September 26th – Variability, distributions, clarification and catching up

Quantitative Thinking in the Life Sciences

Today

- Assignment 3 R code revisited
- Distributions & Variability!
- Assignment # 4
- More R fun!
 - Chapter 4 (or other) questions?
 - Chapter 5 Elements and more loops

Housekeeping

Jumping right in! Assignment 3 R code review

• To R we go!

Dropbox\\Quantitative Thinking\\Sept 26
 notes_assignment 3 r code revisited.R

Variance (**o**)

- Expected difference from the mean (the mean of the difference from the mean)
- On average (mean) how far are data expected to be away from the mean value

Standard Deviation(σ^2)

• Variance squared (Why?)

Standard Deviation vs Standard Error

- Standard deviation is a measure of the variability in your true population (frequently unknown)
- Standard error is an estimate of the variability in your measured population
 - Standard error approaches the standard deviation with increased sample size

Why do we care about the distribution type / shape?

 What should the system look like if there is no effect of our variables?

Coin flip – we assume that coin flips have a 50% chance of landing on heads (p = 0.5) and a 50% chance of landing on tails (p = 0.5), flips are independent

We can test and possibly reject the assumptions (possibly not independent, possibly not evenly weighted)

Binomial distribution

Normal probability distribution: Probability DENSITY function (PDF)

mean = μ

Independent Mean = μ Variance = σ Standard deviation = σ^2

Testing assumptions of normality

Test to see if the assumptions have been violated

Normal Cumulative DENSITY function

х

Go to R

 Dropbox/Sept 26 notes_variability_distributions.R

Uniform probability DENSITY function (equal probability)

Poisson Distribution

- Mean number of events occurring is small relative to total possible occurrences
- Independent events
- Occurrences are random
- Why do we care?
- If a goodness of fit test tells us that are distribution is NOT poisson distributed then we know that one of the assumptions has been violated!

> x.poi<-rpois(n=200,lambda=2.5)
> histogram(x.poi,nint=8,main="Poisson
distribution")

Poisson Distribution

- Remember, we can test if something does not fit
- Difficult to say something definitely fits

E.g., Worms in a soil core

- Assume that nothing is influencing their presence (random)
- Lots could fit in a sample
- typically would only find a few
- the worms are independent

Check assumptions

- Find that variance is greater than mean, then worms might be clumping (on to next ? why?
- Where might you see the reverse (variance less than mean?)

Animals with territories, spacing of trees in a forest (light / shading issues)

Poisson Distribution

Example: Negative binomial distribution:

Null model is that data (observations, individuals, etc) are clumped in time or space

So, if you want to REJECT that individuals are clumped, then you would need to create a null model that they are clumped.

Getting started on your assignment

- Assignment # 4 is due on Oct 3rd
- Worth 50 points (Not 100 points no simulation):
 - Three parts
 - Part 1: Distributions and variability for your system's factors/components/variables
 - Distributions and variability estimates
 - Relationships between it and connected factors
 - Parts 2 & 3: Chapters 4 and 5 in R
 - Chapter 4 was given to you last week
 - Chapter 5 will be given to you this week (distributions and variability)

Assignment 4: Part 1

Use our concept maps to Distributions and variability for your system's factors/components/variables

Distributions and variability estimates Relationships between it and connected factors

Cropping system resiliency to climate change

Cropping system resiliency to climate change

Endless fun with R!

- Questions from last week?
- This week Chapter 5: Formulas and distributions
- jpeg('rplot_population_growth_exercise.jpg')

Beta distribution: probability distribution function (α and β are shape parameters)

Lognormal Distribution: probability DENSITY function (Always positive, its logarithm is normally distributed)

Gamma Distribution: probability distribution function (k and θ are shape and scale parameters)

