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Climate Change!  
• Global warming 

• Rising sea levels 

• Changing precipitation patterns:  
droughts and floods 

• Increased intensity of storms 

• Shrinking glaciers 

• Loss of biodiversity 

• Decreased food 
security 

 

 

Bangladesh flooding 2011. Stephen Ryan http://www.ifrc.org/news-and-
media/features/bangladesh-floods-photo-essay/ 

ClimateWizard.org 



Projected June, July, August average surface 
temperature change:  

“2080-2099” minus “1980-1999” 

IPCC AR4 2007 

Food security 
Increasing temperature 
will decrease yields by 
30-40% between the 

equator and ~35° 
latitude 

Average of 21 climate models forced by Scenario A1B. Multiply by ~1.2 for A2 and ~0.66 for B1 
 

 

Battisti and Naylor. 2009. Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science. 323: 240-244 
  



… but what about pests?  
 

The global impact of pests 

• Currently 

– 3.7 billion acres of cropland  

– In 2008, ~2.5 billion tons of maize, rice and wheat were 
produced 

– Yield loss caused by animal pests ranges from 8 – 15% 

 

• 2050? 2100?  

Oerke, E.C. 2006 Crop loss to pests. Journal of Agricultural Science (144) 31-43 

 FAO 2011 FAOstat Agricultural Production. Online source: http://faostat.fao.org/site/339/default.aspx 



Today’s Story 

From simple to complex systems 

• Simple system: Sunflower stem weevil phenology 

• Complex system: Russian wheat aphid incidence 

• Global pest pressure models 



Sunflower stem weevil 
Cylindrocopturus adspersus (LeConte) 

(Coleoptera: Curculionidae) 

Sunflower stem weevil lifecycle  
 

• Females deposit eggs on the sunflower stalk  
 

• Larvae move into the stalks 
 

• Mature larvae overwinter in the stalk residue 
 

• Pupate in the stalk residue 
 

• Emerge from the stalk residue in the spring or summer 
 

• Adults mate and oviposit 



Sunflower stem weevil control 
 

• Pesticide applications timed to  
occur after emergence  
 

• Alter planting date – poor  
oviposition sites 
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• Accumulated degree days 
can be used to predict 
Sunflower stem weevil 
emergence 

Effective 
Start 

262DD 

Effective 
End 

811DD 

Defining and calculating degree days: 
 

• Degree days are units of heat used to measure  
development or growth 

• Accumulated degree days are calculated as:  

  S(Daily Max Temp + Daily Min Temp) / 2 – Temp threshold  

Merrill et al. 2010. Nonlinear degree-day models of the Sunflower stem weevil (Coleoptera: Curculionidae) Journal of Economic Entomology 103:303-307. 



Building a spatially-explicit emergence model 
 

• Use climatic averages and climate simulation averages to obtain 
measurements for mean daily temperature  
 

• Mean daily temperature – Developmental threshold = Degree days 
 

 
Learning moment!  (this would have resulted in substantial errors) 

Why?  

3°C daily mean  
temperature  

5°C developmental 
threshold 

1982 

1995 



0 775 1,550387.5 Kilometers

Mean temperature Temperature variation 



Shift in Emergence

StationXYs

VALUE

After June 2

May 27 - June 2

May 20 - May 26

May 13 - May 19

May 6 - May 12

April 29 - May 5

April 22 - April 28

April 15 - April 21

April 8 - April 14

April 1 - April 7

Before April 1

Null

Modeling the effective start date of the Sunflower stem 
weevil’s emergence using weather data from 1971-2000 

  

0 790 1,580395 Kilometers



Linear increase temperature = Non-linear increase # degree days  

 

 

 

Climate Change 



Shift in Emergence

StationXYs

VALUE

After June 2

May 27 - June 2

May 20 - May 26

May 13 - May 19

May 6 - May 12

April 29 - May 5

April 22 - April 28

April 15 - April 21

April 8 - April 14

April 1 - April 7

Before April 1

Null

Current conditions Emergence with climate change 
  

• Difference emission scenarios 
• Different time periods 
• Different Global Circulation Models 

(GCMs) 
 

• Goal: improve management strategy 



Earlier Sunflower stem weevil emergence by 2041-2060 

• Directs scouting 
efforts 

• Helps time planting 
efforts 

Data obtained from www.climatewizard.org forA2 scenario 2041-2060 ensemble average of 16 global 
circulation models 

Shift (A2 2050)

Less than one week

One - two weeks

Two - three weeks

Three - four weeks

Greater than four weeks

¯



The effect of climate change on the  
Sunflower stem weevil 

Shift (A2 2050)

Less than one week

One - two weeks

Two - three weeks

Three - four weeks

Greater than four weeks

• Shift in phenology 
• Implications for integrated pest management 

• Reducing pesticide application errors 
• Improve crop management 

• Models might suggest novel tactics 
 



Today’s Story 

From simple to complex systems 

• Simple system: Sunflower stem weevil phenology 

• Complex system: Russian wheat aphid incidence 

• Global pest pressure models 



The Russian wheat aphid 
Diuraphis noxia (Kurdjumov) 

(Homoptera: Aphididae) 

• First documentation in the US was in 1986 

• Damage estimates in the first ten years were 
estimated at ca. billion $ 

• Management tools are limited 
– Resistant cultivars 

– Biological control 

• Pesticide applications are the primary control 
method  



Fig. 4. Russian wheat aphids.  An winged alate aphid is shown in 
the center of the photo. 

• Primarily parthenogenetic  

• Telescoping generation strategy 

• High intrinsic rate of increase  



Substantial costs  Research effort  
  

Numerous spatially-implicit models exist for 
describing the population dynamics of small-
grain aphids 
• Mechanistic models 
• Correlative models 
• Anecdotal models 
  
Which models are successful for predicting 
aphid pressure?  
 
  

0 790 1,580395 Kilometers



 

18 spatially-implicit weather or 
climate-driven models 

 

• Literature 
• My own work 
• Farmer and extension 

agent experience 
 

Models were transformed into 
spatially-explicit  models 

Population dynamic models 



High 

Low 

Spring Precipitation 
 
Precipitation in the spring 
has a negative effect on 
Russian wheat aphid 
density* 

*Legg, D. E., and M. J. Brewer. 1995. Relating within-season Russian wheat aphid (Homoptera, Aphididae) population-growth in dryland winter-
wheat to heat units and rainfall. Journal of the Kansas Entomological Society 68: 149-158. 



Oversummering food 
availability: C3 plant 
productivity 
 
Russian wheat aphids are limited 
to feeding on grasses using the C3 
photosynthetic pathway   

 
High 

Low 

C3 production in the Great Plains region was modeled using mean annual temperature and 
mean annual precipitation 
 

Epstein, H. E., W. K. Lauenroth, I. C. Burke, and D. P. Coffin. 1997. Productivity patterns of C-3 and C-4 functional types in the US Great Plains. 
Ecology 78: 722-731. 



High 

Low 

Winter Severity 
 
Models quantifying different 
components of  winter severity  
 

*Dewar, A. M., and N. Carter. 1984. Decision trees to assess the risk of cereal aphid (Hemiptera, Aphididae) outbreaks in summer in England. 
Bulletin of Entomological Research 74: 387-398. 

 
Accumulated degree days below zero Celsius from 
October through April are expected to correlate 
with cereal aphid outbreaks* 



Large Integrated Pest 
Management database*  
 

• 4  years 
 

• 21 sites  
 

• Russian wheat aphid 
density sampled 
throughout  
the growing season 
 

• Aphid days** were 
calculated using aphid 
density measurements 
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Russian wheat aphid data 

*Elliott et al. 2002-2006 Area Wide Integrated Pest Management Project 
**Archer, T. L., F. B. Peairs, K. S. Pike, G. D. Johnson, and M. Kroening. 1998. Economic injury levels for the Russian wheat 
aphid (Homoptera : Aphididae) on winter wheat in several climate zones. Journal of Economic Entomology 91: 741-747 



Variables and models  
 

Aphid days – dependent variable 
 

Population dynamic models - 
independent variables  
(A little confusing…) 
 

More than one independent 
variable? 
 

Ran all subsets of the independent 
variables regressed against Ln(aphid 
days). For example: 
 

Ln (aphid days + 0.1) = a + b1*(Fall 
Fecundity) + b2*(Spring 
Precipitation) 

Fall Fecundity: Fecundity is modeled to have a 
non-linear relationship with temperature with 
optimal temperature occurring around 18.5 C*  

*Merrill, S. C., T. O. Holtzer, and F. B. Peairs. 2009. Diuraphis noxia reproduction and development with a comparison of intrinsic rates of 
increase to other important small grain aphids: a meta-analysis. Environmental Entomology 38: 1061-1068. 

High 

Low 



Multimodel inference and model averaging 
 

• Akaike’s Information Criterion adjusted for small sample 
sizes (AICc) was used to select good candidate models 
 

• 24 candidate models were selected 
 

• Selected candidate models were averaged based on their 
AICc weight 
 

• Model-averaged result:  
 

Ln(aphid days+ 0.1) = -  1.683 + 0.000836 * [Fall Temperature] - 0.267 * 
[Fall Precipitation] - 0.000148 * [Dewar & Carter] - 0.0257 * [Spring 
Precipitation] +  0.0183 * [Spring Fecundity] + 0.0954 * [C3 Production]  
- 0.0669 * [Oversummering Temperature] + 4.169 * [July Intrinsic rate of 
increase] + 0.00808 * [July Fecundity] + 0.0574 * [Legg & Brewer] 

 
 



Variable 

rank 

Predictor variable  

(Model) 

Variable relative 

importance weight 

Effect 

direction 

1 Fall precipitation 1.000 - 

1 C3 production 1.000 + 

3 Spring precipitation 0.956 - 

4 Legg and Brewer (1995) 0.840 + 

5 Spring fecundity 0.259 + 

6 July fecundity 0.249 + 

7 July intrinsic rate of increase 0.206 + 

8 July degree days > 28°C 0.188 - 

9 Dewar and Carter (1984) 0.087 - 

10 Fall temperature 0.062 + 



Results 
Russian Wheat Aphid incidence  
Using weather conditions 
observed from the 2002-2003 
season as model inputs results in 
the spatiotemporal Russian 
wheat aphid day map depicted.  
 

Aphid Days

Value

High 

Low



• Numerous climate change simulation options 

• Emission scenarios   

• Global Circulation Models (GCMs) 

• Different time periods 

• This work uses an ensemble average of 16 GCMs 
for the 2041-2060 time period* look at the three 
primary emissions scenarios 

• A2: high emissions 

• A1B: medium emissions 

• B1: low emissions 

 

*Climate data obtained from www.ClimateWizard.org 

Simulating climate change 



Aphid days modeled using current climatic conditions 
 
 

Aphid days modeled using an ensemble average of 16 GCMs using the 
A2 scenario (2041-2060) 

 

Oversummering Factors:  
C3 production 

July intrinsic rate of increase 
July fecundity 

July degree days > 28°C  
 

Aphid Days

Value

High 

Low

May6AphidDay_5-9-11.csv Events

LnRWA_cc_small

Value

High : 14.63

Low : -3.66541

Ln_RWA_A2_2050_small

Value

High : 9.34909

Low : -7.49014

LnRWA_CC

Value

High : 18.692

Low : -10.3703



Russian wheat aphid day model conclusions 

• Predictions are driven by 
harsh oversummering 
conditions 

• Improve strategy 
– Reduce application errors 

– Placement of resistant cultivars 

• Provide solace to 
stakeholders across much of 
the Great Plains region 
 

Aphid Days

Value

High 

Low

May6AphidDay_5-9-11.csv Events

LnRWA_cc_small

Value

High : 14.63

Low : -3.66541

Ln_RWA_A2_2050_small

Value

High : 9.34909

Low : -7.49014

LnRWA_CC

Value

High : 18.692

Low : -10.3703



Challenges to building species-specific  
prediction models 

• Massive data for each species 

• Observations are (relatively) 
easy but experiments are 
difficult 

– Correlation verses causation 

• Need to capture boundary 
conditions 
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Today’s Story 

From simple to complex systems 

• Simple system: Sunflower stem weevil phenology 

• Complex system: Russian wheat aphid incidence 

• Global pest pressure models 



Global warming, pest pressure, and  
global food security 

Josh J. Tewksbury, David S. Battisti  
( University of Washington) 

Curtis. A. Deutsch  
(UCLA) 

and  
Rosamond L. Naylor 

(Stanford)  



Building a global pest pressure model 

• Climate component  

– Use projected climate change from numerous 
emission scenarios and GCMs (temperature only) 

• The pest population dynamic model 

– population growth 

– population metabolism 

• Crop dynamics 

• Goal: simulate change in crop yield and 
production due to pests  

 



Temperature -> Metabolism -> 
Consumption 

• Metabolic rate is closely 
related to temperature across 
a wide range of organisms 

 

• Consumption scales with 
metabolic rate over a wide 
range of temperatures 

 
metabolic rate M = bom3/4e-E/kT  

 
bo = taxon-specific normalization constant;  m = mass  

 
E = activation energy;   k = Boltzmann’s constant;    T = temperature    

Gillooly et al 2001 Effect of size and temperature on 
metabolic rate. Science (293) 2248-2251 

1000/°K 

Lo
g(
M

 m
-3

/4
) 

 

     



Δ Temperature -> Δ Metabolism -> Δ Consumption    

• Calculate current mass normalized 
metabolic rate (M):  

• current climate data  

• integrate metabolic function 

• Project climate in ~75 years (2070 – 
2100) and calculate new metabolic rate 
(M75) 

•  (M75 - Mcurrent ) / Mcurrent = proportional 
change in metabolic rate 



Where b represents the amount of yield loss per unit of pest 
metabolism 

Population metabolism P can be calculated as the product of the 
organism’s metabolic rate M and the population density n over the 
course of the growing season 

 
h

p

t

t

dtMnP

 
h

p

t

t

dtMnPLosses bb



Methods:  
Informing b and pest population dynamics 

• Use estimates of insect pest damage to crop yields L = lY, 
where Y is crop yield and l is the fraction lost to insect pests 
in recent decades*   

 

 

 

 

• These values constrain integrated population metabolism and 
pest population dynamics during the growing season 

*Oerke, E. C. 2006. Crop losses to pests. The Journal of Agricultural Sciences (144) 31-43 

 

Crop Losses due to Pests Today 

Rice 15.1% (7-18%) 

Maize 9.6% (6-19%) 

Wheat 7.9% (5-10%) 



Methods: Global pest pressure 

• Given estimates of crop losses and estimates 
of temperate, we can estimate pest unit 
metabolism, consumption, and losses 

• Select values of the remaining parameters:  

– a (adjusted growth rate) informs n 

– f (population survival) informs no 

 



Methods: Global pest pressure 

• For each set of a and f, calculate  

– temperature-dependent pest population density, n  

– integrated metabolic rate over time, M 

 

  
h

p

t

t

dtMnPLosses bb

• Change in n, M and Losses 



Impact of climate change on metabolism  

100% 

20% 

60% 

Percent increase in insect metabolic rate* 

*Using response from GFDL model w/ A2 emission scenario for 2100, a = 0.3r, f = 0.1 
Tewksbury et al, in preparation 



Percent change in insect population growth* 

100% 

200% 

0% 

-100% 

Impact of climate change on population size  

*Using response from GFDL model w/ A2 emission scenario for 2100, a = 0.3r, f = 0.1 
Tewksbury et al, in preparation 
 



100% 

150% 

50% 

200% 

Percent increase in insect crop losses* 

Impact of climate change on crop losses  

100% 

150% 

50% 

200% 

*Using response from GFDL model w/ A2 emission scenario for 2100, a = 0.3r, f = 0.1 
Tewksbury et al, in preparation 

 



• Total yield loss in China, 
India and Bangladesh 
increases by 10% to ~20-
30%  
– Rank 1, 2 and 4 in world 

production 

 

• Damage is even greater if 
a higher fraction of pests 
make it though diapause 
in a warmer world 

Yield Lost to Pests: Rice 
“Today” 

HadGEM (a = 0.3r, f = 0.1) 

  0      10      20     30     40%    

“2070-2100” 

Tewksbury et al, in preparation 



Yield Lost to Pests: Maize 
“Today” 

“2070-2100” 

HadGEM (a = 0.3r, f = 0.1) 

• Increase in yield loss is 

greatest in midlatitudes 

(metabolism and fitness 

increase) 

• Yield loss doubles to ~12% 

in the US and China, the 

two largest producing 

countries  

• Yield loss increases to 

25% in much of Africa (an 

increase of ~5%) 

 

  0      10      20     30     40%    Tewksbury et al, in preparation 



• Increase in yield loss is 

greatest in midlatitudes 

(metabolism and fitness 

increase) 

• The yield loss doubles to 
15 to 20% in the two 
largest producing 
countries, the US and 
Russia 

 

Yield Lost to Pests: Wheat 
“Today” 

HadGEM (a = 0.3r, f = 0.1) 

  0      10      20     30     40%    

“2070-2100” 

Tewksbury et al, in preparation 



• No evolution 
• No change in pesticide use, cropping timing, and crop 

varietal choice  
• Generic insect model - population dynamics of 

individual insect species may not follow model 
predictions 

• Ontogeny matters but changes in crop condition and 
insect response are not included 

• Impacts of changing precipitation are not in the model 

Caveats 



Global Pest Pressure Model Conclusions 
• Significant yield losses to our staple grains 

• Losses tend to be highest where production is highest (e.g., rice in 
China & India; wheat and maize in US, China and Russia) 

• Losses sum to tens of billions of dollars per year 

• Implications for global food security 

• Pest damage will be additive to decreased yields caused by 
temperature change (even with sufficient water and nutrients) 

• The global pest pressure model: 

• A tool for prioritizing regions for further study  

• An indicator to start adaptation and mitigation efforts 

 



General Conclusions 

• Modeling efforts can provide information to aid in mitigation 
and adaptation efforts 

• Models have value for informing integrated pest management 
strategy and may suggest novel tactics 

• At the species level, modeling efforts should inform and improve 
strategy to help reduce the impact of climate change on crop 
losses 

• On the global pest complex level, climate change is likely to 
cause dramatic reductions in food availability and food security 
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