## Quantitative Thinking in the Life Sciences

## October $3^{\text {rd }}$ - Coding in $R$, sampling error, and measurement error

## Today

- Assignment 4 R code
- Measurement error (a part of sampling error)
- Assignment \# 5
- More R fun!
- Chapter 6


## Housekeeping

- Schedule

| Oct 3 | Your system revisited: Concept map, variables and <br> error. Precision and Accuracy | $\mathrm{R}-$ measurement <br> error |
| :---: | :--- | :--- |
| Oct 10 | Mathematical relationships <br> R - Relationships <br> in your system |  |
| Oct 17 | Single variable modeling (e.g., linear models, <br> growth rate models) | $\mathrm{R}-$ simulating your <br> system |

## Assignment 4 R code review

- To R we go!
- Dropbox <br>Quantitative Thinking<br>Oct 3 notes_assignment 4 r code.R


## Some error terminology

- Standard deviation is a measure of the variability in your true population (frequently unknown)
- Standard error is an estimate of the variability in your measured population
- Measurement or Observational error (part of standard error)


## Measurement or Observational error

## (part of standard error)

These errors are the difference between the true value of a data point and the measured value of a data point.

- Systematic error (bias)
- Random error
- Precision
- Accuracy


## Precision vs Accuracy

Location of Sasquatch's home burrow in Underhill State Park



## A more intuitive example (for me anyway)

Precision - How many zeros after the decimal point?

Accuracy - did you tare the machine?

Precise data (with accuracy error)
4.721 g
4.832 g
4.754 g
4.902 g
4.741 g

Precise data: correctly tared data
0.221 g
0.332 g
0.254 g
0.402 g
0.241 g
$=4.500 \mathrm{~g}$

Accurate data but less precise scale
(Precision error)
0.2 g
0.3 g
0.3 g
0.4 g
0.2 g

## Back to R for measurement error example

## Measurement error

## Systematic error or bias

- Brown wheat mite example
- Why might consistent sampling error not be important from an applicability perspective?
- Models will test observed (not actual), predictions will be created for observed (not actual), but many of the action decisions are also based on observed (not actual).
- Russian wheat aphid example
- CONSISTENT BIAS!


## Assignment \# 5

- Assignment \# 4 is due on Oct $10^{\text {th }}$
- Worth 50 points
- Part 1: Sampling error
- What data will you be obtaining to answer your questions (e.g., rainfall, temperature, flower area per plant)? How well will you be able to measure those data?
- Specifically, for each major component of your concept map:
- Are you going to be taking data to quantify this component?
- What measurement error(s) might be associated with these data
- Part 2: Chapter 6 R code found on my website


## Endless fun with R!

- Other questions from last week?
- This week - more programming!
- With great power comes great responsibility
- > require(datasets)
- >data(ChickWeight)
- > new.CW = edit(ChickWeight)
- >new.CW
- There is NO RECORD, NO UNDO BUTTON, NO HOPE!
- > new.array = edit(array(sample(1:10,60,replace=TRUE), $\operatorname{dim}=c(4,5,3))$ )
- > psuedo.random = edit(rnorm(50,10,3))
$->$ model1 = Im(weight~Diet)
- >edit(model1)

You can also edit functions like mean() or matplot(). Don't do this. EVER!

It is like blasting apart an asteroid using precisely timed nuclear bombs to create a dust cloud that will shield the earth from precisely $6.58 \%$ of the incoming solar radiation, and thus, cooling the earth and preventing global warming. SURE, nothing could go wrong with that!
http://news.yahoo.com/asteroid-dust-could-fight-climate-change-earth-
132248031.html

