Happy Halloween

Quantitative Thinking in the Life Sciences

October 31st - Simple linear regressions, multiple linear regressions, and non-linear models

Today

- Simple Linear models
- Multiple regression
- Non-linear modeling
- Assignment C

Housekeeping

- November $14^{\text {th }}$ absence
- After today, only three class sessions left
- Homework B is due today
- First attempt at simulating your data distributions
- Homework C is due on Nov $7^{\text {th }}$
- Chapter 8 R code: Modeling Elk populations in Rocky Mountain National Park

Developing a test statistic with a normal distribution

$\mathrm{x}_{\mathrm{i}}-\mu=$ Distance or Error

Allows us to quantify the probability of x 's occurrence

Linear model: $y=\alpha+\beta_{1}{ }^{*} x$

Diversity of plants in the intercrop

Pollinators $=\alpha+\beta_{1}{ }^{*}$ Intercrop.plant.diversity

Does $\beta_{1}=0$?

Example in R!

Linear regression:
 Assumptions about the data

- There is no measurement error in your predictor variables (Ouch! - reinforces need for good design)
- Linearity (just witnessed in R)
- Constant variance in your errors (R example)
- Independence of errors in your response variable (y, e.g., \# of pollinators)

Linear model multiple effects multiple linear regression

$y=\alpha+\beta_{1}^{*} x_{1}+\beta_{2}^{*} x_{2} \ldots$
Pollinators $=\alpha+\beta_{1}{ }^{*}$ Flower.size $+\beta_{2}{ }^{*}$ Amount.Pollen

Flower.size
Does $\beta_{1}=0$?
Does $\beta_{2}=0$?

Pollinators $=\alpha+\beta_{1}{ }^{*}$ Flower.size $+\beta_{2}{ }^{*}$ Amount.Pollen

What is the prob that the overall model slope $=0$? Could the slope of the red line be equal to zero?

Time check!

- Load up r-squared example

Side note: R-squared

$$
R^{2}=1-\frac{S S_{\text {error }}}{S S_{\text {total }}}
$$

$S S_{t o t a l}=(\mathrm{y}-\operatorname{mean}(\mathrm{y}))^{2}$
$S S_{\text {total }}=$ sum $(\text { red lines })^{2}$
$S S_{\text {error }}=$ error 2

$S S_{\text {error }}=$ sum $(\text { blue lines })^{2}$

Non-linear models

The concepts are the same as with linear models

- How much error is explained by your model
- How much variation exists in your system
- How much information is available for the model to work with
- Really complex models that are fitting lots of parameters should fit the data better
- Models with lots of parameters have reduce degrees of freedom (less information to work with)

Co2 model in R

Assignment C

- Modeling the population dynamics of elk in Rocky Mountain National Park
- Data set of elk populations will be available on my website
- Year
- Population
- Sample size (don't worry about this for now)
- We will use the Logistic formula to model the population
- Exponential growth, with a growth rate r
- With a population limited by a carrying capacity K

Assignment C

$$
N_{(t i m e)}=N_{(t i m e-1)}+r * N_{(\text {time }-1)} *\left(1-\frac{N_{(t i m e-1)}}{K}\right)
$$

SSE $=(\text { Model predicted elk density }- \text { observed elk density })^{2}$

Assignment C

- Assignment C is due on November $7^{\text {th }}$
- Worth 50 points
- R code - Fitting models
- Using data plot different curves
calculate mse of each
- Write up in manuscript form for a few of the components. That is, introduce the system (you can self-plagiarize but make it clean), describe how you will sample (or already sampled) components (Methods section), describe your simulation inputs, include output plots. Discuss in brief.

Steps

- Look at the data distributions that you have created for your concept map
- Look over the R Chapter 7 distributions
- Figure out one that looks like it fits
- Adjust the values so that distribution parameters fit your data

Assignment B

- Reintroducing the system
- Describing your actual sampling methodology (in brief)
- Describe with figures what you expect your data distributions to look like using histograms of your data
- Discuss in brief (or not)

