89th Annual Meeting of the Transportation Research Board

TRB Paper #10-2118

January 12, 2010

SPATIAL MODELS FOR THE STATEWIDE EVALUATION OF TRANSIT-SUPPORTIVE ZONES

Nathan P. Belz, M.S., E.I., University of Vermont Lisa Aultman-Hall, Ph.D., University of Vermont Gopal R. Patil, Ph.D., Indian Institute of Technology Bombay

RESEARCH EDUCATION OUTREACH

OVERVIEW

INTRODUCTION Importance, Challenges and Objectives

Background

Data

Methods

Results

Conclusions

What are the challenges of transit in rural states?

- Spatial Constraints
 - Long Travel Distances
 - Low Densities

What needs to be done?

- Move beyond large-rural analysis for local services
 - Define areas that are transit serviceable statewide
 - Develop objective process to determine transit demand
 - Determine demand potential and VMT reduction

RESEARCH EDUCATION OUTREACH

BACKGROUND Previous Research and Limitations Introduction Methods Conclusions

Results

What has been done for spatial transit demand research?

Data

- **Quality of Transit Service**
- Access and Coverage
- **Density and Land Use**

What are the shortfalls of past spatial research?

- Zonal level and/or small extents with urban focus
- Assumptions of homogeneity within zones

E911 Points

- Single-Family Structures
- Multi-Family Structures
- Non-Residential Structures

RESEARCH EDUCATION OUTREACH

STEP 2: Apply employment levels to each non-residence point

EDUCATION OUTREACH

STEP 2: Apply employment levels to each non-residence point

STEP 3: Apply trip generation rates to all points

Demand Potential (DP)

RESEARCH EDUCATION OUTREACH

STEP 2: Apply employment levels to each non-residence point

STEP 3: Apply trip generation rates to all points

9

Equivalent Demand Potential (DP)

STEP 4: Divide demand potential for each point by the demand potential for a single-family home

RESEARCH EDUCATION OUTREACH

STEP 5: Sum the EDP for each acre

EXAMPLE: Montpelier, VT

EDP

High : 2846

Low : 0

UNIVERSITY OF VERMONT TRANSPORTATION RESEARCH CENTER

•

÷.

.

: .

•

.

.

٠

.

• •

•

STEP 5: Sum the EDP for each acre

0 0.5 1 2 Miles

UNIVERSITY OF VERMONT TRANSPORTATION RESEARCH CENTER

3

5

2 7

1 1 1

4

1

1

3 3

3

5 2

1 2

EXAMPLE: Montpelier, VT

EDP

High : 2846

Low : 0

Introduction

Background

Results

Conclusions

STEP 5: Sum the EDP for each acre

Data

STEP 6: Calculate the spatial grid Neighborhood Measure value

EXAMPLE: Montpelier, VT

Neighborhood Measure

High : 11742

Low:0

0 0.5 1 2 Miles

Data

Introduction

Background

-

Results

Conclusions

STEP 5: Sum the EDP for each acre

STEP 6: Calculate the spatial grid Neighborhood Measure value

EXAMPLE: Montpelier, VT

Neighborhood Measure

High : 11742

Low:0

0 0.5 1 2 Miles

	2	3	4	4	4	3	1	
1	2	7	8	9	6	5	2	
1	2	10	16	20	15	10	5	1
1	2	12	21	29	27	13	7	2
1	3	11	26	32	29	14	7	2
2	6	9	20	23	23	10	5	1
3	6	8	12	13	14	7	3	
2	4	5	6	6	7	4	2	
1	2	2	3	3	3	1		

Introduction

Background

_

Results

Conclusions

STEP 5: Sum the EDP for each acre

Data

STEP 6: Calculate the spatial grid Neighborhood Measure value

STEP 7: Determine the spatial grid Neighborhood Maximum value

10 16 12 21 12 13 14

RESEARCH EDUCATION OUTREACH

Introduction

Background

Results

Conclusions

STEP 5: Sum the EDP for each acre

Data

STEP 6: Calculate the spatial grid Neighborhood Measure value

STEP 7: Determine the spatial grid Neighborhood Maximum value

12 26 12 13

METHODS Transit- Supportive Zones Introduction Background Data Results Conclusions

STEP 5: Sum the EDP for each acre

- **STEP 6:** Calculate the spatial grid Neighborhood Measure value
- **STEP 7:** Determine the spatial grid Neighborhood Maximum value
- STEP 8: Identify local maximums

RESEARCH EDUCATION OUTREACH

METHODS Transit- Supportive Zones Introduction Background Data Results Conclusions

STEP 5: Sum the EDP for each acre

- **STEP 6:** Calculate the spatial grid leighborhood Measure value
- **STEP 7:** Determine the spatial grid Neighborhood Maximum value

STEP 8: Identify local maximums

STEP 9: Apply service area to local maximum centroids and sum EDPs within service area

RESEARCH EDUCATION OUTREACH

- Σ EDP must be greater than or equal to seven at the central acre
- Σ EDP must be greater than or equal to 3520

for the entire service zone

Burlington, VT & Surrounding

Montpelier, VT

RESEARCH EDUCATION OUTREACH

Transit-Supportive Demand Proportion

20

0 - 0.20

0.21 - 0.40 0.41 - 0.60 0.61 - 0.80 0.81 - 1.0

METHODS Estimation of Potential Transit Demand

Introduction

Background

Results

Conclusions

Potential Transit Demand (Person Trips)

Data

- Trip must originate in and be destined for a TSZ
- Gravity update of state model using TSDP as the "growth" factor
- Reduced by 7.6% for trips occurring outside of typical transit operation hours
 - Subtracted existing transit trips

EXAMPLE: Montpelier, VT **Person Trips**

0 - 1000 1000 - 5000 5000 - 10000

10000 - 20000

> 20000

METHODS Estimation of Potential Transit Demand

Data

Introduction

Background

~

Results

Conclusions

Estimation of VMT Reduction

- Divide person-trips (T) by auto-occupancy for a given trip-purpose (P)
- Number of trips (A) occurring between OD pairs
- Shortest network distance (B) between OD pairs
- Number of trips (C) occurring within TAZ
 Intrazonal trip length (D) approximated as radius of a circle with area equivalent to TAZ area

$$AT_{ij} = \sum_{p} \left[\sum_{ijp} \frac{TT_{ij}^{(p)}}{AO_{p}} \right] = \frac{T}{P}$$
$$R_{VMT} = \sum_{ij} (AT_{ij} * Min[DN_{ij}]) + \sum_{i} (AT_{i} * D_{TAZ})$$
$$= (A * B) + (C * D)$$

RESULTS

Introduction

Background

Data

% WITHIN TSZS BY REGION

Conclusions

	МРО	Non-MPO	Vermont (Total)	
Land Area	6	0.6	0.9	
Residence Points	37	12	17	
Employment Points	66	33	39	

Methods

RESEARCH EDUCATION OUTREACH

RESULTS

Background

Data

Introduction

TRIPPIIRPOSE		AUTO VMT	% "REDU	% "REDUCTION"	
		(miles)	Trip s	VMT	
Home-Based Work	137,210	938,895	37	21	
Home-Based Shopping	62,910	392,408	38	20	
Home-Based School	4,964	25,443	38	19	
Home-Based Other	133,599	601,829	34	16	
Non-Home Based	194,161	635,924	64	33	
TOTAL	532,844	2,594,499	43	21	

Methods

Transit-Supportive Zones

- Data and methodology used
- TSZs are spread throughout the state
- 1% of VT land area is transit-supportive

Estimation of Demand

- 43% of all trips occur within or between TSZs
 - 86% Intercity
 - 14% Intracity

Theoretically if all "potential" could be served

21% statewide reduction in VMT

RESEARCH EDUCATION OUTREACH

CONCLUSIONS

Importance of disaggregate data

- Generally much more available for urban areas
- Illustrates application of E911
- Identifies need for similar data on national scale
- Application as data-driven decision tool

TSZs and Potential Transit Demand

- Relatively large proportion of substitutable intercity trips
- Not just in the one Vermont MPO
 - Unlikely all identified potential can be connected

ATION ATION TRANSPORTATION RESEARCH CENTER

Spatial analysis is not stand-alone

- Supplementary material
 - Social equity and need
 - Energy efficiency and network walkability

Indication of location and level of demand

- Increase transportation system efficiency
- Develop spatially-optimal fixed-route transit network
- Where to serve with fixed route or demand responsive

RESEARCH EDUCATION OUTREACH

RESEARCH EDUCATION OUTREACH

ACKNOWLEDGEMENTS

Funding provided by: US Department of Transportation Research and Innovative Technology Administration

Collaboration with: Dr. Austin Troy Assistant Professor, UVM RSENR

James Sullivan, P.E. Research Engineer, UVM TRC

Andrew Weeks, P.E. Research Engineer, UVM TRC

RESEARCH EDUCATION OUTREACH

QUESTIONS/COMMENTS

