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Motivation

* Regulatory actions by federal, state and local
governments can play a critical role in influencing the
transportation energy market

— Consumer tax rebates, government subsidies, publically
available charging stations, energy prices (fuel and
electricity), among others

* We have developed an agent-based model (ABM) to
simulate vehicle purchasing behavior for PHEV
market penetration modeling
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Model and Data Description

* Complexities of the city-scale discrete-choice
model have been presented previously (Pellon et
al., 2009)

» City-scale, agent-based, discrete-choice model with
social influence and basic economics

— Prius vs. Prius-like PHEV

— Conformity - Our physical and social neighbors influence our decision to
consider/purchase a new technology (Axelrod, 1997)

— Threshold model — certain number of neighbors must possess a PHEV before
agent considers/purchases one (Watts 2002)

— Heterogeneous agents (ages, salary, social network size, social susceptibility,
greenness, etc) are distributed in space

— Grounded with data (NHTS, EIA, U. of Michigan & Reuters) where available and
basic assumptions
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Resarch Question

e Can we use an artificial neural network to
learn the behavior of the city-scale, discrete-
choice, agent-based model with social
influence?

— Replicate ABM linear and non-linear dynamics
— Capture effects of social interactions
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Artificial Neural Networks (ANNSs)

e Pattern recognition algorithms modeled
after the human brain

e Non-parametric, parallel, statistical
methods

e Data-driven (learn inherent relationships)

¢ More data > better predictions
e Multiple data types

e Used on problems where traditional
methods are unfeasible

e Handwriting & speech recognition, stock ~
market prediction, ... _’/ E
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ANN Algorithms

e There are as many different ANNs as there are
traditional statistical methods

* Unsupervised
— Self-organizing map developed by Kohonen (1989)

* Supervised

— Maps non-linear relationships between predictor and
response variables (Hayken 1998)
— Feedforward backpropagation
¢ Most popular ANN in literature
* Learning is based on gradient descent

¢ Stochastic in nature — can get stuck in local minima, can be over
trained, can suffer from lengthy training time
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Generalized Regression Neural Network
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ABM Simulations

4,320 different model simulations with varying model parameters
— Total population of 1,000 agents

Train GRNN on 3,000 random simulations (~80% of total)
Validate and test GRNN on 1,320 simulations

— Select only a few for demonstration
Pertinent parameters
— Size of social network networks
— Social susceptibility (assumed)
— Annual income, driving distribution (NHTS)
— How far into the future do agents consider economic benefits (if at all)
— Projected gas prices (EIA)
— PHEV price premium (hymotion.com)
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GRNN Inputs and Outputs
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Bold designates distributions
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Annual Income
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Example Model Input
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Model Parameter Ty & VEekie) Prediction Dataset
Dataset
Median Social Susceptibility | [0.01, 0.09, 0.33, 0.49] [0.17, 0.45]
Proj. Gas Price Low, Medium, High | Low-mid, Mid-High
PHEV Price Premium $5k, $10k, $15k $7k, $13k
Town Identification 1,2,3,4,5 1,2,3,4,5
Region Population 1,000 1,000
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Simulation 1 — Low Social Susceptibility
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Simulation 2 — High Social Susceptibility
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ANN Validation and Prediction Results

Variable Dataset Statistic LT L e LT L R e
2 3 4 5) Towns
Number of Validation & =000y 74 65 726 55 79 1,000
Agents Prediction
Validation Mean R? 089 083 088 057 0.83 0.8
PHEV-Fleet Std. Dev. R? 022 034 024 033 025 0.28
Proportion i Mean R? 097 098 099 094 096 097
Prediction 2
Std. Dev.R* 0.02 001 0.01 0.03 002 0.02
validation Mean R? 085 0.82 087 047 0.76 0.75
Std. Dev.R> 027 031 024 029 029 0.28
Greenness >
Prediction Mean R 083 074 097 089 091 087
Std. Dev. R? 0.09 006 001 004 001 004
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Computational Speedup

The ABM scales super linearly with
increasing number of agents.
— Large amount of computation performed
at every time step for every agent (e.g.,

threshold to consider purchasing a PHEV
based on social and geographic networks)
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— Generation of 4,320 simulations: ~24 hrs Number of Agents

GRNN took ~4 hours to train (3,000 simulations) and ~9
minutes to predict all 1,320 simulations (0.4 sec per simulation)

Caveat: must generate lots of simulations with which to train
the GRNN — these simulations scale super linearly with N
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Conclusions

GRNN was able to accurately replicate the spatio-temporal
dynamics of the ABM

— Rate and final proportion of PHEV adoption (linear and non-
linear dynamics)

— PHEV market penetration with low and high social
susceptibility

Greenness was not as well replicated due to the sole

dependency in social susceptibility (less on market

conditions)

— Can be improved with less variable distributions
GRNN is computationally faster once training datasets exists.
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Ongoing Research

* Additional PHEV options
— Chevy Volt, among others
* Financing options
— Bring all costs back to present worth
— Compare monthly expenses to income
e Additional inputs in GRNN

— How many years out do agents consider during
economic analysis (changes with time)
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Ongoing and Future Wor

ANNSs are used as a

Additional agents % -0~
— Dealerships |- i
— Manufactures N | e e
. . 2 / u .X
— Charging stations owners I IH |\
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surrogate for the city- 1 3
scale ABM to explore ~
potential policies
— Federal state and local Manufacturer 3 | Iy s & clectricity prices are
: cu:cn:us mo-dcxrmpuls
government agents Hypothetical Global Fleet Distribution

— Tax rebates, energy Policy

subsidies, among others \,. s-> "
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Questions
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