surface waters during runoff events and can cause acute or chronic 

toxicity, particularly in smaller streams (Wheeler et al. 2005; Eyles and Meriano 2010). 

Hazardous material spills are a concern for waterways near major roads. On average 

approximately 10,000 accidents involving hazardous materials occur annually on U.S. 

roads. Bridges are inherently higher-risk for hazardous waste spills especially during 

winter months (Wheeler et al. 2005).  

Sediment Impacts from Non-Paved Roads. 

Non-paved roads are an important component of the transportation network in 

rural watersheds. These roads are a large and continuous source of sediment loading to 

surface waters through erosion of the road surface (Lane and Sheridan 2002). Sediment 

generation from temporary logging roads has been well studied; however less research 

has been conducted on maintained non-paved roads in rural settings (Lane and Sheridan 

2002; Luce 2002; Sheridan and Noske 2007; Jordan and Martinez-Zavala 2008; Wemple 

2013). A recent study of non-paved roads in rural Vermont watersheds found very high 

loading rates of sediment and phosphorus from roads, especially in steeper watersheds 

(Wemple 2013). Intensive sampling of storm event runoff from a series of road segments 

estimated annual sediment loading rates ranging from 1 to over 100 MT/km/year. 

Extrapolating these results and the results from an inventory of discrete hydro-
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geomorphic impairments, non-paved roads are estimated to produce 31% of the sediment 

load and 11% of the phosphorus load to the Winooski River, a large watershed with a 

wide range of forest, agriculture, and developed land (Wemple 2013). Non-point 

pollution from non-paved roads has been identified as a major concern in basin action 

plans in Vermont and will likely become an important research and management priority 

(VVCAP 2009).  

Winter Deicing Chemical Impacts. 

Winter deicing chemical application is a critical maintenance activity in colder 

regions such as Vermont. Nationally, over $2 billion is spent each year on winter 

maintenance chemicals, materials, and labor. Sodium chloride (NaCl) is the most 

widespread and affordable deicing chemical; however other chemicals (i.e. CaCl2 and 

MgCl2) may be used for specific areas or during very cold periods. Deicing chemicals 

applied to roads are transported as snow and ice melts. Salt residue may remain on the 

road and on nearby soils and vegetation, or dissolved salts enter shallow groundwater or 

flow directly to streams in surface runoff. Drainage infrastructure associated with roads is 

very important for determining the speed of delivery of deicing chemicals to receiving 

surface waters (Denner et al. 2009).  

All surface waters contain some natural concentration of Cl, primarily from rock 

weathering, windblown dust, and precipitation.  Anthropogenic sources not related to 

deicing also include, sewage, septic, and agriculture (Denner et al. 2009). A study of 

chloride sources in upstate New York found that over 90% of the Cl contributions in a 
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rural watershed were derived from road salt, and that less than 2% come from natural 

sources (Kelly et al. 2008).  

Chloride concentrations in Vermont surface waters have been observed near and 

above the EPA criterion for chronic exposure of 230 mg/L (USEPA 1998; Denner et al. 

2009). These concentrations were observed in a small tributary to Alder Brook that drains 

a large area of impervious surfaces. The Denner study found that peak chloride loading 

occurred during the spring snowmelt. Chloride concentrations in streams tend to be 

inversely proportional to discharge and many studies have found that concentrations peak 

during the late summer period when stream flow is lowest and groundwater contribution 

is proportionately greatest (Wheeler et al. 2005; Kelly et al. 2008; Denner et al. 2009; 

Eyles and Meriano 2010). A study in upstate New York found stream chloride 

concentrations that were increasing at a faster rate than watershed application, suggesting 

a buildup of subsurface chloride and a multiple year lag time to reach surface waters 

(Kelly et al. 2008). State and municipal road maintenance crews in Vermont are well 

aware of chloride impacts and employ many practices and technologies to minimize salt 

application while maintaining safe driving conditions. Vermont is the only state to 

require an environmental permit for salt application and there is no “bare road” 

designation for snow clearing. Despite these efforts, chloride is a major management 

concern for surface waters in the Lake Champlain basin and across Vermont (Shambaugh 

2008; Denner et al. 2009). 
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CHAPTER 2: JOURNAL ARTICLE 

Project Background 

Numerous studies have been conducted that clearly describe the impact of 

urbanization at broad (catchment) to fine (parking lot) scales (as reviewed in Paul and 

Meyer 2001).  These studies have quantified and described myriad physical, biological, 

and chemical impacts to streams collectively known as the urban stream syndrome 

(Walsh et al. 2005). Typically characterizations of impacts from development are based 

on the percentage of the watershed covered in impervious surfaces (%TIA) the most 

common variable used to estimate the level of development and associated impacts.  

Methods for estimating watershed imperviousness vary widely in required effort and in 

accuracy. As such, it can be challenging to compare results across studies (Brabec et al. 

2002).  

The effects of dense urbanization on watersheds are well studied. Less research 

has been done for watersheds that are characterized by lower levels of urbanization 

(Wang et al. 2003). In studies of densely urbanized areas it is not uncommon to consider 

30-40% TIA to be a moderate level of development (Chadwick et al. 2006). By contrast, 

the level of development in smaller, less populous states like Vermont is considerably 

lower; typically 10-20% TIA in the most developed watersheds in Vermont. However, 

despite the lower level of overall development in Vermont’s urbanized areas (measured 

as TIA), roads still constitute an important fraction of the developed area and may be an 

important source of impairment to local streams. The specific impacts of roads are not 

often isolated in studies of moderately developed urban and suburban watersheds. Road 
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network information is easily and publicly available and the close association with 

overall watershed development suggests that road networks may be a useful and simple 

indicator of potential surface water impacts within a watershed.  Specifically, we reason 

that: 

 Road surfaces are major sources of runoff and stormwater pollutants.   

 Roads are frequently one of the largest sources of watershed imperviousness, 

especially in the low to moderate levels of development most commonly found in 

Vermont.   

 Roads are the primary source of chloride loading to Vermont streams due to 

winter deicing activities.  

 Roads are frequently associated with drainage infrastructure that provides direct 

or expedited pathways for runoff to enter streams.   

 Road networks are simple to map and can be consistently applied to a wide range 

of watershed development levels.   

Local Context 

In the Lake Champlain Basin and Chittenden County, sediment, nutrients, and 

chloride from road salting are the pollutants that most often are cause for management 

concern. Because the stormwater generated from impervious surfaces itself alters the 

hydrology and geomorphology of streams and rivers, the State of Vermont’s stormwater 

control approach focuses first on controlling the discharge of water in developed 

watersheds (VTDEC 2013). The water as well as the sediments, nutrients, and other 

pollutants in stormwater alter habitat quality and the species composition of streams and 



 

20 

rivers (e.g., Jackson et al. 2001; Par and Mason 2003; Sullivan et al. 2006) but equally, 

the increased pollutant load moving downstream frequently leads to impaired receiving 

waters, as it the case for Lake Champlain (VTDEC and NYSDEC, 2002). To make good 

decisions about transportation futures, managers need information about the magnitude of 

these problems and how different road types and densities affect stream networks and 

receiving waters.  

Research Goal, Objective, and Hypotheses  

The primary goal of this research was to evaluate the effects of the transportation 

network on water quality and freshwater ecosystem integrity. We characterized the 

effects of road type and road density on water quality, stream stability, and the pollutant 

load exported to Lake Champlain. We hypothesized that:    

 Metrics generated from relatively simple spatial analysis of road networks and 

streams can be used to predict water quality impacts and stream conditions at a 

watershed scale. 

 Water quality indicators will decrease along a gradient of increasing road density. 

 Unpaved roads will generate proportionately more sediment loading than paved 

roads. 

Study Area 

Chittenden County is located in northwestern Vermont and is closely connected to 

two of the most important aquatic resources within the state: Lake Champlain and the 

Winooski River. Stormwater runoff and water quality impacts on receiving waterbodies 
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are a primary concern for residents and municipalities within the county. Chittenden 

County contains the highest density of development in Vermont, including segments of 

Allen Brook and Potash Brook which have been listed by the state of Vermont as 

“impaired” by stormwater runoff. The Vermont Department of Environmental 

Conservation has developed total maximum daily load (TMDL) plans for some of these 

streams and is actively working to improve water quality and reduce hydrologic 

impairment in these watersheds. More information is available at:  

http://www.watershedmanagement.vt.gov/stormwater/htm/sw_impairedwaters.htm. 

The watersheds selected for this study spanned the range of the road network 

density and road type found within Chittenden County. Watershed areas range from 13 to 

53 km
2
 and stream order is 3

rd
 or 4

th
.  Table 1 includes general watershed characteristics 

and land use summaries in order of increasing development and road network density 

(VCGI 2011). A map of the study watersheds and monitoring station locations is shown 

in Figure 3. In this table and subsequent tables the study watersheds are organized from 

least to most developed.  

  

http://www.watershedmanagement.vt.gov/stormwater/htm/sw_impairedwaters.htm
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TABLE 1. Watershed and landuse characteristics for the study area. 

Watershed 
Size 

(km
2
) 

Order 
M/H 

Dev** 

L/O 

Dev* 
Forest 

Shrub/ 

Scrub 
Pasture Crop 

Water/ 

Wetland 

Snipe 13.1 4 0% 2% 93% 1% 1% 0% 3% 

Mill 29.8 3 0% 4% 85% 1% 4% 2% 4% 

Alder 25.5 4 3% 15% 41% 1% 28% 7% 5% 

Allen 16.8 3 1% 15% 41% 2% 30% 4% 7% 

Muddy 53.3 4 7% 12% 36% 2% 24% 8% 11% 

Potash 18.2 3 27% 42% 11% 1% 12% 5% 2% 

   *Denotes high intensity and moderate intensity development.  

** Denotes low intensity development and urban open space 

The two rural watersheds (Mill Brook and Snipe Island Brook) are primarily 

forested and contain low densities of gravel and dirt roads. Both watersheds contain low 

densities of single-family homes and minimal agriculture. The watersheds are the steepest 

in this study and the main stream channels are located in narrower valleys typically 

shared with roads.  

 Alder and Allen Brook drain primarily suburban watersheds with moderate forest 

and agricultural cover.  The lower portion of Alder Brook closely follows a 4-lane 

highway (I-289).  Both watersheds drain areas of suburban residential development 

typical to Chittenden County.   

 The Muddy Brook watershed has the most variable land use.  The upper 

watershed (southern) drains rural and suburban areas; the lower watershed (northern) 

drains dense commercial areas and has a high concentration of major roads (Rt. 2 and I-

89).   
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 Potash Brook is one of the most developed watersheds in Vermont and represents 

the highest degree of residential and commercial development in this study.  The entirety 

of I-189 and significant stretches of I-89, Rt. 2, Rt. 7, and Rt. 116 area located within the 

watershed.  

Allen Brook and Potash Brook are listed by VTDEC as biologically impaired due 

to stormwater and have approved Total Maximum Daily Loads (TMDLs) prepared by 

VTDEC for the U.S. Environmental Protection Agency (2006; 2008).  

 
FIGURE 3. Location of the study area in northwestern Vermont including the six monitoring 

stations with upstream watershed boundaries. 
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METHODS 

Monitoring Station Location, Construction, and Instrumentation 

Locations for continuous monitoring stations were identified based on channel 

stability, substrate, protection from flooding, access, and security. Each monitoring 

station included an ISCO 6712 auto-sampler with an ISCO 720 pressure transducer and a 

YSI 6600 OMSv2 sonde outfitted with temperature, specific conductance, and optical 

dissolved oxygen (DO) sensors. Weather stations were installed near the monitoring 

stations and were instrumented with HOBO micro-stations, photosynthetically active 

radiation sensors (PAR), and tipping rain buckets (0.2mm increment). ISCO auto-

samplers were installed above the flood-prone elevation and were tethered and locked to 

trees. Pressure transducer and suction lines were housed in flexible plastic conduit and 

were staked to the bank with rebar and mounted to a PVC carrier staked to the stream 

bottom with 4’ rebar. YSI sondes were bolted in to heavy PVC holders that were staked 

to the stream bottom in the thalweg with 4’ rebar. Equipment was installed as early as 

spring flow levels allowed and remained in place until the onset of anchor ice in late 

December. Monitoring stations in all watersheds were operated from June-December 

2008, April-December 2009, and April-December 2010.   

Continuous Monitoring and Maintenance 

Stream temperature, specific conductance, dissolved oxygen saturation, and stage 

height were measured continuously at 5 minute intervals.  YSI sondes required weekly 

maintenance for cleaning, DO calibration, and battery changes. Field calibrations of DO 
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followed the manufacturer listed calibration methods: wrap sonde in a wet towel to 

stabilize temperature and DO saturation, and then calibrate using a handheld digital 

barometer. Conductivity sensors were calibrated in the lab using 3 standards (1, 100, 

1000 us/cm) at the beginning of each field season and checked for drift at the end of each 

season. Dissolved oxygen calibrations were rarely greater than 1% and no sensors 

indicated annual conductivity drift greater than 1%.  

Discharge Rating Curves  

Stage/Discharge rating curves were established for each stream using 

approximately 10-15 manual area-velocity discharge measurements taken at a range from 

baseflow to highest wadeable flow levels.  Discrete discharge measurements were 

collected with a Sontek Flowtracker 2D ADV.  Rating data were plotted in Microsoft 

Excel and fitted with single or two-part power curves following standard USGS stream 

rating methods (Turnipseed and Sauer 2010).   

Storm Event Sampling 

ISCO auto-samplers were programmed to collect stage triggered, time-paced, 

single composite samples into a 9L plastic jug. Stage triggers and sampling intervals were 

programmed before each storm event and an enable triggering stage threshold was 

selected based on current flow conditions and predicted storm forecast. Samplers 

collected up to 36 samples (200ml per sample) into the composite jug. We acknowledge 

that flow-weighted sampling would be preferable to more accurately estimate solute 

loads. However, in most cases we did not have good information about the discharge 
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characteristics of these streams prior to study and could not develop the necessary rating 

curves to program samplers for volume weighted samples a priori. In addition, it is 

logistically difficult to simultaneously collect good flow-weighted sample at multiple 

flashy and poorly characterized developed watersheds. Thus, there is a high risk that 

samples and data will be lost at one or more sites during any given storm. Given that our 

primary objective was a comparative study of differently developed watersheds and not a 

quantitative study of area-specific loading from the study watersheds, we concluded that 

this tradeoff was acceptable. It is likely that by compositing samples taken over regular 

time intervals during storms, we have underestimated the true loads of sediment and 

nutrients. Thus, the actual differences among our study watersheds may be larger than we 

have reported.  

We found that a 30 minute sampling interval was ideal for most storms and 

successfully captured the rising limb, peak, and most of the falling limb without over 

sampling any particular period of the storm. Stage enable triggers were typically set to 

2cm above the stream level prior to the storm. A total of 28 to 35 storm events were 

successfully sampled at each site.   

Monthly Grab Sampling 

Monthly water quality grab samples were collected for December 2008 through 

January 2011 to provide a year-round water chemistry record. This sampling included 

winter months when continuous monitoring stations were decommissioned due to 

freezing conditions. Grab samples were collected by directly filling sampling containers 

or using a clean 9 liter jug during icing conditions. All samples were collected under 
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stable low flow conditions to best characterize baseflow and seasonal water quality 

conditions.   

Water Sample Processing and Analysis 

Composite storm event and baseflow grab samples were split into individual 

sample bottles for each analyte and were stored at the University of Vermont Rubenstein 

Lab until analysis. Total phosphorus (TP) samples were stored frozen in 150ml plastic 

bottles. Total nitrogen (TN) samples were stored in 50ml conical tubes, acidified with 

H2S04, and refrigerated. Chloride samples were collected in 10ml scintillation vials and 

refrigerated. TSS samples were collected from the 9 liter jugs immediately following 

vigorous shaking. Water was filtered through pre-combusted 47mm Type 934-AH GF 

filter paper using a hand vacuum pump and Nalgene 500ml vacuum filter apparatus. 

Filtered sample volumes ranged from 30ml to 5,000ml depending on sediment load in 

samples. Filter papers were dried for at least 24 hours in pre-combusted and weighed 

aluminum tins. Dried samples were allowed to cool in a desiccator and then weighed. 

Samples were then combusted in a 550
0
C muffle furnace for 4 hours to remove organic 

matter and re-weighed. 

Frozen TP samples were thawed in a refrigerator and were analyzed on a Lachat 

auto-analyzer using the Quick Chem Method 10-115-01-4-F, determination of total 

phosphorus by flow injection analysis colorimetry (acid persulfate digestion method). 

Total nitrogen samples were analyzed using Lachat Quick Chem method 10-107-04-4-A, 

determination of nitrate+nitrite in manual persulfate digests. Chloride samples were 

diluted so that all samples would range from 0-10 mg/l Cl.  Dilutions were 1:3 for rural 
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streams and up to 1:50 for urban streams. Dilutions were determined based on specific 

conductance readings at the time of sample collection. Chloride samples were analyzed 

by the University of Vermont Agricultural and Environmental Testing Laboratory on a 

Dionex ion chromatograph.   

All TP and TN samples were run in duplicate and standard checks were 

performed every 10 samples. Any samples with greater than 10% difference were re-run 

automatically by the Lachat auto-analyzer. Chloride samples were also run in duplicate 

and included a 10% field replicate. 

Benthic Macroinvertebrate Sampling 

Benthic macroinvertebrates (BMIs) were sampled at all sites during the late fall 

index period (September-early October 2010). Samples were collected using a 500µm 

kick net placed in four locations to best characterize the flow depths, velocities, and 

substrate size present in a single riffle sequence. The substrate and organic matter at each 

sampling location was vigorously scrubbed into the net for a total sampling effort time of 

approximately 2 minutes. Samples were rinsed, sieved, and preserved in 70% ethanol 

(VTDEC 2004). We partnered with VTDEC Biomonitoring and Aquatic Studies Sections 

(BASS) to share in sampling effort and analysis costs. VTDEC collected annual samples 

at Potash Brook, Muddy Brook, and Alder Brook, and BMIs were picked and identified 

at the VTDEC lab. We collected and processed two replicate samples from Allen Brook, 

Mill Brook, and Snipe Island Brook and picked samples were analyzed by Rapid 

Watershed Associates (Schenectady, NY). BMI community composition was 

characterized using the suite of VTDEC metrics to describe density, diversity (taxa 
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richness, EPT richness), pollution tolerance (index of biotic integrity, %Oligochaeta, 

Chironomidae metrics), similarity to reference communities, and functional feeding 

group composition (VTDEC 2004). 

Rapid Habitat Assessment 

Rapid Habitat Assessments (RHAs) were completed at all sites following the 

VTDEC guidelines (VTDEC 2009). RHA scores describe woody debris cover, bed 

substrate cover, scour and depositional features, channel morphology, hydrologic 

characteristics, connectivity, river bank condition, and riparian condition. Each stream 

was assessed over an approximate 100m reach centered on the monitoring station. All 

categories were scored from 0 (worst) to 20 (reference) for each RHA category and the 

total score was used to assign a habitat condition rating. 

GIS Analysis 

Watersheds for each study stream were delineated using the ArcHydro tool in 

ESRI ArcMap 9. All data layers were clipped to watershed boundaries. Road networks 

were characterized based on road surface type from the VTRANS TRANS_RDS 

database. Class 4 roads were manually classified based on ground observations and aerial 

imagery. Road networks were also characterized based on proximity to streams. Road 

crossings within each watershed were counted and road lengths were measured within a 

100m buffer from the stream centerline. We selected a 100m buffer to best capture the 

portion of roads that directly impact neighboring streams as described by Schiff and 

Benoit (2007). 
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We conducted a simple analysis of total impervious area and road impervious area 

in the study watersheds. Total percent impervious area (%TIA) was estimated for each 

watershed based on correlations between statewide 30m Landsat imagery and detailed 

Quickbird satellite imagery that measured impervious area in portions of the study area, 

as described by Fitzgerald (2007). Road impervious area was estimated for each 

watershed by manually measuring width for at least 50 randomly selected road segments 

for each of the four AOT classes within each watershed (highway; paved and ditched; 

gravel and ditched; gravel/dirt no ditch). A mean width was determined for each surface 

type by watershed and was multiplied by total length of each road class to estimate total 

road area within each watershed. This calculation method indicated that road area 

represented over 90% of the estimated total imperviousness within the Snipe Island 

Brook watershed. Due to the small size and low level of development we manually 

measured all non-road imperviousness (less than 100 driveways and rooftops) within the 

watershed and on the basis of this analysis we adjusted the %TIA from 0.5% to 0.76%.  

Data Analysis 

Continuous data (5-minute) from ISCO and YSI sensors were converted to 

Microsoft Excel-readable formats and then compiled into annual master datasets. All data 

were manually screened for errors. YSI files were trimmed by 1 to 2 readings on the start 

and end of each weekly deployment to remove data points influenced by sonde 

temperature changes caused by instrument downloading and calibration. Daily mean 

values were calculated for all continuous variables. Daily mean streamflow data were 

used to calculate flow duration curves and additional metrics for baseflow contribution 
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and the flood-peak index (Hauer and Lamberti 2006). Additional metrics were calculated 

for stream temperature data (maximum daily mean, maximum 7-day mean, and mean of 

the daily maxima for first 3 weeks of July) as described in Wang et al. (2003).  

All water quality data were summarized to generate mean concentrations for 

storm event and baseflow grab samples. Mean values were tested for significant 

differences between sites for baseflow and storm event samples, and for differences 

between baseflow and storm event concentrations within each watershed using ANOVA 

(α=0.05) with the JMP 10 statistical software package. A multivariate analysis with 

Spearman’s ρ correlation was selected to test the strength of road network variables as 

predictors for physical, biological, and chemical responses (α=0.05 and 0.1).  

RESULTS 

GIS Results 

Road networks within each watershed were characterized by length within each 

major AOT category (highway; paved and ditched; gravel and ditched; gravel/dirt no 

ditch) (Table 2). The Potash Brook watershed contains several major roads and highways 

(I-89, I-189, US 2, US 7, and VT 116), a high density of residential roads, and a very low 

density of unpaved roads. Muddy, Allen, and Alder Brooks all drain portions of highway 

and major roads, large networks of residential roads, and small to moderate densities of 

unpaved roads. Mill and Snipe Island Brooks drain watersheds with predominantly gravel 

and dirt roads with only a small stretch of paved roads in the upper Mill watershed.  
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TABLE 2. Length of road (km) by type in each study watershed. 

Watershed Highway Paved 
Gravel 

w/ ditch 
Gravel/Dirt 

Paved 

Total 

Unpaved 

Total 

Snipe 0.0 0.0 4.7 3.0 0.0 7.7 

Mill 0.0 1.4 29.2 2.9 1.4 32.1 

Alder 8.7 30.9 5.3 0.0 39.6 5.3 

Allen 4.3 46.9 16.0 0.4 51.2 16.3 

Muddy 10.2 81.5 25.6 1.0 91.7 26.6 

Potash 21.8 91.8 0.9 0.0 113.6 0.9 

Road network metrics and watershed impervious cover results are shown in Table 

3. The road density within 100m of the stream centerline indicates a higher proportion of 

roads in the rural watersheds closely follow streams. Total impervious area percentages 

characterize the overall development level for each watershed and show the elevated 

percentage of watershed imperviousness represented by roads in moderately developed 

watersheds with higher densities of major roads (Allen and Alder) and in low 

development rural watersheds (Snipe). Gravel roads in the Allen and Muddy watersheds 

are located near the headwaters; the portions of the watershed closer to the monitoring 

stations are dominated by paved roads. 

TABLE 3. Characteristics of the road network in each study watershed. 

Watershed 
Stream-Road 

Crossings/km
2
 

Road 

Density 

(km/km
2
) 

Road Density within 

100m stream buffer 

(km/km
2
) 

%TIA 
%TIA from 

roads 

Snipe  0.53 0.63 0.34 0.8 86.2 

Mill 0.74 0.99 0.49 1.6 33.1 

Allen 1.31 2.56 0.60 4.1 59.6 

Alder 0.78 2.20 0.55 4.5 51.8 

Muddy 1.33 2.22 0.57 6.0 30.3 

Potash 3.41 5.41 1.62 22.0 22.2 
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Stream Flow  

Discharge estimates were collected across a wide range of wadeable flows for all 

six monitoring stations. We developed one-part or two-part rating curves to best fit 

discharge (y) to stage height (x) shown in Table 4. Changes in channel dimensions 

typically located near bankfull at five of the monitoring stations (Allen, Mill, Muddy, 

Potash, and Snipe) required the use of a lower and upper rating curve to best fit flows 

above and below bankfull (Figure 4). 

TABLE 4. Discharge rating curve equations. 

Watershed Low Curve R
2
 High Curve R

2
 Transition Stage (m) 

Snipe y=79.53x
6.13

 0.98 y=10.28x
4.17

 0.96 0.35 

Mill y=7.32x
2.09

 0.99 y=17.22x
2.93

 0.96 0.36 

Alder y=32.46x
3.00

 0.99 n/a  n/a 

Allen y=59.79x
4.14

 0.96 y=10.2x
2.79

 0.97 0.28 

Muddy y=16.08x
3.50

 0.98 y=9.0x
2.93

 0.99 0.36 

Potash y=0.341x
0.23

 0.98 y=0.399x
0.50

 0.99 0.30 

 

 
FIGURE 4. Example of a two-part rating curve from Mill Brook. 
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Discharge above the extent of the rating curve measurements is estimated and 

therefore we expect a greater potential for error in the highest discharge estimates. We 

prioritized discharge measurements across the full range of wadeable flows and 

successfully measured all but the highest observed discharges. The total proportion of 

time each station was above the extent of our rating curves ranged from 0.14% (Potash) 

to 2.4% (Snipe) with a mean of 1.4%.  

Flow duration curves based on area-normalized hourly mean flows (m
3
/sec/km

2
) 

were calculated for each site to characterize changes in peak and base flows based on 

watershed imperviousness (Figure 5). We observed a large decrease in baseflow 

discharge in the three most developed watersheds as described in Booth and Jackson 

(1997) and CWP (2003). Although the peak flow volumes in the developed watersheds 

were higher than the rural watersheds, this relationship was not significant. Allen Brook 

was observed to have consistently lower mean discharge (Q50) and baseflow (Q90) than 

the other study watersheds. This is likely due to the well-drained sandy soils prevalent in 

much of the study watershed. The baseflow contribution metric (Q90/Q50) and the flood 

peak index both show a shift towards reduced baseflow and increased flood peaks 

relative to mean flows in the watersheds with higher road density and development 

(Table 5). 
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      FIGURE 5. Flow duration curves based three-years of hourly flow data.  
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  TABLE 5. Daily mean flow duration summary.  

Watershed Q10 
Q50 

Median 

Q90 

Baseflow 

Q90/Q50 

Baseflow 

Contribution 

Q10/Q50 

Flood Peak 

Index 

Snipe 0.018 0.006 0.0030 0.484 5.97 

Mill 0.030 0.010 0.0038 0.392 7.90 

Alder 0.024 0.006 0.0028 0.438 8.43 

Allen 0.019 0.002 0.0003 0.145 65.52 

Muddy 0.021 0.006 0.0012 0.225 16.94 

Potash 0.021 0.004 0.0012 0.300 17.67 

Continuous Water Quality Results 

The YSI multi-parameter sondes collected readings of water temperature, 

dissolved oxygen, and specific conductance at a 5 minute interval. We collected 

approximately 140,000 sets of these readings at each monitoring station over the duration 

of the project. These continuous data allow for observation of interactions between 

numerous parameters over a discrete rainfall event, as well as the characterization of 

water quality data over longer periods of time. Figure 6 shows 10 days of continuous data 

from Potash Brook. Regular daily fluctuations in temperature and dissolved oxygen are 

observed until a moderate storm on September 23, 2009. The storm event causes a small 

spike in water temperature as runoff is produced on hot surfaces (i.e. pavement and 

rooftops). Specific conductance is very high in Potash Brook throughout the summer as a 

result of high salt loading in groundwater, which will be discussed later in this section. 

Specific conductance levels are highest at low discharges when the groundwater 

contribution is greatest. The conductivity drops during the storm event as rainwater and 

surface runoff increase discharge. 
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FIGURE 6. Water quality parameter values from continuous monitoring sondes in Potash Brook 

with a moderate storm on September 29, 2009. 

Water temperature and dissolved oxygen concentration data were analyzed for 

minimum and maximum values for discrete readings, daily means, and seven day means 

as described in Wang et al. (2003). We observed increased maximum temperatures, 

decreased dissolved oxygen concentration, and large increases in the daily ranges for 

both of these parameters in the developed watersheds (Table 6). 
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TABLE 6. Water temperature and dissolved oxygen concentration summary data. 

Watershed 
Max 

Temp ᵒC 

7-day Max 

Temp ᵒC 

Max Daily 

Range 

Min DO 

(mg/L) 

7-day Min 

DO (mg/L) 

Max Daily DO 

Range (mg/L) 

Snipe 22.0 20.0 6.7 8.4 8.8 1.8 

Mill 25.2 21.9 7.3 7.9 8.5 1.9 

Alder 27.5 23.0 7.7 5.9 7.6 5.8 

Allen 28.9 25.3 8.5 5.4 7.0 3.8 

Muddy 31.1 26.5 7.1 6.7 7.7 5.2 

Potash 27.4 23.8 6.2 6.2 8.0 6.0 

 

High temperatures and low dissolved oxygen concentrations are major stressors 

for aquatic life in developed watersheds (Wang et al. 2003; Herb et al. 2008). We 

observed increased maximum temperatures in the more developed streams; however this 

is strongly influenced by shading of the channel within the reach immediately upstream 

of the monitoring station. Dissolved oxygen concentrations are closely linked with 

temperature and biological activity within the stream. The more developed watersheds 

had lower minimum oxygen concentrations and much higher daily variation in 

concentration. The minimum concentrations we observed in these streams are at or near 

the requirements (6.0 mg/L) for sensitive fish and macroinvertebrate species (Meador et 

al. 2008).  

Baseflow and Storm Event Water Quality Results. 

Baseflow grab samples were collected 2-4 times at each station in 2008 and then 

once a month at all stations from January 2009 through January 2011, for a total of 28-29 

samples per watershed. Time-paced composite storm event samples were collected for  

26 – 35 storms at each station. Baseflow concentrations of TP were lower than storm 

event concentrations at all sites and this difference was significant at Snipe, Alder, Allen, 
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and Potash (Figure 7). Storm event concentrations were significantly higher at Alder and 

significantly lower at Mill compared to the remaining watersheds. Tukey-Kramer 

comparison of means for baseflow TP had three significant groups: Muddy was highest; 

Potash, Allen, Alder, and Mill were moderate; and Snipe had the lowest concentrations.  

Concentrations of total nitrogen in baseflow and storm event samples were generally 

similar for each site; Snipe had significantly higher storm event concentrations (Figure 

8). Tukey-Kramer comparison of means for both baseflow and storm event samples had 

three significant groups: Potash was highest; Alder, Allen, and Muddy were moderate; 

and Mill and Snipe had the lowest concentrations.  

 

 
FIGURE 7. Mean total phosphorus concentrations for storm event and 

baseflow grab samples (error bars represent +/1 1 SE). 
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FIGURE 8. Mean total nitrogen concentrations for storm event and 

baseflow grab samples (error bars represent +/- 1 SE). 

Chloride concentrations were significantly higher in the watersheds with paved 

roads and higher development (Figure 9). Potash had significantly higher concentrations 

of chloride in baseflow and storm event samples. Muddy had significantly higher storm 

event concentrations of chloride than Alder and Allen, and Mill and Snipe had the lowest 

concentrations by over an order of magnitude. Baseflow concentrations produced the 

following Tukey-Kramer groupings in decreasing order: Potash, Muddy and Alder, Alder 

and Allen, and Mill and Snipe. Chloride concentrations were significantly higher in 

baseflow samples at Potash compared to storm event samples. The high concentrations of 

chloride in the watersheds with large networks of paved roads are directly linked to the 

extensive use of road salt during icing months. The highest chloride concentration (795 

mg/L) in Potash Brook was observed in February; however levels remained very high 

throughout the summer suggesting that groundwater contributions are a major source of 
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chloride. Similar seasonal patterns were also observed in the remaining watersheds with 

paved roads. Concentrations in Mill and Snipe were consistent throughout the year 

indicating minimal contributions from road maintenance. Additional analysis and 

discussion of chloride data is presented in Appendix A.  

 
FIGURE 9. Mean Chloride concentrations for storm event and baseflow 

grab samples (error bars represent +/- 1 SE) *Note logarithmic scale on 

y-axis. 

Total suspended sediment concentrations were significantly higher during storm 

events for all watersheds (Figure 10). In contrast to the nutrient and chloride results, 

Alder Brook has significantly higher storm event sediment concentrations and Alder and 

Muddy have significantly higher baseflow concentrations compared to the other 

watersheds. The two rural watersheds with primarily dirt/gravel roads have similar 

sediment concentrations to watersheds with much higher densities of roads and 

development. 
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FIGURE 10. Mean total suspended sediment concentrations for storm 

event and baseflow grab samples (error bars represent +/- 1 SE) *Note 

logarithmic scale on y-axis 

 Macroinvertebrate Results. 

The total number of unique macroinvertebrate species (richness) and the number 

of unique species from pollution sensitive Ephemeroptera, Plecoptera, and Trichoptera 

(EPT) families both decreased in the watersheds with higher road density and 

development (Table 7). The Index of Biotic Integrity (BI) summarizes the overall 

pollution tolerance of the BMI community and also followed the same pattern with scores 

increasing (more pollution tolerant) with increasing road density and development. PMA-

O1 is a comparison of the sampled BMI community to the reference community for a 

given stream type and was least similar in the most developed watersheds and most 

similar for Mill Brook. Additional BMI community metrics and discussion are provided 

in Appendix B. 
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TABLE 7. Benthic macroinvertebrate community results. 

Watershed 
Species 

Richness 
EPT Richness BI PMA-O1 

Snipe 46.0 27.5 3.14 73.1 

Mill 47.5 29.0 2.80 89.2 

Alder 40.0 19.0 3.88 64.5 

Allen 42.5 19.0 4.02 73.2 

Muddy 41.0 16.0 4.52 63.7 

Potash 39.0 13.0 5.45 56.1 

RHA Results. 

The rapid habitat assessment results show a decrease in RHA rating and condition 

in the developed watersheds (Table 8). The RHA was conducted on an approximately 

100m long reach immediately upstream and downstream of the monitoring station, 

weighting the importance of the local condition.  Sediment deposition was a common 

impact in the developed streams with decreased riffle and pool variability and increased 

embeddedness. Bank stability impacts were important at several sites and are frequently a 

response to increased peak flows.  

TABLE 8. Rapid habitat assessment results. 

Watershed RHA Rating 
RHA 

Condition 
Impacts 

Snipe 72.5 Good Substrate, Buffer 

Mill 89.0 Reference Deposition, Bank Stability 

Alder 68.5 Good Pools, Deposition, Bank Stability 

Allen 72.5 Good Pools, Channel Alteration, Buffer 

Muddy 53.5 Fair Substrate, Channel Alteration, Buffer 

Potash 60.5 Fair Substrate, Pools, Bank Stability 
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Road Network/Water Quality Parameter Relationships. 

We tested the ability of several road network metrics for predicting water quality, 

BMI characteristics, habitat quality, and the relationship with watershed imperviousness. 

Spearman’s ρ correlation results that are significant at α=0.10 are shown in gray, 

significant correlations are shown in black: * denotes p=0.05, ** denotes p=0.01, and *** 

denotes p<0.001 (Tables 9-11). Total watershed imperviousness (%TIA) is a strong 

predictor of water quality, BMI, and habitat quality. This supports findings from 

numerous studies on urbanization and watershed impacts (Booth and Jackson 1997; Paul 

and Meyer 2001; Wang et al. 2003; Wheeler et al. 2005). Stream crossing density was the 

most powerful road network predictor of water quality, BMI, and stream habitat quality. 

Correlations with road/stream crossings were significant for 7-day maximum 

temperature, maximum dissolved oxygen range, event and baseflow concentrations of TN 

and Cl, baseflow TP concentration, and BMI biotic integrity, EPT richness (negative).  

TABLE 9. Road network and watershed imperviousness correlation. 

 

 

 

 

 

Predictor

Stream Crossings --

Road Density 0.94 ** --

100m Road Density 0.94 ** 1.00 *** --

%TIA 0.94 ** 0.83 * 0.83 *

%Road TIA 0.83 * 0.95 ** 0.95 **

Stream 

Crossings

Road 

Density

Road Density 

100m
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TABLE 10. Road network metric correlation with water quality results. 

 

TABLE 11. Road network metric correlation with BMI and habitat results. 

 

Selected regression plots from the road network metric analysis are shown in 

Figures 11-13. These regressions show the significant positive correlation of stream/road 

crossing density with TN and Cl storm event and baseflow concentrations and the 

significant negative correlation with EPT richness. 

 

Predictor

Stream Crossings 0.83 * 0.83 * 0.83 * 1.00 *** 0.89 * 0.83 * 0.95 **

Road Density 0.77 0.77 0.77 0.94 ** 0.77 0.83 *

100m Road Density 0.77 0.77 0.77 0.94 ** 0.77 0.83 *

%TIA 0.94 ** 0.94 ** 0.94 ** 0.94 ** 0.94 ** 1.00 ***

%Road TIA -0.8 * 0.83 * 0.8 0.83 * 0.83 * 0.83 * 0.77

Min DO
Max 

Temp 7d

Max DO 

Range
TP TN Cl

Event Concentrations Baseflow Concentrations

TP TN Cl

Predictor

Stream Crossings -0.77 -0.93 ** 0.94 ** -0.75

Road Density -0.84 * 0.89 *

100m Road Density -0.84 * 0.89 *

%TIA -0.89 * -0.93 ** -0.83 * 0.89 * -0.84 *

%Road TIA -0.77 -0.75 0.77

EPT 

Richness

Species 

Richness PMA-O1 BI RHA
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FIGURE 11. Regression of stream crossing density and TN concentrations 

for baseflow samples (p=0.054) and storm events samples (p=0.089). 

 

 
FIGURE 12. Regression of stream crossing density and Cl concentrations  

for baseflow samples (p=0.001) and storm event samples (p=0.011). 
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FIGURE 13. Regression of stream crossing density and EPT Richness (p=0.084). 

DISCUSSION 

Stormwater has become a politically charged issue in Vermont and throughout the 

country. The transportation network (roads, parking lots, and railways) represents a large 

percentage of the impervious surfaces across that landscape that can increase the peak 

flow and contribute significant quantities of pollution to surface waters (Kang and 

Marston 2006; Eyles and Meriano 2010). While important progress has been made to 

treat and reduce pollution from point sources, less progress has been made to address 

nonpoint sources of pollution, which are now responsible for the majority of the pollutant 

load for many surface waters (VTDEC and NYSDEC 2002). In our study watersheds and 

typical of watersheds throughout Vermont, the transportation network is managed by a 

combination of State and Municipal entities, therefore local and statewide efforts and 

cooperation are required to address runoff and pollution from these sources.  
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We calculated a series of road density metrics that can be used to easily and 

consistently quantify potential water quality impacts in a watershed. All of the road 

density metrics correlated with a range of observed impacts; however the density of 

stream/road crossings was the most successful predictor for impacts (Table 10). This is in 

part due to the inherent proximity of road surfaces and drainage infrastructure located at 

or near every crossing. Drainage infrastructure, such as culverts and ditches, directly 

channel stormwater runoff to streams and has greater impact than other impervious 

surfaces in the watershed (Booth and Jackson 1997; Wheeler et al. 2005; Schiff and 

Benoit 2007). Undersized structures and associated channel alterations near these 

crossings can cause major physical impacts such as sediment transport interruption, bank 

erosion, buffer degradation, and deposition (Lane and Sheridan 2002; Wheeler et al. 

2005). As expected, the road network metrics are correlated with watershed 

imperviousness; however the lower level of significance between imperviousness and 

road density within a 100m stream buffer highlights the potential for underestimating 

impacts of development in steeper watersheds where a large percentage of the 

imperviousness may be very close to the receiving waterbody (Table 9). 

Concentrations of phosphorus and nitrogen increased along the gradient of 

development and road network density (Figure 7 and 8). These findings were consistent 

with numerous studies in urbanized watersheds (Paul and Meyer 2001; Wheeler et al. 

2005; Cunningham et al. 2009; Noll and Magee 2009). We also found large increases in 

chloride concentrations in baseflow and storm event samples (Figure 9). These findings 

are supported by studies in Vermont and other cold-weather regions where deicing 
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chemicals are applied throughout the winter (Kelly et al. 2008; Cunningham et al. 2009; 

Denner et al. 2009). 

Total suspended sediment concentrations were not correlated with development or 

road network density. The presence of unpaved roads in the rural watersheds increased 

suspended sediment concentrations to levels that were statistically indistinguishable from 

all but one of the developed watersheds (Figure 10). Transport of large amounts of 

sediment from unpaved roads has been described in several studies; however these 

watersheds primarily contained temporary logging roads that likely behave differently 

than maintained rural roads (Lane and Sheridan 2002; Sheridan and Noske 2007; Jordan 

and Martinez-Zavala 2008). Our results are consistent with findings from a recent study 

in rural Vermont watersheds that quantified the magnitude of sediment production from 

maintained gravel roads (Wemple 2013). The sediment generated from these road 

surfaces is also an important source of TP in rural watersheds. Several studies in Vermont 

have found that TP in road and ditch sediments (mean of 396mg/kg) and TP in sanding 

mixes for winter road treatments (mean of 780 mg/kg) is similar to the mean TP content 

in eroding streambanks (621 mg/kg) (Gaddis and Voinov 2010; Wemple 2013; Ishee et 

al. 2015). 

We did not observe consistent or significant changes in hydrologic metrics within 

our range of watershed development and road network density; however decreased 

baseflow in the developed watersheds likely increases the temperature and dissolved 

oxygen impacts that were significantly correlated with road network metrics (Richter et 

al. 1996; Wang et al. 2003; Herb et al. 2008). Riparian buffer degradation likely also 
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contributes to the increased water temperature and daily ranges we observed (Angermeier 

et al, 2004; Walsh et al. 2005; Schiff and Benoit 2007). Peak flow volumes were not 

significantly higher in the urban watersheds; this is likely due in part to runoff attenuation 

in stormwater treatment structures and differences in channel and basin slope between 

developed and rural watersheds.  

The levels of imperviousness and road network density in our six study 

watersheds are representative of the full range of development present in Vermont. We 

found significant water quality impacts despite levels of development below those 

classified as “moderate” by previous studies (Chadwick et al. 2006). The relatively low 

level of total imperviousness likely increases the proportional impact of roads within each 

watershed. Despite the lower levels of development in our study watersheds, our results 

showed significant physical, chemical, and biological impacts associated with increasing 

watershed imperviousness and road network density metrics. Stream crossing density was 

significantly correlated to many of our stream quality indicators and is very simple to 

calculate and easily replicated with publicly available spatial data. Most of our findings 

closely follow the results of numerous studies that link watershed imperviousness to a 

suite of physical, chemical, and biological impacts known as the “urban stream 

syndrome” (Paul and Meyer 2001; Wheeler et al. 2005; Cunningham et al. 2009; Denner 

et al. 2009; Noll and Magee 2009). These results suggest that additional safeguards are 

necessary to reduce the impacts of roads and associated development on streams in the 

Chittenden County area of Vermont. 
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APPENDIX A  

Chloride Concentration and Specific Conductance in Developed Watersheds 

The Vermont Department of Environmental Conservation (VTDEC) is in the 

early stages of developing a listing process for chloride impaired streams which will be 

integral for future watershed restoration efforts to reduce chloride loading. The 

concentration of chloride and the specific conductance (SpC) are usually strongly 

correlated in developed watersheds. Chloride analyses are relatively simple and 

affordable, but SpC is even easier to measure and can be done at high resolution with 

readily available, affordable, and robust SpC sensors that can monitor SpC continuously. 

Deploying a network of SpC sensors throughout a watershed may be an effective tool for 

isolating chloride loading “hotspots” and increasing the effectiveness of management 

actions. 

USEPA and VTDEC define chronic and acute chloride exposure criteria for fresh 

water based on chloride concentration over a specified time period. Chronic exposure is 

defined as exceeding 230mg/L averaged over a 4 day time period, and acute exposure is 

defined as a 1 hour average of 860mg/L (USEPA, 1988). Both exposures are allowable 

once in a three year period, but any additional exceedances would trigger a chloride 

impairment listing. The incorporation of both time and concentration criteria in defining 

exposure further supports the use of continuous monitoring.  

Our study collected a large volume of continuous SpC data and chloride 

concentration data from water quality sampling, providing a valuable resource to explore 

the potential for chloride impairment in developed watersheds in Chittenden County. We 
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collected 27-30 baseflow water quality grab samples from each of the developed 

watersheds. Specific conductance readings at the time of sample collection were recorded 

for all of the samples that were collected during the ice-free monitoring period (15-17 

samples per watershed). While most of the samples from Potash Brook exceeded the 

chronic exposure concentration, none exceeded the acute threshold. No other streams 

exceeded the  230 mg/L threshold at the time of sampling. Maximum observed chloride 

concentrations for each of the developed watersheds are shown in Table 1.  

TABLE 1: Maximum observed grab sample chloride concentration. 

Watershed Maximum Observed Cl 

concentration (mg/L) 

Sampling Date 

Potash 792 2/25/09* 

Muddy 211 8/31/10 

Allen 97 8/31/10 

Alder 222 12/28/09* 

* Denotes that SpC sensors were not deployed during sample collection 

Continuous specific conductance data was collected for approximately 20 months 

in each of the watersheds. These conductance readings were compared to the chloride 

concentration values from grab samples collected in each watershed using a series of 

simple regression analyses. Individual regressions were calculated for each watershed as 

well as the combined dataset for all of the developed watersheds (Table 2 and Figure 1). 

The regression slopes were tested with an ANCOVA analysis and were not significantly 

different from each other or from the combined dataset. 

TABLE 2:  Regression equations and R
2
 values for SpC and chloride concentration. 

Watershed Linear Regression Equation R
2
 

Potash y = 272.07x - 58.89 0.855 

Muddy y = 248.64x - 28.99 0.688 

Allen y = 174.05x - 12.07 0.808 

Alder Y = 177.93x - 8.69 0.934 

Combined Dataset y = 175.26x - 10.24 0.956 
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FIGURE 1: SpC and chloride concentration regression for all developed watersheds. 

The strength of the individual and combined regression lines supports the 

calculation of chloride concentrations over the entire monitoring period. The highest SpC 

readings for each year and therefore the highest chloride concentrations were observed at 

all four stations during the late summer period when stream flows are low and relative 

groundwater contribution is greatest. Based on the continuous record of SpC in each 

watershed and the individual regressions between SpC and concentration of chloride, we 

are able to identify potential chronic or acute exposure exceedances of the recommended 

chloride thresholds on dates other than those on which we collected grab samples. Table 

3 describes the predicted specific conductance value at the chronic exposure level 

(230mg/L) for each of the developed watersheds based on the individual watershed 

regressions. The combined dataset predicts a chloride concentration of 230 mg/L at a 

y = 175.26x - 10.24 
R² = 0.9559 
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specific conductance of 1.028 mS/cm. Based on our daily mean conductance data, Potash 

Brook was in exceedance of the 4-day average chronic exposure for approximately half 

of our monitoring period. Muddy Brook exceeded the 4-day average concentration six 

times based on the Muddy Brook regression; however no exceedances were observed 

based on the combined dataset regression. 

TABLE 3: Predicted specific conductance at the chronic exposure threshold.  

Watershed Predicted SpC at 

230mg/L Cl (mS/cm) 

Peak Measured SpC 

(mS/cm) 

Date 

Potash 1.064 2.770 11/25/08 

Muddy 0.898 1.270 8/19/09 

Allen 1.194 0.675 9/14/09 

Alder 1.267 0.674 9/11/09 

 

Muddy Brook specific conductance values and the highest winter baseflow grab 

sample chloride concentration from Alder Brook suggest that these watersheds are very 

close to the threshold and may meet the requirements for an impairment listing. We 

tested the regression line for Muddy Brook against all of the other independent 

regressions and against a regression of the combined dataset without Muddy. Using an 

ANCOVA analysis the slope of the Muddy regression was not significantly different 

(p=0.87 for Muddy against developed watersheds excluding Muddy). A plot of this 

regression including 95% confidence intervals for the individual points and the mean of 

the combined regression is shown in Figure 2. While not significant, a visible shift near 

the 230 mg/L chronic criteria is evident in the Muddy data. This suggests that more 

sampling is necessary for sites that are near the threshold concentrations.  
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FIGURE 2: Regression plot for grab sample chloride and specific conductance data from Potash, 

Allen, and Alder Brook with 95% confidence intervals of the individual points and the mean. 

Muddy Brook data is overlaid to indicate a possible shift near 230mg/L. 

The peak observed chloride concentration from Alder Brook was collected during 

a winter baseflow. This value (222 mg/L) is very close to the chronic threshold but only 

represents a “snapshot” of the stream. This highlights the importance of high resolution 

continuous data for assessing chloride impairment. The establishment of a statewide 

chloride listing process has far-reaching implications for municipalities, residents, and 

commercial property owners; therefore it is critical that well informed stream science is 

utilized to establish watershed chloride conditions and inform river scientists.  
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APPENDIX B 

Macroinvertebrate Community Summary  

Snipe Island Brook and Mill Brook were assessed using the Small High Gradient 

(SHG) and Medium High Gradient (MHG) criteria respectively; the remaining four sites 

were classified as Warm Water Medium Gradient (WWMG). VTDEC assesses streams 

as either non-supporting or supporting of aquatic life using eight calculated metrics to 

describe the macroinvertebrate community. A range of values for biocriteria metrics is 

defined for the three levels of aquatic life use support: A1 (green), B-WMT 1 (Yellow), 

B-WMT 2&3 (Orange), and non-supporting (Red). A qualitative community assessment 

rating is assigned based on these scores and the observed community composition. 

Additional years of macroinvertebrate and fish community assessments and water quality 

monitoring are typically conducted before a stream is officially listed as non-supporting 

of aquatic life uses. A large storm event occurred prior to sampling at Muddy and Potash, 

likely affecting the community composition. Chironomidae, Oligochaeta and silt ratings 

were all reduced in the VTDEC samples compared to historic data. Further community 

sampling is required at these sites to characterize the benthic community and assess the 

level of impairment.  

Stream 
Community 

Assessment 
Density Richness 

EPT 

Richness 
PMA-O HBI Oligo% 

EPT/ 

EPT+C 
PPCS 

Snipe Excellent 738 46.0 27.5 73.1 3.14 1.9 0.92 0.56 

Mill Excellent 593 47.5 29.0 89.2 2.80 0.3 0.91 0.68 

Alder Good 3520 40.0 19.0 64.5 3.88 7.4 0.95 0.51 

Allen Very Good 1438 42.5 19.0 73.2 4.02 0.1 0.82 0.71 

Muddy Good 1976 41.0 16.0 63.7 4.52 0.0 0.94 0.54 

Potash Fair 5024 39.0 13.0 56.1 5.45 0.0 0.92 0.39 
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Stream Community Description 

Snipe 

Abundance and HBI are low for SHG stream types but very high taxa and EPT richness 

suggest a low productivity stream with excellent community composition. Elevated 

Oligochaeta and the presence of Lumbriculidae indicate some response to sediment stress.  

Mill 

Abundance is low and high proportion of nutrient sensitive taxa suggest that this stream is 

unproductive or oligrotophic. Community composition is excellent with high taxa and EPT 

richness and is very similar to the reference community. Slightly elevated Oligochaeta suggest 

potential sediment impacts, however observed embeddedness and silt rating were low.  

Alder 

Good taxa richness and EPT/EPT+C, bio index is slightly elevated as expected for a somewhat 

developed watershed. Oligochaeta are elevated indicating sediment stress on the community; 

this was also evident in the pebble count, embeddedness, and silt rating. 

Allen 

Overall community is very good with high richness and low density of nutrient/pollution 

tolerant taxa. Community composition and functional feeding groups are similar to reference 

WWMG streams.  

Muddy 

Overall community was assessed as good due to high richness and low proportion of 

Oligochaeta and Chironomidae (likely influenced by large rain event 1 week before sampling). 

Increased Coleoptera richness and a high proportion of scraper feeding group organisms and 

the high macro algae coverage noted in the pebble count indicate nutrient enrichment.  

Potash 

Overall community was assessed as fair due to very high abundance but low EPT richness and 

low abundance of sensitive taxa. High HBI indicates stress from nutrient enrichment. Very 

high density of Hydropsychid caddisflies indicate a community dominated by collector 

filterers.  
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