
Elliptic Curves and the abc Conjecture

Anton Hilado

University of Vermont

October 16, 2018

Anton Hilado (UVM) Elliptic Curves and the abc Conjecture October 16, 2018 1 / 37



Overview

1 The abc conjecture

2 Elliptic Curves

3 Reduction of Elliptic Curves and Important Quantities Associated to
Elliptic Curves

4 Szpiro’s Conjecture

Anton Hilado (UVM) Elliptic Curves and the abc Conjecture October 16, 2018 2 / 37



The Radical

Definition

The radical rad(N) of an integer N is the product of all distinct primes
dividing N

rad(N) =
∏
p|N

p.
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The Radical - An Example

rad(100) = rad(22 · 52) = 2 · 5 = 10
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The abc Conjecture

Conjecture (Oesterle-Masser)

Let ε > 0 be a positive real number. Then there is a constant C (ε) such
that, for any triple a, b, c of coprime positive integers with a + b = c , the
inequality

c ≤ C (ε) rad(abc)1+ε

holds.
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The abc Conjecture - An Example

210 + 310 = 13 · 4621
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Fermat’s Last Theorem

There are no integers satisfying

xn + yn = zn and xyz 6= 0

for n > 2.
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Fermat’s Last Theorem - History

n = 4 by Fermat (1670)

n = 3 by Euler (1770 - gap in the proof), Kausler (1802), Legendre
(1823)

n = 5 by Dirichlet (1825)

Full proof proceeded in several stages:
Taniyama-Shimura-Weil (1955)
Hellegouarch (1976)
Frey (1984)
Serre (1987)
Ribet (1986/1990)
Wiles (1994)
Wiles-Taylor (1995)
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The abc Conjecture Implies (Asymptotic) Fermat’s Last
Theorem

Assume the abc conjecture is true and suppose x , y , and z are three
coprime positive integers satisfying

xn + yn = zn.

Let a = xn, b = yn, c = zn, and take ε = 1. Since abc = (xyz)n the
statement of the abc conjecture gives us

zn ≤ C (ε) rad((xyz)n)2 = C (ε) rad(xyz)2 ≤ C (ε)(xyz)2 < C (ε)z6

.
Hence there are only finitely many z that satisfy the equation for n ≥ 6.
If, in addition, we can take C (ε) to be 1, then the abc conjecture implies
Fermat’s Last Theorem, since it has been proven classically for n < 6.
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Elliptic Curves

An abelian variety is a projective variety which is an abelian group
object in the category of varieties.

An elliptic curve is an abelian variety of dimension 1.
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The Weierstrass Equation of an Elliptic Curve over K

Every elliptic curve E over a field K can be written as a cubic of the
following form in P2

K :

Y 2Z + a1XYZ + a3YZ
2 = X 3 + a2XZ

2 + a4X
2Z + a6Z

3.

Such a cubic is called a Weierstrass equation.
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The Affine Weierstrass Equation of an Elliptic Curve over
K

Equation in P2 (projective Weierstrass equation):

Y 2Z + a1XYZ + a3YZ
2 = X 3 + a2XZ

2 + a4X
2Z + a6Z

3.

Equation in (P2 \ {Z = 0}) = A2 (affine Weierstrass equation):

y2 + a1xy + a3y = x3 + a2x + a4x
2 + a6.

Conversion:

x =
X

Z
y =

Y

Z
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Admissible Changes of Coordinates

Let u, r , s, t ∈ K , u 6= 0,

X ′ = u2X + r

Y ′ = u3Y + u2sX + t

Z ′ = Z
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Short Weierstrass Form

If char(K ) 6= 2, 3, we can use the admissible changes of coordinates to
write any elliptic curve in short Weierstrass form:

y2 = x3 + Ax + B
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Singularities

Let C be a curve in P2
K given by the homogeneous equation

F (X ,Y ,Z ) = 0.

Then a singular point on C is a point with coordinates a, b, and c such
that

∂F

∂X
(a, b, c) =

∂F

∂Y
(a, b, c) =

∂F

∂Z
(a, b, c) = 0.

If C has no singular points, it is called nonsingular.
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Kinds of Singularities - Cusps

If there is only one tangent line through a singular point, it is called a
cusp.

Figure: The curve y2 = x3 has a cusp at (0, 0).
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Kinds of Singularities - Nodes

If there are two distinct tangent lines through a singular point, it is called
a node.

Figure: The curve y2 = x3 − 3x + 2 has a node at (1, 0).

Anton Hilado (UVM) Elliptic Curves and the abc Conjecture October 16, 2018 17 / 37



Singularities in Algebraic Geometry

More accurately, a point p on some variety X is called a singular point if
dim(m/m2) 6= dim(X ), where m is the unique maximal ideal of the stalk of
the structure sheaf at p.

Anton Hilado (UVM) Elliptic Curves and the abc Conjecture October 16, 2018 18 / 37



Elliptic Curves with Integral Coefficients and Reduction
Modulo Primes

A Weierstrass equation with coefficients in K can be made into a
Weierstrass equation with coefficients in the ring of integers OK by
”clearing denominators”. We can then reduce the coefficients modulo a
prime ideal p to obtain a Weierstrass equation with coefficients in some
finite field Fq.
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Models

Given a variety X over K , a model X for X is a scheme over OK such
that X is isomorphic to its generic fiber.
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Reduction Types of Elliptic Curves

If an elliptic curve has an integral Weierstrass equation that remains
nonsingular after reduction mod p, we say that p is a prime of good
reduction. Otherwise, we say that it has bad reduction.
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Kinds of Bad Reduction

We have the following kinds of bad reduction depending on the type of
singular point we obtain after reduction mod p:

If it is a cusp, we say that p is a prime of additive reduction.

If it is a node, we say that p is a prime of multiplicative reduction.
If, in addition, the slopes of the tangent lines are given by rational
numbers, we say that p is a prime of split multiplicative reduction.
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The Discriminant

Let E be an elliptic curve with Weierstrass equation

Y 2Z + a1XYZ + a3YZ
2 = X 3 + a2XZ

2 + a4X
2Z + a6Z

3.

The discriminant of an elliptic curve is defined to be the quantity

∆ = −b2
2b8 − 8b3

4 − 27b6 + 9b2b4b6

where
b2 = a2

1 + 4a2

b4 = a1a3 + 2a4

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4
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The Discriminant in Short Weierstrass Form

If we can express E in short Weierstrass form as follows,

y2 = f (x)

where f (x) is some cubic polynomial, the discriminant is just the
discriminant of f (x).
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The Minimal Discriminant

The local minimal discriminant of an elliptic curve E over Kp is defined
to be the discriminant of the Weierstrass equation for which ordp(∆) is
minimal.
The global minimal discriminant of an elliptic curve over K is defined to
be

∆ =
∏
p

pordp(∆p)

where ∆p is the discriminant of the Weierstrass equation of E over Kp.
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Criteria for Minimality

A Weierstrass equation is minimal if its discriminant is the same as the
minimal discriminant. The following conditions imply that a Weierstrass
equation is minimal:

ordp(∆) < 12

or
ordp(c4) < 4

or
ordp(c6) < 6

where
c4 = b2

2 − 24b4

and
c6 = −b3

2 + 36b2b4 − 216b6
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The Minimal Discriminant and Bad Reduction

If the minimal discriminant ∆ of a curve is zero, then the curve is singular
(and therefore not an elliptic curve). Therefore a prime p is a prime of bad
reduction if and only if p|∆.
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Global Minimal Weierstrass Equations

If the discriminant of a Weierstrass equation over a global field K is the
same as its minimal discriminant, we say that it is a global minimal
Weierstrass equation.
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Existence of Global Minimal Weierstrass Equations

If K has class number one, then every elliptic curve EK has a global
minimal Weierstrass equation.
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The Conductor

The conductor of an elliptic curve is defined to be the quantity

C =
∏
p

pfp

where

fp = 0 if p is a prime of good reduction.

fp = 1 if p is a prime of multiplicative reduction.

fp ≥ 2 if p is a prime of additive reduction.
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Szpiro’s Conjecture

Conjecture

For every elliptic curve E over Q, and every ε > 0, there is a constant
c(E , ε) such that

|∆| < c(E , ε)(C 6+ε)
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The Frey Curve

Definition

The Frey curve is the elliptic curve given by the affine Weierstrass
equation

y2 = x(x − a)(x + b).
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The Frey Curve and the abc Conjecture - The Minimal
Discriminant

Let E be the Frey curve. We either have

|∆| = 24(abc)2

or
|∆| = 2−8(abc)2
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The Frey Curve and the abc Conjecture - The Conductor

The Frey curve has multiplicative reduction at all odd primes that divide
the discriminant. Therefore

C = 2fp
∏
p|abc
p 6=2

p

where 2fp |∆.
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Szpiro’s Conjecture Implies the abc Conjecture

|∆| =< c(E , ε)(C 6+ε)

2−8(abc)2 ≤ c(E , ε)2fp(
∏
p|abc
p 6=2

p)6+ε

2−8(abc)2 ≤ c(E , ε)212+2ε(
∏
p|abc
p 6=2

p)6+ε

(c)4 ≤ c(E , ε)(rad(abc))6+ε)

(c) ≤ c(E , ε)(rad(abc))
3
2

+ε)
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The End
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