Scientific evidence proves that bunnies

Wild bunny range
Source: Wikipedia (2012)

List of ongoing military conflicts Source: Wikipedia (2012)

In observational studies, it can be difficult to determine if causation exists.

If one were to experimentally change the native range of wild bunnies, and then saw a shift in ongoing military conflicts...

Quantitative Thinking in the Life Sciences

October 17th - Linking probability, mathematical functions and data Part 2

Today

- Concept maps - Data distributions
- Simple mathematical relationships and probability
- Assignment \# A
- More R fun!
- R code questions?
- Looking at snail vectors!

Housekeeping

- No homework turned in today
- New Homework \# 6 is due on October $24^{\text {th }}$
- New assignment \# 6 is part of old assignment \# 4
- Distributions and variability for your system's factors/components/variables
-Distributions and variability estimates
- I don't want to see anything about the relationships between factors (e.g., how x affects y) - unless I specifically e-mail you (e.g., Ali)

Data Distributions

Russian wheat aphid (RWA) spatial growth rate model - concept map

Slope component

Russian wheat aphid (RWA) spatial
growth rate model - concept map

Aspect component

Russian wheat aphid (RWA) spatial
growth rate model - concept map

- Given a slope value, I expect aspect to be uniformly distributed from 0 to 360 degrees
- That is, each plot has an equal probability of facing each direction

Γ	1	1	1	1	1	1	7
0	50	100	150	200	250	300	350

Relative Elevation component

- most of the field is relatively flat but with a couple of terraces and a small hill
- That is, most plots will be at relatively low elevations with some exceptions

Russian wheat aphid (RWA) spatial
rgamma $(\mathrm{n}=1000$, shape $=2$, rate $=10)$
growth rate model - concept map

Topography Index

Topography Index

- I don't know exactly, but given that I have right skewed and uniform distributions as inputs, I likely will have a right skewed topography index

BTW, right skewed means that the tail is on

 the right!
RWA growth rate

- I imagine after all the components are factored in, growth rate data will be fairly normal but may be slightly right skewed

Russian wheat aphid (RWA) spatial
RWA
growth rate model - concept map

Why is data distribution important?

- Most of the field is relatively flat but with a couple of terraces and a small hill
- That is, most plots will be at relatively low elevations with some exceptions

For the homework

e.g.,

- What distribution of P data do you expect to be able to collect from the effluent?
- What will your blueberry yield data look like?

I do not want to know how temperature will effect growth.
I want to know what the temperature data will look like.

- X-axis should have the component (e.g., mm storm $\mathrm{H}_{2} \mathrm{O}$)
- Y -axis should be relative frequency of observing the data

Onward!

Variation in your data

Observed data connected to the p-value

Do the distributions of A and B differ?

t-test will allow us to test

Test a null hypothesis that the means of two normally distributed populations are equal

Does Distribution A $=$ Distribution B?

Does $\mu=5$? (specified as your null hypothesis).

Paired or repeated measures test (collect data from something twice and see if the data differ).

Distributions matter!

Beta Distribution

 Shape $1=2$Shape $2=10$

Developing a test statistic with a normal distribution

Need the probability

 associated with eachdistance
(given μ and sd)

$$
x-\mu=\text { Distance }
$$

Allows us to quantify the probability of x 's
occurrence

Time check!

Example in R!

- Cow Weight in Dropbox!

Linear model: $y=\alpha+\beta_{1}{ }^{*} x$

Assignment \# A

- Assignment \# A is due on October $24^{\text {th }}$
- Worth 50 points
- Concept Map Distributions
- Describe data distributions for your components (not relationships between the components)
- Write up in paragraph form plus an introduction and figures
- Part 2: Chapter 7 R code found on my website
- Distribution exercises and examples for use in future simulation work will be in this chapter

Assignment \# B

- Assignment \# B is due on November $1^{\text {st }}$
- Worth 50 points
- Part 1: Simulation
- Using the provided functions for distributions, take a first pass at simulating data for each of your components where you will be taking data. Assume that data will be measured perfectly (no measurement error).
- Write up in manuscript form for a few of the components. That is, introduce the system (you can self-plagiarize but make it clean), describe how you will sample (or already sampled) components (Methods section), describe your simulation inputs, include output plots. Discuss in brief.
- Part 2: Chapter 8 R code - not posted!

Testing a Bioretention systems: Total
 Histogram of Duration.15minute.increments Suspended Solids

Poisson, most events around 2.5 hours

Duration. 15 mint

