

Quantitative Thinking in the Life Sciences

October 24th - Linking probability, mathematical functions and data Part 3

Today

- Concept maps - Data distributions
- Simple mathematical relationships and probability
- Assignment B
- More R fun!
- R code questions?
- Looking at snail vectors!

Housekeeping

- November $14^{\text {th }}$ absence
- After today only four class sessions left
- Homework A is due today
- Homework B is due on Nov $1^{\text {st }}$
- First attempt at simulating your data distributions
- No new R chapter - catch up on existing R code!

My homework: Probability vs likelihood

- Data from a known distribution (normal) and parameters characterizing distribution(e.g., mean and sd)
- The probability of observing any data point would be based on the known parameters
- In our work, we will have data but will not know the exact distribution or the distribution parameters
- Given an assumed model distribution, the likelihood is defined as the probability of observed data as a function of the distribution parameters (e.g., mean and sd)
- In this case, the data are known, but distribution parameters are unknown
- The motivation for defining the likelihood is to determine the parameters of the distribution
- The likelihood function is not bound between 0 and 1 (unlike probabilities)
- The likelihood function is proportional to the probability of the observed data

Probability vs likelihood

- The likelihood of this model, given the data
- The probability of observing similar data given the model

Brief recap:

Probability to statistical modeling

Rolling two dice

- Two six-sided dice with sides numbered 1-6
- Likelihood of the dice landing on any of 6 numbers is equal
- All die rolls are independent

	$(2,1)$	$(3,1)$	$(4,1)$	$(5,1)$	
$(1,2)$	$(2,2)$	$(3,2)$	$(4,2)$	$(5,2)$	(6,
(1,3)	$(2,3)$	$(3,3)$	(4,3)		6,3)
$(1,4)$	$(2,4)$	$(3,4)$	(4,4)	$(5,4)$	$(6,4)$
$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$	$(6,5)$
$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$

Sum on dice

2: One possibility $(1,1)$
3: Two possibilities $(1,2) \&(2,1)$
4: Three possibilities $(1,3),(2,2) \&(3,1)$
probability $=1 / 36$ options
probability $=2 / 36$ options
probability $=3 / 36$ options

7: Six possibilities $(1,6),(2,5),(3,4),(4,3),(5,2) \&(6,1)$
probability $=6 / 36$ options

Probability space

$(1,1)$	$(2,1)$	$(3,1)$	$(4,1)$	$(5,1)$	$(6,1)$
$(1,2)$	$(2,2)$	$(3,2)$	$(4,2)$	$(5,2)$	$(6,2)$
$(1,3)$	$(2,3)$	$(3,3)$	$(4,3)$	$(5,3)$	$(6,3)$
$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$	$(5,4)$	$(6,4)$
$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$	$(6,5)$
$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$

$1 / 36+2 / 36+3 / 36+4 / 36+5 / 36+6 / 36+5 / 36+4 / 36+$ $3 / 36+2 / 36+1 / 36=1$

Probability space for rolling x dice

Dice	Combinations	Probability of any one combination	Range of values: Sum of dice
1 Die	6	0.167	Sum of dice: 1-6
2 Dice	36	0.0278	Sum of dice: 2-12
3 Dice	216	0.00463	Sum of dice: 3-18
4 Dice	1296	0.000772	Sum of dice: $4-24$
5 Dice	7776	0.000129	.
6 Dice	46656	0.0000214	
7 Dice	279936	0.00000357	
8 Dice	1679616	0.000000595	
9 Dice	10077696	0.0000000992	
10 Dice	60466176	0.0000000165	
11 Dice	362797056	0.00000000276	
12 Dice	2176782336	0.000000000459	
13 Dice	13060694016	0.0000000000766	
14 Dice	78364164096	0.0000000000128	Sum of dice: 14-82

$$
\begin{array}{ll}
\text { Combinations * Probability of occurrence of each } & =1 \\
78364164096 * 0.0000000000128 & =1
\end{array}
$$

Discrete to continuous probability

Area under the curve is the continuous probability space

- Total area is equal to 1
- All the possible values are under the curve

Probability example

Lifespan during the Napoleonic wars
$f(x)$

Hypothesis testing - frequentist approach
The \mathbf{p}-value is the probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true.

Linking data to the p-value

Using those data, and probabilities of observing those data, we can test if distribution A differs from distribution B

t-test will allow us to test

Test a null hypothesis that two normally distributed populations are equal

Test a null hypothesis that a normally distributed population has a specified mean value

Test a null that there is no difference between two paired or repeated measurements

Miticide		Trial
Mites/Plant		
Before	After	
Corn plot 1	0.500	22.967
Corn plot 2	10.657	29.364
Corn plot 3	43.469	15.972
Corn plot 4	7.045	7.683
Corn plot 5	9.626	10.089
Corn plot 6	18.534	14.059
Corn plot 7	34.237	23.093
Corn plot 8	38.291	28.351
Corn plot 9	11.959	4.898
Corn plot 10	1.582	13.964

Distributions matter!

Beta Distribution

 Shape $1=2$Shape $2=10$

R Example: Oct 24_class notes Steel slag.R

Why are data distributions important?

- Most of the field is relatively flat but with a couple of terraces and a small hill
- That is, most plots will be at relatively low elevations with some exceptions

Time check!

Developing a test statistic with a normal distribution

$\mathrm{x}_{\mathrm{i}}-\mu=$ Distance or Error

Allows us to quantify the probability of x 's occurrence

Linear model: $y=\alpha+\beta_{1}{ }^{*} x$

Diversity of plants in the intercrop

Pollinators $=\alpha+\beta_{1}{ }^{*}$ Intercrop.plant.diversity

Does $\beta_{1}=0$?

Example in R!

Linear regression:
 Assumptions about the data

- There is no measurement error in your predictor variables (Ouch! - reinforces need for good design)
- Linearity (just witnessed in R)
- Constant variance in your errors (R example)
- Independence of errors in your response variable (y, e.g., \# of pollinators)

Linear model multiple effects multiple linear regression

$y=\alpha+\beta_{1}^{*} x_{1}+\beta_{2}^{*} x_{2} \ldots$
Pollinators $=\alpha+\beta_{1}{ }^{*}$ Flower.size $+\beta_{2}{ }^{*}$ Amount.Pollen

Flower.size
Does $\beta_{1}=0$?
Does $\beta_{2}=0$?

Pollinators $=\alpha+\beta_{1}{ }^{*}$ Flower.size $+\beta_{2}{ }^{*}$ Amount.Pollen

What is the prob that the overall model slope $=0$? Could the slope of the red line be equal to zero?

Assignment B

- Assignment B is due on November $1^{\text {st }}$
- Worth 50 points
- Simulation
- Using the provided functions for distributions (from R Chapter 7), take a first pass at simulating data for each of your components where you will be taking data. Assume that data will be measured perfectly (no measurement error).
- Write up in manuscript form for a few of the components. That is, introduce the system (you can self-plagiarize but make it clean), describe how you will sample (or already sampled) components (Methods section), describe your simulation inputs, include output plots. Discuss in brief.

Steps

- Look at the data distributions that you have created for your concept map
- Look over the R Chapter 7 distributions
- Figure out one that looks like it fits
- Adjust the values so that distribution parameters fit your data

Testing a Bioretention systems: Total

Poisson, most events around 2.5 hours

log normal, 3mm mean, 2 mm standard deviation

Percent of Total

 Suspended Solids (TSS) remaining Intensity = \quad in outflow
Assignment B

- Reintroducing the system
- Describing your actual sampling methodology (in brief)
- Describe with figures what you expect your data distributions to look like using histograms of your data
- Discuss in brief (or not)

