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1 Rationale and approach

1.1 Why programming?

This course is about building models and using them to gain insight from data. Why do you
need to learn to write computer programs to do so? After all, there is software that allows
you to point and click your way to reasonably sophisticated models of ecological systems.
Using these tools, you never need to struggle with the inevitably arcane syntax of modern
programming languages. So why use a programming language to build models and analyze
them, which seems like an awfully lot of trouble, rather than using a point and click software?
The reason is simple: there is no more adaptable, flexible skill in modeling, or in science for
that matter, than being able to write your own code. Moreover, unless you know how to
write computer code, you will have a great deal of difficulty fusing models with data, which
is why you are here.
The other reason to learn a programming language for your data analysis and modeling is
arguably more important. Sophisticated analysis in ecology requires lots of steps—data must
be reformatted and manipulated, analyses require several operations, and you must be able
to reproduce exactly what you did to obtain a given result. This is not possible with point
and click approaches to analysis—although convenient and easy to learn, these provide no
written history of the steps you used. Spreadsheets are notorious in this regard, following
the logic of your analysis can be difficult because of multiple dependencies among cells. In
contrast, computer code provides a sequential, line by line record of what you did. Every
step is explicitly represented in the programs you write. There is absolutely no ambiguity
about how a result was achieved. This is critical for careful science. So, one of the most
important skills of modern ecologists is computer programming. You will learn how in this
course.

1.2 Why R?

For almost a decade, I taught this course using Visual Basic for Applications running under
Excel. There were many advantages to this approach, not the least of which is that Excel
is something that students are comfortable with, but I finally decided that modern students
need to know R even though it is, well, a bit uncomfortable. Why this choice? The reason
you should learn R is simple: it is the premier language for scientific computing of all sorts,
but it is especially well suited to the purposes of this course, model-data integration. R was
originally written as a language for statisticians, but it has become much, much more than
that—it is a language for scientists. It has all you need to write models of all kinds; estimate
their parameters, and compare one model against another—the meat of this course.
There are other reasons to learn R; it is free and open source. Because it is free, you can
take it wherever you go with you at no expense, which, of course, is not true of commercial
software. Because it is open source, some of the best minds in the world are at work every
day writing all kinds of code that will be useful to you in the future. This means that R is
constantly getting better, more useful, and more powerful. It is, perhaps, a contradiction of
the usual free market dogma that software produced for free by academics surpasses software
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that is produced at a cost for academics. This is the way of all sorts of open source software,
but nowhere is it more clear than with R. The other reason is that R is “one stop shopping.”
It is great for almost everything you need to do in research–simulation, data manipulation,
statistics, and graphics. Most of what you require with a programming language can be
done in R as well or better than it can be done elsewhere. In my experience, the one area
relevant to modeling where other software surpasses R is in symbolic computation, which is
not emphasized in this course. In this case Maple, Matlab, Derive, and Mathematica are
superior.
There are some other downsides. R executes much more slowly than some other computer
languages (notably C, C++, and FORTRAN) but no slower than other “interpreted lan-
guages” (e.g., Matlab, Maple, VBA)1. If you write big models with hundreds of parameters,
a thousand lines of code, and that must be run over thousands of pixels for hundreds of
years, well, you would be nuts to use R. In that case, you will need to migrate to a faster
language. But the concepts that you learn here will serve you well as you learn other com-
puter languages. In my experience, once you have learned one programming language, the
next one is easy.
The other downside is that R can be difficult to learn as a first language, at least if you
are working on your own. It is difficult for three reasons. First, languages that are flexible
and powerful always require more struggle to master than those that are rigid and weak. R
is the former—it has ways of doing things that are compact and fast, but that will appear
bewildering to the novice. Second, the documentation is a bit diffuse2 and, for the beginner,
is hard to use. That said, there is nothing that I have wanted to do with R that I have not
been able to figure out with a little effort and patience. Finally, there is so much depth to
R that it is really hard to know where to start. That is where I come in. If I am a good
teacher, and, immodestly, I think I am, then I can make the learning processes easier for you
by identifying and explaining key bits, by focusing your learning on what you really need to
know to move forward. I promise that you will struggle a bit and will be frustrated at times.
Your struggles will be worth it. The R you learn in this course will not be comprehensive,
but it will give you a sturdy foundation for self teaching, a foundation upon which you can
build over your entire career, or at least until some better language comes along, which it
probably will.

1.3 Teaching approach

Self-teaching is one of the single most important skills of people who work in technical fields
like science and engineering. These fields change rapidly, and the pace of change means that
your ability to compete depends in a fundamental way on your ability to learn new things
by yourself. Computer languages offer a great opportunity to practice self-teaching, because
programming offers the ideal way to “learn by doing.”

1Interpreted languages cannot produce files with an .exe extension, while compiled languages cannot.
Compiled programs are faster because their instructions can be directly understood by the computer. In-
terpreted languages require, well, an interpreter for the computer to understand. Think of a conversation
that is carried out in your native tongue vs. one that requires an interpreter. The difference is magnified in
computing—complied code is 10 to 100 times faster than interpreted code.

2This is changing as a small cottage industry produces well-written, well-organized texts on R.
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You can do a huge amount of work with a relatively small amount of knowledge of most
contemporary programming languages. This is because they are versatile—you can handle
an incredibly broad range of tasks using a single skill. However, this versatility also creates
some challenges for learning because you only need to accomplish a relatively tiny subset of
all of the tasks that contemporary languages were built to handle. As a result, there is a
formidable amount of material that is largely irrelevant to your needs as a modeler. This
can make learning difficult, because you don’t know where to start.
Here, I offer some training in R to provide a focus for your own self-teaching. As with other
parts of this course, the objective is to offer a foundation for your own learning by doing.
My objective here is to sort out the things that you need to know about R (to build models
and integrate them with data) from the rather immense amount of stuff that you don’t need
to know (all the huge number other things that R does). R is a deep, read bottomless, topic,
but you can learn enough to do real work with a fairly brief initial investment of time and
effort if your investment is properly focused. That said, remember the job of learning is
never done. Every time you do a programming task, you will probably learn something new
about R. I do.

1.4 A learning attitude

Learning R proceeds most rapidly if you work with a bit of curiosity and willingness to
experiment. You aren’t’t going to break anything; there is always the undo key (cntrl-z),
and your progress will be more rapid and fun if you approach every programming problem
with learning as one of your objectives. The R console, which you will learn about shortly,
facilitates this sort of exploratory learning. Believe me, this course will be a genuine chore
if every time you sit down to program, the only reason you do so is to get an assignment
done. Instead, make every assignment a chance to explore a fantastically powerful tool.
This exploration will be most useful to you if you develop three habits: 1) Write a notebook
on R, 2) Make a directory containing bits of particularly useful code and, most importantly,
3) Always, always, always, keep a log of any serious work. Let me describe each of these in
turn.

1.4.1 An R notebook

A notebook on R contains a set of entries on what you have learned about the language
that you think is not covered well in the documentation. There is not need to rewrite what
is already documented but if you figure out a cryptic error message, write down what you
did, what the message was, and how you fixed it. If you discover how something works,
write down your discovery in your R notebook. If the documentation is not clear on some
point and you figure it out, write it down. If you discover an informative website or pdf file
on a topic, include that in your notes as well. Believe me, you are going to forget many of
these things and your R notebook will prove, over and over and over again, to be a vitally
important reminder. Read it from time to time and search it often.
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1.4.2 A folder containing useful code

My computer contains a folder called R where I keep my R notebook, useful files on R from
the web, and so on. There is also a subfolder named Useful Code where I keep a set of R
scripts for things that I do often, but not often enough to remember in detail. It is usually
easier to remember how to do something that you have done before than to consult the
documentation, so I put bits of code that I want to remember and use again in this folder.
By far the bulk of my code is organized under folders for specific research projects and it
can be hard to remember where you put a script with a particularly nice trick. So those go
into the Useful Code folder.

1.4.3 A log of your work

This is a critical part of any serious analysis or modeling project. It is analogous to the
laboratory notebook you learned to keep for bench work in biology and chemistry. We will
go over this in detail in lab, but the short of it is that for any project that you are working on,
you keep a file with a master list of the names an locations of all files relevant to the project
and daily, dated entries saying what you did on the project and what you accomplished. I
cannot overestimate the importance of work logs to careful analysis of models and data.

1.5 About this primer

First, a bit of education on the word primer. The definition of primer as I use it here is a
book to introduce a topic. Primers were originally school books that taught reading using
simple stories. The proper pronunciation of primer in this context has a short i, the vowel
sound found in “big”. Primer as it is used here is not the same as the word you would use to
describe a first coat of paint or a blasting cap, which is pronounced with a long i, the vowel
sound in “high”.
In the best tradition of primers, this one will be organized with lessons interspersed with
exercises. It is absolutely critical that you work through each exercise in sequence, mastering
it before proceeding. The exercises become increasingly challenging and if you move too fast,
you will eventually fail to understand what is going on. All of the exercises have answers
provided at the end of this document. It is ok to look at these after you have struggled on
your own, but you must really understand the answer before you proceed.
I anticipated requests from the class for an electronic copy of this manual to allow you to
cut and paste examples from the document into R programs. This is not a good idea for
a very simple reason. You will make errors in entering R commands and learning how to
figure these out is a critical, if painful, part of learning the language.
I will try to be consistent throughout in the use of fonts:
Times roman will be used as the main text.
Sans-serif will be use to describe menu choices in R and Windows.
Typewriter will be used to refer to specific R commands.

9



R Primer NR 575 Systems Ecology

2 Installing R

Ok, it’s free. How do you get the software? Downloading R is easy. Go to http://www.r-
project.org/. Go to this site and follow your nose starting with clicking on CRAN under
Download. You will be asked to choose a site from which to get files. Picking any of the
U.S. sites is fine. You will then need to choose among operating systems. Follow your nose
from there.
R loads with a base program and a few “libraries.” Libraries contain code for special tasks
that everyone who uses R may not need. Rather than load all the software, you are given
the option to simply include parts that are appropriate to your work. In this course we
will need the following libraries : coda, emdbook, bbmle, odesolve, reshape, popbio,
rjags and xtable. To load these, click on the R program icon and open your first R session.
We may add some other packages as the semester progresses.

2.1 Windows

Using bbmle as an example, click on Packages on the toolbar and choose Install package. As
before, you will be asked to choose a site for downloading (A CRAN mirror) and, again,
any in the US are fine. Click on the name of the library you want to download, in this case
bbmle. Repeat the process for the other libraries we will use in this course.

2.2 Mac OS

Click on Packages and Data, Install Packages, Get List and choose from the list the packages
you wish to install.

3 The R environment

3.1 The console

Figure 1: The R console under Mac OS.

Now that you have successfully installed R,
start your first session by clicking on the R
shortcut. A console will open (Figure 1).
The window with the > is call the R con-
sole. It accepts input directly (at the >)
and takes input indirectly from scripts (more
about scripts in a moment). All of the out-
put resulting from R commands shows up in
this window. To illustrate direct input and
output at the console prompt, type in few
calculations, for example 4 + 13^ 3, sqrt(9),
56*4. Your results should look something
like
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>
> 4+13^3
[1] 2201
> sqrt(9)
[1] 3
> 54*6
[1] 324

with output from each command given next to a [1]. This illustrates R’s features as a
pocket calculator, which is something we will rarely exploit in this course. However, before
I illustrate a feature we will use heavily, one more point about entering commands from the
console. It has a memory of what has been entered. You cannot “go up” the stack of
commands with the mouse and use them, but you can bring them back to the prompt. For
example, with the cursor adjacent to a blank line adjacent to >, press the up arrow key 3
times, then the down arrow key 3 times. You will see statements that you have entered
before appearing at the prompt. When a statement is beside the prompt, it can be edited
using the left and right arrow keys and entered with, well, enter. If you want to execute 2
statements on the same line, which can be handy for recalling and editing, simply separate
them by a semicolon.

3.2 Setting up your working directory

As with all projects, it is helpful to organize your work into folders. So I suggest that you
make folder named something like NR575 with a subfolder called Code. You will probably
want to add additional subfolders to this to hold different exercises. You could also organize
this by lab numbers; how to fit this into your overall organizational scheme is up to you—there
is nothing magic about this. Now put some file, any file including a blank one in the folder
where you want to store things. Once you have done this, type in an exceedingly useful
command at the prompt:

> file.choose()

R will respond with finder in Mac OS and Windows Explorer in Windows. Navigate to
your working folder and click on the file that is in it. R responds something like

> file.choose()
[1] "/Users/Tom/Documents/NR575/Code/Untitled.R"

Now select everything in the path except the file name and paste it, with quotes into the
following command at the >

> setwd("/Users/Tom/Documents/NR575/Code/”)

11
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Quotes are mandatory. Now the “working directory” is ("/Users/Tom/Documents/NR575/Code/.
When you save or output files, they will go here without specifying the path name.
To check that this worked, use

>getwd()

3.3 Writing programs3

Most of your work in R will be done with programs, or strictly speaking, scripts4. To
illustrate, go to File and click on New script for Windows or File and New Document in Mac
OS. A window opens that allows you to type in programs, collections of statements that can
be submitted entirely or in bits and saved for later use. For example, enter the following
lines of in your script window:

r = .2
N0 = 100
N1 = N0*exp(r)
N1

Now do two things. First, put your cursor at the top of the file and press cntrl-r if you are
using Windows R (or cmd-enter if you use a Mac) at each line, observing the console each
time. Your output should look something like:

> r = .2
> N0 = 100
> N1 = N0*exp(r)
> N1 [1] 122.1403

Note that when you entered N1 at the console, R returned its value. If it had not been
assigned a value then R would return:, Error: object "N1" not found. To illustrate,
enter N0 (which has been assigned the value 100) then N2 (which has not been assigned any
value. More about this message shortly.
Now select the first two lines with the mouse and again press cntrl-r, then do cntrl-a followed
by cntrl-r, observing the results each time. In Mac R, you would use cmd-enter and cmd-a5.
You have now learned 3 ways to input from a script to R: one line at a time, a few lines

3I will assume that you will use the standard R editor, which is what I have always done, but there
are much fancier ones. If you want something with more features then you should look into EMACS ESS,
Tinn-R or the commercial editor, BBEdit

4Strictly speaking because R is an interpreted language and the instructions given to its interpreter are
called scripts. The instructions given to a compiler (for complied languages like C) are, strictly speaking,
called programs. But I rarely make this distinction.

5Ok—when I originally wrote this document I used Windows. I have tried to add text throughout the
document reminding Mac users that the Mac equivalent of cntrl-key is cmd-key, but I may have missed some
spots. I will simply assume that Mac users, being a cunningly clever bunch, will be able to do this mental
translation without my help.
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selected, or all of the lines in the widow selected. All three of these methods will be used
heavily in this course.
Commenting your code This is important. R allows you to make little notes to yourself
with code to help you remember what you did when you come back to a program after six
months. Or, these comments allow someone else to understand what you are doing. Making
a habit of commenting your code is one of the best things you can learn in this course. To
add a comment, simply put a # in front of what ever your write. So, for example, to add
appropriate comments to the code you just wrote:

# intrinsic rate of increase
r = .2
# initial population size
N0 = 100
# Calculate new population size after one unit of time
N1 = N0*exp(r)
# Output new population size to console
N1

Ok, ok, ok—these are baby comments. But you get the idea. The comment symbol can also
be useful to prevent a line of code from executing6 We will talk about this as the opportunity
arises in lab. No programmer likes to take the time to write comments and I am not terribly
good at it. However, if you fail to do so, “the future your will be really mad at the past you.”

3.4 The console remembers

As long as your R session is running, R remembers everything that you entered into the
console. To find out what R is remembering, enter ls() at the console. Remembering can be
a good thing in that it allows you to work interactively entering commands at the console
or to write short scripts that depend on one another without including all of the commands
in one single, large script.
However, remembering can also cause problems. If you write a script that depends on the
state of R’s memory when you right it, you may not be able to reproduce the script if the
state of the memory changes. For example, there may be variables that must be declared
for your script to run and these declarations are in memory but not in your script.
So remembering can actually be a problem when you do your work in scripts, as I tend to do.
Stand alone scripts, that is, scripts that have no dependence on the state of R’s memory, are
the best way to document your work. When your m done at the end of the day, you have a
clear written record of what you did, with comments of course, in a text file. To assure that
my script can run without any assumptions about what R remembers, I put the following
statement at the top of all of my programs:

6One of the really nice features of the R editor in Mac OS is the ability to comment and uncomment
blocks of code. To comment a block, simply highlight it and press cmd ’. To uncomment the block, highlight
it and press option cmd ’. Cool.
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rm(list = ls())

This makes R forget everything before the script runs. I want my scripts to run from scratch,
without depending on things I did in the console and forgot to write down. For now, just
remember this statement exists and what it does. Once you begin to write scripts, you will
probably want to use it.

3.5 Saving your work

R does not have one of those nice automatic save features found in many applications, so
you need to be in the habit of saving your script files often while you are working. This
can be done by navigating to the window where you are working on a script and pressing
cntrl-s in Windows R or cmd-s in Mac R or going the File menu and pressing Save or Save
as. You can name them anything you like, but it is good to give them a .R extension, at
least in Windows. This will allow R to see them when you click on Open in the file menu.
When I used to work in Windows, I sometimes forgot this extension and panicked when I
failed to see the file I worked on for the last six hours. However, in that case you simply
need to change the file type to be opened all from R Files to All Files. For Mac users, R is
dictatorial–it adds an .R extension to all script files whether you want it or not.
When you exit, R will ask you if you want to “Save the workspace image?” If you want R to
remember everything that you did, remembering the variables that exist and their current
values, then say “Yes”, in which case R will save a file named .Rdata to the current working
directory. (This is one reason that setting your working directory is important.) The next
time you start R from that directory, everything that was in R’s memory when you saved
.Rdata, will be restored to memory. What this means will become more clear as you become
familiar with the R console, creating variables, etc. If you want to start you next session from
scratch, with nothing in memory, say “No.” I often say “No”, because I want the programs I
write to stand alone.
However, as you work through this tutorial, it would be wise to say yes to allow your
console work to be preserved from session to session. I recommend that you explicitly name
your workspace file something like Rtutorial.Rdata. If you do this, then you will need to
explicitly open the workspace each time you start R using the Load Workspace command of
the File menu7 in Windows or Workspace, Load Workspace File in Mac OS. Whenever you
save a workspace, be sure you put the workspace file (it has the extension .RData) in a
directory where you can find it, and that you name it so you know what it contains. If you
have set up a default working directory (see above) you don’t need to give it a path name.
This is a really good thing to put down in your work log, described above. You can also put
the location of needed workspaces in a comment statement in you R code, something like:

#This script depends on loading the workspace
#(give path name).

7The Console must be the active window (i.e., you must have the cursor in it) to load a workspace. If
the program window is active then the Load Workspace option will not appear on the File menu.
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Alternatively, (better) you can simply put a line of code in your script, substituting the
proper path and file name for “full_path_to_file.Rdata” to load the workspace into R’s
memory:

load(“full_path_to_file.Rdata”)

3.6 Getting help: Windows

R has been criticized for having poor documentation, which I think is undeserved for the
most part. The documentation does take a little getting used to. R is an enormous and
complex language and it is tough to organize a description of what it does and how to do
it. That said, I have been able to figure out virtually anything I need to do. Here are some
ways to get help. I am putting this material up front in this document, but you probably
won’t be able to use it very much until you start getting into the material below. I suggest
you read through this now to know what is here, but wait to use the material once you start
doing things in R in the next section.

3.6.1 Introduction to R

If you click on Help on the R tool bar, then manuals, you can access a PDF file of the very nice
overview, Introduction to R. There is some overlap between that manual and this primer,
but the motivated among you will read the Introduction as well as what I have written.
At the minimum, it will give you another view of important concepts, and learning from
alternative viewpoints is the best way to master material. It is a very useful, informative
document.

3.6.2 HTML help

This choice on the Help menu is one of the most useful because it provides a nested outline
of the programming language. When the page comes up (you may need to deal with your
pop-up blocker), there are a bewildering variety of choices. In my experience, the most
important ones are the Search Engine and Keywords and Packages. You need to scroll down
to the Keywords section to get to the most useful material, which is given in outline form.
Clicking on any keyword opens new lists. It is pretty easy to find what you need by following
your nose down the hierarchy. Sometimes a page opens blank (I have no idea why) in which
case you simply need to press the back button and the proper material will appear replacing
the blank screen. Alternatively, try entering help.start() in the console. If you click on
packages, you get a long list of the special things that R does. Clicking on a specific package
takes you to its documentation.

3.6.3 R Functions and apropos

The Function choice on the help menu is helpful if you know the name of a function you
want to use but need to know syntax or other details. But you must know the exact name.
See apropos() below.

15



R Primer NR 575 Systems Ecology

3.7 Getting Help: Mac OS

As with most Mac OS programs, help is close at hand in R. Simply click on the Help
button and a screen opens up with a variety of choices8. You have two choices, R Help
and Vignettes. R Help takes you a screen with several choices; the ones you will use most
are to An Introduction to R, Packages, and Search Engine and Keywords. See the Windows
Help (above) for a description of these resources. Vignettes is a menu choice unique to Mac
OS. Vignettes offer helpful overviews of R packages that supplement the regular package
documentation, which tends to be a bit terse. Vignettes are not available for all packages.
Another great feature available only on the Mac is “Function Hints.” To illustrate, type
the function for doing linear regression, lm(), in the console and look at the bottom of the
console window where you will see a template for the syntax for the function. This works
for all R functions.

3.8 Getting help: Windows and Mac OS

3.8.1 Getting help from the console

You can enter ? before any R statement or function name9 on the console and access the
documentation. You can also use help(“ “) where the topic you want to learn about is
enclosed in quotes. One of the most useful ways to get help is to enter example( ) with
an R statement within the quotes. For example, try: example(plot) You will need to hit
enter to see the plots. The code generating each is written to the console. I use example(
) and ?R statement a lot. Remember that you can execute the example code from the
console or the program window—this often helps to see what does.
Another very useful help function used from the console is apropos() The apropos() func-
tion brings up a list of all of the functions that are related to some general topic. You can
then access each one using ?function_name. Try this:

>apropos("file")
>apropos(“plot”)

If nothing else, this should give you a sense of the tremendous variety of functions available
in R.

3.8.2 Searching list serves

Click on searc.r-project.org on the Help menu. This is a very useful site. Also see
http://tolstoy.newcastle.edu.au/R/
and
https://stat.ethz.ch/mailman/listinfo/r-help

8If for some reason this doesn’t happen, go to the console and enter help.start().
9Some statements, for example, for(), while(), function(), and if(), will not work with the ?

approach—they think you are actually writing code and respond with a + continuation rather then the Help
documentation. If that happens use the help(“ “) version. More about these statements soon.
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3.8.3 Third party books

As R gets more and more popular, many great third party texts are emerging. Here are two
that I really like:
Crawley, M. J. 2007. The R Book. John Wiley and Sons, West Sussex, U.K.
Adler, J. 2010. R in a Nutshell. O’Reilly, Sebastopol, CA, USA.
If you are going to do serious work in R, you should own one of these. I use them a lot.
Although the Crawley book is a classic and is found on many bookshelves of ecologists,
I particularly like the Adler one. There is also a very useful series call Use R published
by Springer that takes a more topical approach, focusing on particular capabilities of R.
Quoting the Springer site: “Books can discuss the use of R in a particular subject area (e.g.,
epidemiology, econometrics, psychometrics) or as it relates to statistical topics (e.g., missing
data, longitudinal data).”

3.8.4 Googling an R topic

There is a ton of material on the Web about R. Often you can find exactly what you need
with a simple Google search—actually, quite often this is the best way to find the manual
page that you need. I just did a Google search on “Debug and R” to help me write the
section on debugging. It took me right to the page in the manual I needed. Moreover, the
rapid rise of the popularity of R is motivating all sorts of tutorials and Power Points etc. on
R. My favorites are
http://www.statmethods.net/index.html(particularly good for beginners)
and
http://wiki.r-project.org/rwiki/doku.php
and,
http://addictedtor.free.fr/graphiques/
There is also a R specific Google search tool:
http://rseek.org/
Before you proceed, take a look at all of these sites and explore them a bit.
So, to learn R, I urge you to work from multiple sources. Integrate key points in your R
notes.

4 Basic operations in R

4.1 Assignment

We will write lots of equations in R. Equations consist of variables and numbers on each side
on an assignment operator, which is subtly different from the = sign that you are familiar
with. The commands for the population growth example, above, illustrate assignment of
values to variables. For example, r = .2 means “assign the value .2 to the variable r. Note
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Table 1: Basic mathematical operations in R

Operation Expression R statement
addition a = b+ c a = b + c
subtraction a = b–c a = b - c
division a = b

c
a=b/c

power a = bc a=b^c
square root a =

√
b a=sqrt(b)

root a = c
√
b a=b^(1/c)

exponential a = eb a=exp(b)
natural log a = ln b a=log(b)
log base 10 a = log10b a = log10(b)

that R also allows <- for assignment. The statement r <- .2 accomplishes exactly10 the
same thing as r = .2. The <- syntax that is required by JAGS, which we will use heavily in
the course, and you will see it often in R code written by others, so it is good to know what
it means. I use = rather than <- because I have found some intractable bugs when I used <-
in function arguments (more about those later) which seem to require = to work properly.
However, as long as you can remember that function arguments must take a = and not a <-,
you might want to use the <- syntax to reduce the number of syntax errors you receive in
JAGS.
Variables are called, well, variables, because the value they contain depends on what you
assign to them. The value of 2 cannot change in R, but the value of named variables
can. The names of variables can consist of letters (a-z and A-Z), letters combined with
numbers, and letters and numbers combined with special characters. So, for example, all of
the following are legitimate names for variables: a, a1, alpha, carbon, x.coordinate,
habitat_area. (However—using the underscore will cause big problems in JAGS, so you
should probably avoid it.) Some special characters are not allowed (for example, any of the
characters designating operations, below). R is case sensitive, so the variable a is different
from the variable A and survival is not the same as Survival.

4.2 Operators

Arithmetic is accomplished by the usual operators +, -, *, / and ^ (for raising to a
power)1. In addition, there are the common mathematical functions log( ), exp( ), sin(
), cos( ), tan( ), sqrt( ). There are also many useful functions that operate on vec-
tors and matrices, but we will learn about those later. The list of mathematical functions
available in R is long—we will learn many more than the simple ones listed here—but these
give you an idea of the basic mathematical operations.

10For the code wonks among you, there actually are some subtle differences in the operation of = and <-.
If you want the detailed treatment, see
http://csgillespie.wordpress.com/2010/11/16/assignment-operators-in-r-vs/.
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4.3 Numbers

Equations can contain numbers as well as variables. So for example, the statement N1 =
100*exp(r) contains all three elements. However, equations can also consist of variables
and numbers without arithmetic operations e.g., N0 = 100. (What does this statement do?)

4.4 Order of operations

The order in which calculations are carried out can influence their outcome. Consider a /
b + c. In R, this statement would be executed as divide a by b then add c. Of course,
this gives a very different results than dividing a by the sum b + c. In R, exponentiation is
done first, followed by multiplication or division followed by addition or subtraction. When
in doubt, use parentheses, e.g., (a / b) + c if you want to divide first (which is what R
does without parentheses) or a/(b+c) if you want to do the addition first (which requires
parentheses). When in doubt, use parentheses. To illustrate the importance of parentheses,
enter the following at the console
1000*1.06^20/12
and
100*1.06*(20/12)

Exercise: The diameter of the earth. Write an equation in the console that assigns the
diameter of the earth at the equator (in km) to the variable earth.diameter. The
data you need include the circumference of the earth (24,901.55 miles at the equator)
and the relationship between miles and kilometers (1 km = .621 miles). I am assuming
you know the relationship between circumference and radius or diameter of a circle.
You will probably need to do a little algebra first. As a useful hint, enter

> pi
After you have entered your equation, enter
> earth.diameter
If you have done this right, R will respond:
[1] 12763.94
Now do the same thing by writing a program (script) that calculates the
diameter of the earth. Start by assigning numeric values to variables (using
symbols of your choice). Write your equation in terms of those variables (i.e.,
your final equation should not contain any numbers) and execute it.

4.5 When does a variable exist?

Try the following. Enter:

> axe

R will respond with the message:
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Error: object "axe" not found

because you have not told R about the object axe. It doesn’t’t know a exists, therefore it
responds, sensibly, that it can’t find it. Now try the following. Enter:

> axe = 2

R responds with

>

Now enter

> axe

to which R responds:

> 2

This is a very important thing to understand about R: objects don’t exist until you assign a
value to them or until explicitly declare them (declaration is described in the next section.)
This turns out to be useful. It prevents errors that can result from misspellings etc. For
example, recall your value for the diameter of the earth by entering

> earth.diameter

Now try the same thing, but make a small mistake, something like

> earth.diametter

How does R respond?

5 Data in R

Before you build your first model, you need to know about how R stores data. In this section
you will learn about four simple structures for data: scalars, vectors, matrices, and arrays.
Later, we will cover more advanced structures: lists and data frames.
There is potential for confusion here about what we mean by “data”, particular for those who
have some modeling background. Usually, we think of data as observations from experiments,
samples, surveys, etc. R includes such observations as data, but has a somewhat broader
definition. Data include values that are assigned to variables represented by its data types
(i.e, scalars, vectors, and arrays). So, simulation results stored in an array, are, in R’s view,
data. They are not observations. I will probably jump back and forth between these views
in the course—there is simply no way to be totally consistent without inventing a new word.
I presume you are sufficiently clever to juggle these uses of the term.
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5.1 Scalars

The variables we have been working with above are scalars. Scalars are variables that contain
a single numeric value.

5.2 Strings

Strings are like scalars, except they contain character values. So, to assign a string to a
variable, you will use syntax like a = “Fred”.

5.3 Vectors

5.3.1 Vector basics

Unlike scalars, vectors are objects that contain more than one value. They are analogous to
a row of data in Excel. So, for example consider the following in Excel:

To create and display an analogous vector (named v1) in R enter :

> v1 = c(234, 17, 42.5, 64)
> v1

R responds:

[1] 234.0 17.0 42.5 64.0

The c( ) is a concatenate function .
In Excel you access the value of a cell using an indexing system based on letters (for columns)
and numbers for rows. So, 234 is the value contained in cell A1. The indexing system in R
is subtly different, but much more flexible as you will see shortly. Because vectors are like
“rows” in R , to get the value of an element, you simply given the position of the element
brackets [ ] next to the vector name, e.g.:

> v1[3]

will output the third element of the array v1.
It is also possible for vectors to include characters. For example:

study.areas = c(“Maybell”, “Poudre”, “Gunnison”)

Exercise: Vectors 1. What is the value of v1[2]? Create a vector called ages that contains
the ages of everyone in your workgroup. Create a vector called names that contains the
names of everyone in your workgroup. Output the value of the fourth element of v1
to the console. Multiply the second element of v1 by 2. Enter v1[1:3]in the console.
What does the : operator do?
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Table 2: Logical operations in R

Symbol Meaning
< less than
> greater than
<= less than or equal to
>= greater than or equal to
== equal to
! = not equal to
! logical not
& logical and
| logical or

5.3.2 Mathematical operations on vectors

Vectors can be used in arithmetic expressions. Operations are performed element by element.
Try a variety of arithmetic and mathematical operations on the vector v1. For example,

v2 = v1*2
v2

5.3.3 Logical operations on vectors

Here, I introduce logical operations in the context of vectors, but they have wide application
in R–for example in use with if() statements, which will be covered later. Logical ex-
pressions differ from arithmetic expressions. Where arithmetic expressions evaluate to some
number (the expression 2* 2 evaluates to 4), logical expressions evaluate to TRUE or FALSE.
So if the value of a is 2 then a < 4 evaluates to TRUE while a > 4 evaluates to FALSE. R does
logical as well as arithmetic evaluation. The symbols for frequently used logical operations
are shown in Table 2.

Exercise: logical operations on vectors. Enter the following at the console v1; v1 <
200; v1[v1 < 200] Discuss with you lab mates what is going on here. Using logical
statements like the one above, form a new vector from the from elements of v1 con-
taining elements that are a) greater than twenty b) less than 200 and greater than 20
c) not equal to 17 d) equal to 17 or equal to 42.5

5.3.4 Vector functions

R has a rich set of functions that operate on vectors (Table 3).

Exercise: vector functions. Find the mean, max, minimum, range, and variance of v1.
Find the average of the maximum and the minimum of v1. Compose another vector v2
containing 4 numeric values of your choice. Now, execute the commands min(v1,v2)
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Table 3: Frequently used functions that operate on vectors in R. In the examples below, z
is a vector.

Operation Result
length(z) number of elements in z
max(z) maximum value of z
min(z) minimum value of z
sum(z) sum of values in z
mean(z) arithmetic average of values in z
median(z) median of z
range(z) vector including minimum and maximum of z
var(z) variance of z
sd(z) standard deviation of z
cor(z,y) correlation between vectors z and y
sort(z) vector sorted
rank(z) vector containing the ranks of elements of z

and pmin(v1,v2). Discuss with your lab mates what the two commands are doing. The
difference between min() and pmin() is really important because failing to understand
it can cause mistakes that are very hard to diagnose. There is an analogous version of
max() and pmax().

5.3.5 Declaring vectors

In the examples above, R figured out how long a vector is and what kind of data it contains
by the assignment you gave it, that is by what was on the right hand side of the assignment
operator. It is also possible to create a vector of zeros, which can be very useful if you want
to create a data structure that will be assigned values latter. Here are some ways to do that.
Most often, we will use something like
v = numeric(10)
where 10 is simply the number of elements in the vector, its length. (Remember, I am using v
as a variable name here, it could be anything you want to name the vector.) This statement
says “create a vector that can hold numbers.
It can be useful to find out the length of a vector, which is accomplished with the statement:
length(v)
It is also possible to create a vector of integers11 using:

v = integer(10)

Exercise: Put the following code in a script and run it line by line. Explain what is going
on to your lab mates.

11You can also create vectors of single precision real numbers using v = real(10) or vectors of double
precision real numbers using v=double(10) but these distinctions will not be needed in this course.
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d = numeric(5)
d
(d + 1) /3
length(d)

What do you do if you know you want to declare a vector, but you don’t know how long
it should be? You can let R know that it should recognize v as a vector and allow you to
assign values to any element in the vector. For example,

v=NULL
v[8]=254
v[2]=10

The symbol NA is used to indicate missing data, more about this soon. Explain what is
going on here. Now enter v[12]=13.4 and explain the result.

5.4 Matrices and arrays

Vectors are analogous to rows in a spreadsheet. Matrices are analogous to sheets; three
dimensional arrays are analogous to workbooks. First we will work on matrices and then
turn to arrays of higher dimension. The matrix will be a true workhorse in this course.
Matrices are special types of two dimensional arrays; more about arrays later. They differ
from arrays because certain mathematical operations, for example, transforms, are valid only
for matrices.

5.5 Creating matrices

Consider the following bit of data contained in Excel:

In R, as in Excel, specifying the value in a “cell” now requires both rows and columns. In
R, this is done by the order of the indices. The first index gives the row number, the second
index gives the column. To remember this order, think RC12 .
To create matrix analogous to the rows and columns in the sheet, begin by using syntax like
this:

A = matrix(0,nrow=5, ncol=2)

This syntax says “Create an matrix named A with 5 rows and 2 columns containing the
value 0 for all elements.” (It doesn’t’t have to be named A, you could call it Bookshelves if
you want to.)

12When I took my first programming course (FORTRAN in 1975 in the Engineering College at Vanderbilt)
the instructor gave us a way to remember the indexing of rows and columns. “If you are religious, think RC,
Roman Catholic. If you are not, then just think RC cola.” Those of you from the South who are old enough
will get the second reference. This might be none of you.
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Exercise: Creating a matrix Create and output a matrix named B that contains seven
columns and 5 rows with all elements containing the value 7.

Working with rows and columns of a matrix R has exceptionally powerful ways to work
with matrices using commas to designate entire rows and columns, effectively making them
vectors. For example, the syntax:

A[,2]

specifies all of the elements in the second column of the matrix A, while

A[4,]

specifies all of the elements of the fourth row of the matrix A. Remember, rows and columns
treated this way create vectors. You will use this capability a lot in this course, so it is truly
critical that you understand it.

Exercise: matrices. Enter the data in the Excel example above into an matrix called M.
Write and execute a script that

1. Sets up the matrix M and fills it with zeros using the matrix() statement.

2. Enters the appropriate values in the matrix row by row Hint: to enter the first row
use: A[1,] = c(1995,10.0)

3. Outputs the entire matrix. 4

4. Outputs each row

5. Outputs each column.

6. Finds the largest value in the matrix

7. Finds the average of the second column

5.6 Sub-setting matrices

Very often we want to find particular rows and columns of a matrix, for example, we want
to find the rows that contain specified values of a column. R has extremely powerful syntax
to accomplish these operations, but be warned, it requires some effort to understand. For
example, lets say we want to obtain a subset of the array M containing the data for years
earlier than 1998. The syntax for doing this is as follows:

M[M[,1] < 1998,]

to which R responds:
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[,1] [,2]
[1,] 1995 10.0
[2,] 1996 12.2
[3,] 1997 15.6

Well, now that is not exactly intuitive. Let’s take this statement apart so that you can
understand how it works. First, enter

M[,1] < 1998

to which R responds

[1] TRUE TRUE TRUE FALSE FALSE

What is going on here? Well, you have a logical operator (<) and any time you use a
logical operator, then R will return values of TRUE or FALSE. So, M[,1] specifies a vector
consisting of all of the rows of M (because there is a “,” in the row position of the index) in
column 1. R returns a vector of TRUE and FALSE by going element by element through
that vector and determining if the element is < 1998. If you don’t understand this after
thinking about this and discussing it with your lab mates, then call on one of the TA’s or
me. It is very important that you understand this.
Now let’s add the outer “wrapper” that does the rest of the work we need done. I am
intentionally adding some spaces to make this more clear:

M[ M[,1] < 1998 ,]

What is happening here? We have put the set of TRUE TRUE TRUE FALSE FALSE
produced by

M[,1] < 1998

within M[ ,]. R now looks this over finds all of the rows of M that have a value of TRUE
produced by our logical comparison, that is that have a value less than 1998 in column 1.
OK we have found the rows, what does R return? R returns all of the columns of M because
of the comma immediately before the trailing bracket is not followed by any specific column
or columns. (Remember, M[r,] means row r and all columns.) If we simply wanted the values
of column 2 returned for the rows where years < 1998 then our syntax would be:

M[ M[,1] < 1998 ,2]

to which R would respond

[1] 10.0 12.2 15.6
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M[ M[,1] < 1998 ,2 ]

The name and outer brackets
tell R what matrix, array or
data frame to search

The condition tells R to find all of
the rows of the specified column
(or columns) that meet the
specified condition.

The column specifies
what you want R to
return.  If you use ,
without a column
number, it returns the
entire row. You must
include the ,

Figure 2: Illustration of command for subsetting a matrix.

So to wrap this up, consider the following diagram to gain some general understanding of
subsetting matrices:
Now, the error you will make, I promise. If you enter

M[ M[,1] < 1998]

R will respond:

[1] 1995.0 1996.0 1997.0 10.0 12.5 15.6

Hmmm, what is going on here?
Some examples might reinforce the use of subsetting statements:

# Returns rows of M that contain 1995 or 1999 in column 1
M[M[,1] == 1995 | M[,1] == 1999,]
#Returns values in column 2 of M that are in a row containing 1995 or 1999 in column 1
M[M[,1] == 1995 | M[,1] == 1999,2]
#Rows of M that contain values in column 2 that are #greater than the average value of column 2
M[M[,2] > mean(M[,2]),]

Exercise: matrices, continued.
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1. Find the all of the values of column 2 of M that are less than 19.

2. Find and output the row that contains the minimum value contained in column 2.

3. Now, to illustrate a particularly devious error, enter the following at the console: M,
M[1], M[10], mean(M[1]), mean(M[,1]). Discuss what is going on here with your
lab mates. What problems that can arise if you leave out the comma when you intend
to index a row or column? When you enter a single subscript (with no comma) for
a two dimensional matrix, how is R treating the matrix? Hint: enter the commands
length(M), length(M[1,]), length(M[,1]at the console. This is particularly impor-
tant to understand because it is a source of potential errors that are very hard to
detect. This illustrates that flexible languages like R give you tremendous power—but
with that power comes the responsibility to understand what you are doing. Don’t go
forward until you really understand this part of the exercise.

5.6.1 A common error when creating matrices

A common error is something like:

> Z =matrix(0, nrows = 5, ncol = 7)

in which case you will get the sort of cryptic error message:

Error in matrix(0, nrows = 5, ncol = 7) : unused argument(s) (nrows = 5)

This tells you, in R’s way, that you put an s at the end of nrow, an s that shouldn’t be there.

5.7 Arrays

In this course, we will use lots matrices, which are essentially 2 x 2 arrays. I say essentially
because matrices have some special mathematical properties that are not shared with 2 x 2
arrays, but we needn’t go into these in detail. So although matrices, lists, and data frames
(more about these soon) are the data structures that we need in this course„ most of the
time there will be occasions when we need “a stack of matrices”, which, roughly speaking is
a 3 dimensional array. A three dimensional array is analogous to a workbook—it is like a
stack of sheets, each containing rows and columns. A four dimensional array is like a set of
workbooks containing a stack of sheets containing rows and columns, and so on. So, a 2 x
5 x 3 dimensional array is stack of 2 dimensional arrays—it consists of 3, 2 x 5 sub-arrays.
The syntax is a pretty simple. To set-up a 3 dimensional array name A3 consisting of 3
sub-arrays, each of which contains 2 rows and 5 columns each use:

> A3 = array (0, dim = c(2,5,3))
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Again, the indexing works, rows, columns, arrays (RCA)—the first number in the dim state-
ment gives the number of rows in the “subarray” (i.e, 2), the second number gives the number
(i.e., 5) of columns in the sub array and the third number (i.e., 3) gives the number of sub
arrays.

Exercise: Three dimensional arrays I am now working on a problem that involves cap-
ture histories of mule deer that are potentially infected with Chronic Wasting Disease.
These histories take the following form. The animal can be in 1 of 4 unique states:
alive and susceptible, dead and susceptible, alive and infected and dead and infected.
Our research team will observe the animals state over a 5 years. Data for years are
contained in columns and there is a 4 x 5 subarray for each of 100 animals. For a
given year, the animal’s state is indexed by rows in the column for that year (row
1=susceptible alive, row 2 = infected alive, row 3 = susceptible dead, row 4 = infected
dead); there is a 1 in the row if the animal is in that state and a 0 otherwise. Please
do the following.

1. Create a 3 dimensional array containing all 0’s to hold these data and output the sub
arrays for the first 5 animals.

2. Enter initial conditions for this data structure, assuming all animals are susceptible in
year 1. 3

3. Presume that the 5th animal is susceptible and alive in years 1 and 2 becomes infected
in year 3 and dies in year five. Create the appropriate capture history for animal # 5
by filling in its sub array with 1’s and 0’s.

5.7.1 Functions for arrays and matrices

It is important to understand that you can use bracket notation, (i.e., M[1,]) to create a
vector from a matrix. In this case, all of the function that apply to a vector (Table3) will
apply to the vector that you extract from a matrix. Moreover, these functions will also
apply to the matrix itself, but with results that may not be immediately intuitive. For
example, consider matrix M above. What do you get if you execute the command mean(M)?
length(M)? min(M)?
There are times when you want means or sums of each for the rows or each of the columns
of a matrix. Of course, you could do this one row or one column at a time using the bracket
notation as shown above. However, there are functions that make this easier, rowSums(),
rowMeans(), nrow(),colSums(), colMeans(), and ncol(). Consider the matrix Q:

Q =

 8 81 12
6 2 34
13 12 1

 (1)

Figure out how each of these matrix functions work by entering Q into R and using each
function, e.g., rowSums(Q). The reshape package offers a much more general set of tools
for summarizing data in matrices (and data frames), but that is an advanced topic, treated
later in this primer.
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5.7.2 Matrix algebra

R has a rich set of functions (for example, eigenvalues and eigenvectors) as well as operators
that apply to matrices (for example, multiplying a matrix with a vector). These are beyond
the scope of this tutorial, but you should know they exist. We will learn some of these later
in the course. If you are curious now, take a look at the Introduction to R manual or the
popbio package.

6 Programming in R

6.1 Iteration

6.1.1 The basics of for loops

One of the things we will do a lot in this class is to iterate an equation over time. As an
example, consider the equation,

Nt+1 = λNt (2)

which is the basic, discrete time model of exponential population growth. On the left hand
side, we have the value of a state variable, N , at a future time and on the right hand side,
we have a function that calculates the future value of a state variable in terms of its current
value and the parameter λ. This is known as an iteration equation.
R, and all other computer languages, have several methods for executing operations itera-
tively, saving you the tedium of doing the same thing many times. The method we will learn
is called a for loop. It will be a genuine workhorse in this class, so you should pay close
attention here. For loops are best explained by example. Consider the following:

Algorithm 1 Illustration of for loop
lambda = 1.2
N = 10
for (t in 1:10){

N = lambda * N

} #end of N loop
N
t

Write this code as a script and execute it. What is going on? We start by assigning an initial
value to the scalar N. This tells R that N exists and has the value of 10. The code then tells
R to do the following things:

1. Starting with the value of t = 1,

2. Do the operations within the { }, in this case update the value of N by making it equal
to the old value of N multiplied by the (constant) value of lambda.
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3. Each time you do whatever is within the { }, increase the value of t by 1

4. When the value of t = 10, stop and go to the next statement.

5. Output the values of N and t to the console.

Well, that is interesting, but not terribly useful. The loop allows us to find out the value
of N after 10 intervals of time. But what we really want for most models is the value of
N at each time. It does illustrate how the right hand side of an expression for a variable
replaces the value on the left hand side, but you probably knew that anyway. For this to
be really useful, we need vectors and arrays. But before we go on those topics, notice two
programming conventions. The code within the {} is indented to make it easy to see it is
part of a loop. Also, there is a comment at the end to the loop to identify it.
To make this construct more useful, study the code in Algorithm 2.

Algorithm 2 for loop including storage of state variable in a vector.
for
#value of growth rate
lambda = 1.2
#Vector for holding state variable
N = numeric(10)
#Initial value of N
N[1] = 10
#Loop to calculate N over time. Use t to index vector.
for (t in 2:10){

# store the values of N in a vector
N[t] = lambda * N[t-1]

}
plot(N)

Ok what is going on here? This is pretty important, so let’s look at it in detail:

1. lambda = 1.2 lambda is a parameter in our model. This model has only one param-
eter, other models will have many, but the general idea is exactly the same–the value
of a parameter does not change with time . We assign the variable lambda the value
1.2.

2. N = numeric(10) Now we create a vector to hold the values of N in sequence.

3. N[1] = 10 If you think about equation 2, above, we can’t calculate the left hand side
without knowing an initial value for the right hand side. Given that starting value,
each subsequent value can be calculated because the new value is based on the old one.
So, we must give an initial value for N, that is, the first element in the N vector.
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4. for (t in 2:10){N[t] = lambda * N[t-1] } This is where the real work is done.
The for loop starts with a value of t = 2 . Why not start at 1? We start at 2 because we
have specified the value of N at t = 1,so the first time through the loop, we calculate
the value of N[2] = 1.2 * N[1]. The second time through the loop, we calculate
N[3] = 1.2 * N[2], the third time through the loop, N[4] = 1.2 * N[3] and so on
until t = 10.

5. plot(N)We now use a plot statement to display the results of the model. Usually, the
plot statement has the syntax plot(x,y)where x is a vector of values for the x axis
and y is a vector of values for the y axis. Again, these vectors can be named anything;
x and y are simply placeholders in this example. If plot has only one argument, as
in our example above, then the plot statement assumes this is a time-series creates a
sequence of x values of the appropriate length starting at 1 to match with the y values
we gave it. So, in this case the plot statement determines the length of N and makes
an x-axis for you with values 1 – 10.

Exercise: A Gompertz model of plant growth. Plant growth can be modeled as the
accumulation of biomass over time. The Gompertz equation is often used to represent
growth of individual plants and plant communities. For an individual plant we have:

Bt+1 = Bt + µ0Bt

[
1− k

µ0

ln

(
Bt

B0

)]
∆t (3)

where Bt is the biomass of the plant at time t, B0 is the initial plant mass, µ is the
mass-specific maximum rate of plant growth (which occurs when plants are very small),
and is the exponential rate of decline in plant growth rate that occurs with time as
plants age. You may assume that ∆t = 1.

1. Use equation 2 to develop a simulation model of plant growth. Assume that µ = 1, k =
.3, and B0 = 10. Run a simulation for 30 time steps and plot your results. Hints: As
you no doubt guessed, a useful template for this problem is given by the code for
the discrete time exponential model in algorithm 2. The only real difference is that
the update equation here (equation 3) is a bit more complicated that the one in the
example (equation 2) So, be especially careful to properly translate equation 3 into R
code. This is where you are likely to make mistakes. When you get it running, save
your code; you will need it for part 3 of the exercise.

2. Now add two new variables to your model, Rt, the absolute growth rate (g/time) and
rt, the relative growth rate (g /g/time)13:

Rt = µ0Bt

[
1− k

µ0

ln

(
Bt

B0

)]
(4)

rt =
Rt

Bt

(5)

13You should understand that Rt u dB
dt .
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Write code to update these variables and plot each of them along with your plot of
biomass over time. So, you will now have 3 vectors to hold state variables (B, R, and
r) and you will use 3 plot statements to output them. To see your plots, you will need
a special line of code for putting several plots in a group. Put this statement ahead
of your plot statement: par(mfrow=c(2,2)). This sets up a window to hold 2 rows
and 2 columns of plots.

3. In vectors R and r you will not have an initial value other than 0 at time 1 which gives
you an odd plot. Figure out a way to plot the values 2 through 10, omitting the value
at t = 1.

4. This next exercise is challenging. It requires understanding of matrices and looping
and putting them together. If you can get this right, you are making terrific progress.
Using the code you wrote for 1, eliminate the vector for Bt and instead create a matrix
to store the value of time in column one and the value of Bt in column two. Plot the
array using the syntax plot(x,y) where x is column 1 and y is column 2 of your array.

Ok, these three exercises cover a lot of important material. They contain the essential
elements of dynamic modeling which we will emphasize in the later part of the course.
These are truly workhorse concepts. Do not go forward with this tutorial until you get
totally familiar with the answers to these exercises, which are given in Appendix A. I am
betting that the area you may get confused in the difference between the index of an array
and the value contained in the position of the array determined by the index in exercise
4, above. Ask for help from me or one of our brilliant TA’s or both until you completely
understand what is going on here. We will work with you until you get it.

6.1.2 For loops controlled by sequence vectors

The behavior of for loops is determined by a sequence. Above, I made things simple by
using 1:10 to describe a sequence of 10 integers starting at 1 and ending at 10. However, for
loops can be controlled by vectors that define a sequence. This requires that we understand
the seq() function. Enter the following code in the console or from a script window:

s1 = seq(from = 0, to = .10, by = .02) s1
#A shorthand version of the same statement is
s1 = seq(0,.10,.02)

This illustrates how you can form sequences of numbers over any range (with endpoints
defined with from and to) with any increment (defined with by). The second version is
shorthand for the first—if you can remember the order, then you can dispense with the from
=, to =, and by = . If you use these, it is easy to forget the =, which will produce an
error. Sequences can be useful for many things, but their primary use in this course will be
to control for loops. So, the statement:

for (j in s1){
}

will iterate over the values contained in s1, giving values in sequence to j
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6.1.3 Nested loops

Sometimes we want to iterate over two indices rather than one. This can be accomplished
using nested for loops. For example, write this script in the program window and execute it:

a = matrix(0,nrow=5, ncol=5)
a
for (i in 1:5){

for(j in 1:5){
a[j,i] = j*i
} #end of j for

} #end of i for
a

Nested loops work this way. The outer loop goes slowly, the inner loop, quickly. So in the
above example, in the first trip through the loop i = 1 then j = 1,2,3,4,5. Then i = 2
and j = 1,2,3,4,5 and so on. In this example the results of a calculation are stored in the
array a where rows are indexed by j and columns are indexed by i.

Exercise: a model experiment using nested for loops We will often want to look at
how changing a parameter value alters the trajectory of a model’s predictions over
time. This means that we want to iterate over different parameter values for a model,
and for each value, store the vector of values of the state variable over time. This
exercise will be your first experience doing that. Building on the discrete time model
of exponential population growth developed above, run an experiment where you vary
the values of lambda from 1 to 1.6 in steps of .1. Display the results together as a
family of curves on a single graph. You are going to need some hints to do this. Here
they are. This will seem hard at first, but after you have done this once, it will be
much easier the next time.

1. Make a vector (using the seq() function) of values of lambda from 1 to 1.6 in steps of
.1.

2. Make a matrix with 10 rows and a number of columns equal to the length of your
lambda vector. Initialize all of columns in row 1 of your array to hold the value 10.
(Remember how you can do this in one, simple step using a comma to index your
matrix). Call your matrix N.

3. Create nested loops. The outer one controls the value of lambda and the column where
you want the results of the simulation for each value of t. The inner loops controls
t. Within both loops is the calculation of the population size based on the value of
lambda indexed by the outer loop and time indexed by the inner loop. Store the result
in your 2 dimensional array. Each column should hold the values of N calculated at
the different time steps.
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4. At the end of your simulation, plot the results using matplot(N, type = ’b’) where
N is the name you gave your matrix and type = ’b’ says you want results plotted
with lines and symbols. More about this command later.

6.2 Functions

6.2.1 Why use them?

In mathematics a function maps one value of a number to another value using mathematical
operations. Functions in R do the same thing—code specifies how to map one value to
another. You have been introduced to several functions in R, particularly functions that
work on vectors and matrices. However, although R is very rich in the functions it offers,
there will inevitably be things that you want to do that are not included in the set of
R functions. So, you could simply write code within your programs to do these things.
However, there are three strong reasons to write functions.
First, there are things that you will do over and over in many different programs and it
is handy to write the code once and use it over and over. Second, code that is written in
functions allows you to use the R debugger, which we will learn more about in a moment.
Finally, the most important reason is this. If you break your code into pieces, where each
piece does a specific job, then your code will be easier to write, understand, debug, and
maintain. It allows to break a problem into parts, concentrate on each one, then put them
all together. This is the main reason that I write functions.

6.2.2 Function basics, example 1

Think about a mathematical function, say y = f(x). The symbol x is the argument to the
function; y is the result, and f specifies the operations that map x to y. Here is the way
that R implements this in code:

function_name = function(arguments){
some code doing things that results in a value for variable based on the arguments provided
return(variable)
}

There are many nuances to functions and I think the best way to learn them is to see some
examples. Let’s start with a very simple one that calculates square roots (I know, I know
this already exists, but it is a good example. Note that I am giving another name because
of this.)

squarert = function (x){

y = x^(1/2)
return(y)
}
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z = squarert(9)
z

So what is going on here? We assign a calculation or set of calculations to a name (remember,
any name). The function name takes an argument, that is the variable within the ( ). Based
on the value of the argument, we execute the calculation and “return” the result. This is a
simple example, but it has all of the key bits: naming a function by assigning it, taking an
argument, doing a calculation based on the argument (or arguments) and returning the result
of the calculation. Now, instead of doing the calculation, we can simply use the function
name with an argument, e.g.

z = squarert(9)

Note that we can accomplish the same thing using much more compact code

squarert = function (x) x^(1/2)

meaning if you have a single line of calculations, you can omit the { } and the return( )
statement. I like the more detailed one because I think it is easier to read and understand
and because you must do it this way for more complicated functions. However, you should be
aware of the shorthand version because you will see it and because you might like it better.
Often we have a list of numbers and we want to normalize it such that each value is rescaled
to take on a value between 0 and 1 and the sum of the elements = 1. Given a vector v
containing n elements, we obtain the normalized vector, η, using:

η =
vi∑n
i=1 vi

(6)

Exercise: normalizing a vector. Write a function that takes a vector of numbers and
returns a vector containing its normalized elements. Hint: take advantage of vector
arithmetic and the sum( ) function. Do not use a for loop.

6.2.3 Function basics, example 2

Let’s look at another example, more sophisticated this time. In this course you will learn
about information theoretics based on likelihood as a way to compare the strength of evidence
in data for different models. Specifically, you will learn about Akaike’s information criterion
(AIC). Don’t worry that you don’t know the details of AIC and what it means, that will
come soon enough. For now, it simply offers us some relevant equations that we can use to
learn about writing functions. In the following function, we calculate AIC from likelihoods
and counts of model parameters. R has existing functions that do this, so we are reinventing
the wheel purely as a learning exercise. The formula for AIC for large samples is

AIC = −2 ln (Lmle) + 2K (7)
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Algorithm 3 Example code for a function using an if() statement to control execution
#AIC example

get.AIC = function(likelihood, K, n, small, log){

if (log == TRUE){

if (small == FALSE) AIC = -2*(likelihood) + 2*K
if (small == TRUE) AIC = -2*(likelihood) + 2*K * (n /(n-K-1))
}

if (log == FALSE){
if (small == FALSE) AIC = -2*log(likelihood) + 2*K
if (small == TRUE) AIC = -2*log(likelihood) + 2*K * n /(n-K-1)
}
return(AIC) } #end of function
a = get.AIC(likelihood = c(-30.61), n = 20 , K = c(7) ,small=TRUE, log=TRUE)
a

where Lmle is the model likelihood evaluated at the maximum likelihood estimates of the
model parameter and K is the number of parameters estimated from the data. When we
have small samples, we use AICc , that is, AIC corrected for small samples:

AIC = −2 ln (Lmle) + 2K

(
n

n−K − 1

)
(8)

So, we are going to write a function that calculates AIC or AICc given input on model
likelihoods, the number of model parameters, the sample size, and a “switch” that tells AIC
to do large or small sample AIC. Consider 3.

Type this up as a script and run it.
Wow, there is a lot to cover in these few lines. It is important that you think about what is
going on, emphasizing how you might generalize this specific example to other functions. I
want to use this code to illustrate five concepts: 1) named arguments and default values, 2)
invoking functions, 3) logical variables, 4) use of if statements, and 5) scalar vs. vector
arguments.
First look at the way the function is made:

get.AIC = function(likelihood, K, n, small, log){

stuff

} #end get.AIC function

We are creating the function by assigning some instructions to the function name AIC.
Within the ( ) are arguments, the values that the function needs to do its calculations. The
function body, the guts of what it does (i.e. stuff), is contained between the {}. Under-
stand that the left hand side of the = could be any R name (z, x2, alpha, calculate.aic,
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my.AIC.function, bookshelf, etc). Similarly, the arguments could be given any names. I
chose the names for arguments to make the function easy to understand, but they could
have been any names.
Two ways to invoke functions First, how do you use this function? There are two ways to
invoke it

a = get.AIC(-30.61, 20 , 7 , TRUE, TRUE)

or

a = get.AIC(likelihood = -30.61, K = 7, n = 20 ,small=TRUE, log=TRUE)

both achieving exactly the same result. In both cases, we assign to the variable a the AIC
value calculated from log likelihood -30.61, n = 20, K = 7 and our decision that the sample
size was small. In one case, the arguments we give must be in exactly the same order as
the order of the arguments when we created the function. This is pretty error prone—if you
forget the order, you could easily get erroneous results. The second form is far safer—you
don’t need to remember the order, only the names of the arguments. And if you misspell an
argument name, R will give you an error message. Note in the examples above, I deliberately
switched the order of n and K to demonstrate that you get the same result in the second
version (with the order switched) as in the first (that must have the same order as the
function assignment.

Logical arguments: This sounds like something they train you to make in law school,
but logical arguments are different in functions than in law. In our example the variable
small is a logical argument, also called a “switch” or a “flag.” It can take on the logical values
TRUE or FALSE (you must use uppercase– true or false won’t work). There are two logical
arguments in the function, log and small. These control how we do the calculations, as you
will find out in a minute. The log switch is used to tell the function whether you want AIC
calculated from likelihoods or log likelihoods (you may have either one depending on how
you estimated the model parameters). If you have likelihoods, then you should set the value
of the switch to be FALSE. If you have log likelihoods, then you set the value of the switch
to be TRUE.
The second switch is the logical argument small. If our sample size is small (more about
that later in the course) we make the value of small = TRUE. If our sample size is large,
we make the value of small = FALSE. These values control which form of the calculation
we make using if statements. Using if statements to control calculations in a function The
logical arguments control the calculations in the following statements, taken as a fragment
from the full code above:

if (log == TRUE){

if (small == FALSE) AIC = -2*(likelihood) + 2*K
if (small == TRUE) AIC = -2*(likelihood) + 2*K * (n /(n-K-1))
}
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if (log == FALSE){

if (small == FALSE) AIC = -2*log(likelihood) + 2*K
if (small == TRUE) AIC = -2*log(likelihood) + 2*K * n /(n-K-1)
}

R executes this line by line, starting with the the first if statement. If it is true, it executes
the next line. If it is false, it jumps the line past the closing } for the first if. So, the first
thing this function does is to decide whether to do the calculation based on log likelihoods
or likelihoods. The next level of if statements determine whether the function is done using
the large or small sample formula. If small = TRUE, the small sample formula is used, if
small = FALSE, then the large sample formula is used.
This seems straightforward enough, but there is an opportunity for error here, and I almost
promise that you will make it. Note that the logical if statement uses = = not =. If you use
=, R will generate an error message, something like

Error: unexpected ’=’ in "if(

Vector vs scalar arguments: This next bit is really cool. Those of you who program
in lower level languages (C or VBA for example) are going to love this. R doesn’t care
whether the argument you give it for the likelihood and K are scalars or vectors. If they are
scalars, then it returns a scalar. If they are vectors, then it does the calculations using vector
arithmetic and returns a vector! (Pardon me for getting excited about this.) So, if you want
to compare 10 models, all with different likelihoods and different numbers of parameters, all
you need to do is to create 2 vectors (or a 2 column matrix) and give vector arguments (or
the columns of the matrix using the [, ] trick) to the function. The likelihoods and the K
for a given model must be in the same position in the two vectors (i.e. must have the same
index) , but as long as you get them lined up properly, the function will return a vector of the
10 AIC or AICc values. So, try giving the get.AIC function two vectors with 3 likelihoods
(their value can be any decimal, positive or negative) and 3 values for K. Observe the result.

Exercise Moment matching. I imagine you have some familiarity with probability dis-
tributions, at least with the normal distribution. Probability distributions are repre-
sented mathematically by functions14 f() , that return the probability density of an
observation, yi, given (strictly speaking, conditional on) a set of shape parameters, θ,
i.e.,

Pr (yi | θ) = f (yi, θ) . (9)

So, for the normal distribution the shape parameters are the mean and the standard
deviation (θ = µ, σ) and the density function is

Pr (yi | µ, σ)=
1

σ
√

2π
e

−(yi−µ)
2

2σ2 (10)

14To simplify life, I will focus on continuous data in this example, but when data are discrete we use
discrete density functions. These are differ in a somewhat subtle way in the values they return, but we will
go into this difference in class. You will become deeply familiar with both types of functions in this course;
the example here offers a brief start to what you will learn in depth as the course proceeds. More soon.
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The normal distribution is unique among probability density functions in that the
moments of the distribution, i.e., the mean and the variance, are very easily derived
from the shape parameters, the mean and the standard deviation. This is not true for
all of the other distributions that we will use. For example, the beta distribution is
used to describe data that can take on values between 0 and 1. For our purposes here,
the formula for the beta distribution is not important, what is important is that the
relationship between the shape parameters (α, β) and the moments (µ, σ2) is

µ =
α

α + β
(11)

σ2 =
αβ

(α + β)2 (α + β + 1)
. (12)

Solving two equations in two unknowns, we can find the shape parameters in terms of
the moments:

α =
(µ2 − µ3 − µσ2)

σ2
(13)

β =
µ− 2µ2 + µ3 − σ2 + µσ2

σ2
. (14)

This technique, where we solve for shape parameters knowing the moments or solve
for moments knowing shape parameters, is called moment matching. We will use this
heavily in the course.

1. Write a function that does moment matching for the beta distribution. You function
should have 2 arguments, one for mean and one for the standard deviation and it
should return a vector of shape parameters.

2. Modify your function so that it has a logical argument to control whether it calculates
moments from shape parameters or shape parameters from moments. Set up if state-
ments in the function to use equations 11 and 12 or 13 and 14 as controlled by the
logical argument. Hint-be very careful about the order of operations in you code.

3. Use the following code to plot the beta distribution with mean = .7 and standard
deviation = .3. Think about what is going on here (more about plotting soon).

x=seq(0,1,.01)
#beta density function.
#Get a[1] and a[2] from moment matching function
y=dbeta(x,a[1],a[2])
plot(x,y,typ="l", xlab="y", ylab="P(y)")

4. How could you test your functions? Hint—the R function rbeta(x,shape1,shape2)
generates a vector of x random numbers from a beta distribution with shape parame-
ters, shape1 and shape2. How could you use these to test if your function is behaving
as it should?

40



R Primer NR 575 Systems Ecology

6.2.4 Scope of Variables

This is a sort of challenging topic, so I advise you to tackle it when you are fresh and have
sipped an espresso. You really must give this section your best concentration—it isn’t’t
intuitive. However, if you master this topic for R, it will serve you well with virtually all
programming languages. It is a critical concept in all of them. Ask questions of me and the
magnificent lab assistants until you are solid with this topic.
To understand the concept of scope, you need to understand how an R program works—it
executes one line at a time, starting at the top and going to the bottom. If you define a
function, then R puts it in memory, just like any other object you define. When you invoke
the function, then R goes to the code for that function in memory; in essence, when you use
a function, R “jumps” to the code that defines it. So at any one time during the execution
of your code, there is a “place” where R “is”—think of this place as a pointer15 that moves
through the code line by line. The location of this pointer determines whether a variable is
“in scope” or “out of scope”.
R knows about all of the variables that are assigned outside of a function, even when the
pointer is within a function. However, variables that are assigned within a function are not
available outside of the function. Execute the following code, trivial as it is:

rm(a,b)
a=7
fx=function(x){
y = a

print(y)
b = 17
print(b)
}

fx(9) # invoke function fx; values of a and b are printed
print(b) # Once you are out of the function, what happens to b?

Note that the value of a is known within the function fx() because it is assigned outside
of any function. It is “in scope” anywhere. However the value of b is remembered by R
only when the function fx is executed. There are two reasons why modern programming
languages are structured this way. The first is that you can have functions that are created
to serve many different scripts, regardless of the variables that are in the scripts–the internal
workings of the function and the values of its variables are kept separate from the script
that calls the function. This means, for example, that you could reuse the code you wrote
for moment matching over and over without worrying about whether it conflicts with the
particular script where you use it. Second is the idea of “data integrity.” If you break your
program into a series of functions, it makes it much more difficult to inadvertently change
the value of a variable, which means that you are less likely to create logical errors (i.e.

15But please don’t confuse this illustrative use of the term pointer with pointers in C, which are entirely
different things.
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“bugs”16) in your program). However, you inevitably will make these errors, which leads to
the next topic, debugging.

Debugging

The toughest errors to detect in computer programs are errors in your logic- you think you
have told the computer to do one thing, but in fact you have given it instructions that cause
it to do something else. Discovering these errors is called debugging. This usually involves
executing your code line by line, looking at results as you go, until you see your error in logic
or coding. It is possible to do lots of debugging from the console—you simply execute your
code line by line in the program window using cntrl-r and observe the results in the console.
You can use the console to check the value of all of the variables that are in scope.
However, this can be difficult to do within for loops or within functions. In these cases, R has
built in debugging tools. The debugging tool that I use almost exclusively is the browser()
function. You place the statement browser() anywhere in your code and it causes program
execution to stop at that place, bringing up a prompt browse > in the console. You may
now move through the subsequent code step by step by simply entering n (for next) at the
cursor of the console. You can exit the function or current iteration of the loop by entering
c at the prompt. You can exit the browser altogether by pressing Q at the prompt. As with
most things in this tutorial, this is more easily understood by doing than by reading.

Exercise: Using the debugger to understand variable scope: Enter the following code
and run it from the program window.

#Scope example
#clear all variables
remove(a,b,c1,d)
f1 = function ( )
{ browser( )
c1 = 5
return(c1) }
f2 = function ( ){
browser( )
a = 100
d = 50
return (d)
}
main = function( ){

browser ( )
a = 3
b = 4

16The origin of the term “bug” used in programming refers to the earliest computers that ran on vacuum
tubes. Because these were warm, they attracted flying insects. Occasionally, these “bugs” caused the
computer to fail. Debugging was the process of cleaning out the dead bugs.
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f1 ( )
f2 ( ) }

Now execute the function main by entering main ( ) at the console. (It might
be useful to see what happens when, by mistake, you leave off the (), something
I do often). It will be useful to refer to the code printed here or in your
program window. Step through the program by entering n at the prompt. At
each step, examine the values of the variables a, b, c1, and d by entering them
at the console. In your lab group, discuss their values relative to the scope of
the variables.

7 More about data

7.1 Lists

Lists are a special, very handy data structure in R. Strictly speaking, a list is an R object
consisting of an ordered set of other R objects. These objects are known as the components
of a list. This sounds much more formidable than it really is. The simple way to put it is that
lists are like vectors consisting of any combination of the R objects we have learned about
so far: scalars, strings, vectors, matrices, arrays, logical values, and functions. Vectors must
contain numeric values or strings but never their combination; lists can contain R objects
in any combination. We will often use lists to return collections of values from functions, as
you will discover shortly. Moreover, lists are critical to executing JAGS from R, which we
will do a lot during the course. So it is important that you understand them.
To begin understanding lists, write the following code and execute it:

#List example
name = "Poudre"
n = 100
a = c(.30, .20, .50)
#create a list
population = list(location = name, size = n, composition = a)
population

To which, R responds:

$location
[1] "Poudre"
$size
[1] 100
$composition
[1] 0.3 0.2 0.5

Note that the same thing could be accomplished using:
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population = list(location = “Poudre”, size = 100, composition = c(.30,.20,.50))

This illustrates how you create a list and output it. Notice the relationship between the
names of components (location, size, composition) the variables assigned to those names
(name, size, a) and the values of the variables (Poudre, 100, c(.30, .20, .50). Understanding
these relationships is the essence of using lists. The names in the list allow us to access
specific components using the $ operator. So, for example, enter and execute

population$size

Thus, by combining the name of the list (population) with the name of the component (size)
using $ we can extract the component from the list. It can be assigned to another variable
if that is useful, e.g.,

psize = population$size

Alternatively, we could use double brackets, i.e.

population[[1]]

would return the first element of the list.
What about components of lists that themselves have multiple, ordered elements, for exam-
ple, the composition component of the population list has 3 elements, 0.3 0.2 0.5. How do we
access the individual elements of a component of a list? Enter the following at the console:

population$composition[1]

So, it is possible to extract the elements of a component of a list (think of them as “subcom-
ponents”) in the same way that we access the elements of a vector, using [ ].

Exercise: Lists 1

1. Extract the second and third element from the composition component of the popula-
tion list.

2. Extract all elements of the population list that are > .2 using a logical operation.
(Review the section on vectors if you are stumped here.

3. Add a matrix containing the elements below to the population list. Name it transition.

transition=

 0 1.1 1.7
.6 0 0
0 .9 .9

 (15)
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4. Extract the value in the first row, third column of the transition component of the
population list. The second element of the third row.

5. The double bracket operator [[]] offers an alternative to the $ operator as a way
to obtain the elements of a list. So to obtain the ith component of a list you use
listname[[i]]. Execute the following statements at the console and discuss what is
going on with your lab mates.

population[1]
population[[1]]
population[1]*2 #Why does this produce an error
population[[1]]*2 #while this does not produce an error?
population[[3]]
population[[3]][1]

7.2 Getting Data into R

In all of the examples above we put data into matrices, arrays, vectors, etc. “by hand” using
assignment operators. This is fine for small sets of data, but is tedious and error prone if
we have lots of data. There are many ways to import data into R, but the most useful one,
in my view, uses comma delimited text files. The easiest way to create these files is to save
an Excel spreadsheet as a .csv file17. If you haven’t done this, it is relatively easy, simply
choose csv as the file type when you are saving a spreadsheet, as shown below.

7.2.1 Formatting Excel Files for R

There are a couple of important considerations in formatting Excel files for exporting to R.
First, what to do about missing data? R reads blank cells in Excel as NA, which is the way
that R represents values that are missing. A better way, in my opinion, is to enter NA for
all cells with missing data in Excel. As an alternative, you can use some other consistent
representation (9999 is often used) and convert it to NA once you have imported the dataset
into R. For example, presume M is a vector, matrix, or data frame. The statement

M[M==9999]=NA

converts 9999 to NA throughout M.
The second consideration is column headings. These must be one word. If you need to use
2 words for clarity, connect them with a . or a _. For example, study.site or study_site are
fine as column headings, but study site will not work.
Reading .csv files is accomplished with the following syntax:

17After you have saved your .csv file, it is a really good idea to look at it with a text editor like Word Pad,
Text Edit, or the R editor. Sometimes, for reasons unknown to me, Excel adds a bunch of extra columns,
which show up as „ „. That is, there are no values between the commas. If you import this file into R (as
I describe subsequently) then your data have columns with nothing but NA. Fortunately there is an easy
fix. Simply open the .csv file in Excel and save it again. The empty columns and the „ „ are eliminated,
eliminating the columns of NA in R.
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name <- read.csv(“pathname”)

where pathname is the full path to the file you want to open and name is the name of the data
frame (more about those in a moment) that you want to create. This appears to be simple,
but actually you can really get messed up here because Windows pathnames are long and
because R requires some special syntax for them. Fortunately, you can find the pathname
name that R wants using file.choose() This handy command opens a File Select window
that allows you to browse your computer for the correct file. When you click on the file, its
full pathname, in proper syntax, is written to the console. You can then copy the pathname
and surrounding “ “ and paste it between the ( ) of read.csv( ).

Exercise: Importing an Excel file into R: I will give you a small data file called Elk
population time series.xls. Convert the file to csv and import it into R. Give it
the name elk.data. An important caution when editing and re-importing .csv files
into R.

7.2.2 An important caution about importing files from Excel

Sometimes you will edit a file in Excel that has already been imported into R. You may have
some new data or you may find an error that you want to correct. Be very careful to save
the file as .csv! If you make the correction on an .xls file without saving it as .csv and them
re-run you R program to import a .csv file, well, nothing changes in R. I have done it more
than once.
One way to avoid this problem is this problem is to delete the .xls file after the .csv file has
been made and do your editing directly on the .csv file. You can work with it in Excel just
like any other file, but when it comes time to import it to R, your changes will assuredly be
saved. However, it can be very useful to document original data files with annotations an
notes that are permitted in the.xls format, but not in the .csv. I use this documentation a
lot. So, in this case, your only option is to be very careful about saving the .csv version of
the file after every edit of the .xls version.

7.3 Data Frames

When you import a file into R, it creates a data frame. A data frame is a particular
type of list that includes components consisting of vectors (numeric, character, or logical),
factors, numeric matrices, or other data frames. Factors are special types of data relevant
to statistical analysis, particularly general liner modeling and other analyses that combine
category (or class) and numeric data in a single analysis. For all intents and purposes, all
character data in a data frame are treated as factors. The purpose of data frames is to
organize all data relevant to a particular problem in one place that can be accessed using the
list $ and [] notation that we learned above. There are two important differences between
data frames and the tabular data structures you have already learned about. First, unlike
arrays and matrices, which must contain a single type of data (arrays can contain numbers or
characters but not both; matrices must contain numbers), data frames can include numeric,
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Table 4: Extracting elements of data frames.
Data element(s) Column name notation Bracket notation
Vector containing years elk.data$Year elk.data[,1]
Second element of the year vector elk.data$Year[2] elk.data[1,2]
Fifth row elk.data[5,]
Vector containing population size elk.data$Population.size elk.data[,2]
All data for years > 1980 elk.data[elk.data$Year > 1980,] elk.data[elk.data[,1] > 1980,]

logical, and character data. Second, and this is very important, the columns of a data frame
have names18. These can be accessed using the statement

names(name_of_data_frame)

The data frames we will use are analogous to spread sheets where one or more column may
contain character information and other columns contain numerical information. The R
object elk.data that you created above is a data frame that has 3 column names, Year,
Population_Size, and SE. You can change (or add) names to data frames using syntax like

names(name_of_data_frame)[3] = “newname”

which assigns newname to column three of the data frame called name_of_data_frame

7.3.1 Accessing components of data frames

Once the data frame has been created you can access it two ways. First, as with any list,
you can access its components using the $ and as with any matrix, the [] notation that you
learned about above(sections 5.6,7.1). So, think carefully about the following examples using
the data you imported above. These examples build on what you have already learned about
vectors, arrays, and lists.
Be sure you understand the correspondence between column name notation (middle column
above) and array notation (right column above).

Exercise: Manipulating data frames with $ and []

1. Enter each of the above examples into the console of the program window and observe
the result. It is particularly important to get your commas right and particularly im-
portant that you understand what the commas are doing. Discuss the above examples
with your lab mates until you understand the syntax of each one, especially the comma
and $ notation.

18It is also true the rows of data frames can have names and that the columns and rows of matrices can
have names. Although we will rarely use these features in this course, you should know they exist.
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Table 5: Extracting elements of data frames.
Data element(s) Column name notation Bracket notation
Vector containing years Year elk.data[,1]
Second element of the year vector Year[2] elk.data[1,2]
Fifth row elk.data[5,]
Vector containing population size Population.size elk.data[,2]
All data for years > 1980 elk.data[Year > 1980,] elk.data[elk.data[,1] > 1980,]

2. Execute R statements that a) Assign the column containing the variable SE to a vector
called std.err. b) Extract the population size during 1990. c) Create a vector name
big.years containing all of years for which the population size was greater than 1000
animals. c) Create a data frame named big.years containing all of the data for which
the population size was greater than 1000. Hint—if assign rows and > 1 column
of a data frame to a new variable, the variable becomes a data frame. d) Create a
data frame named big.years containing populations sizes and SE’s for population sizes
greater than 1000.

3. Use two types of syntax for each statement.

4. Create a data frame for this exercise using the syntax elk.data.NA = edit(elk.data)

5. After executing this statement, a spreadsheet-like editor will open. Insert a few 9999’s
to replace the real data, then close the window, and enter elk.data.NA at the console
to see the missing data. Using one statement, replace all of the 9999’s in elk.data.NA
with NA. This turns out to be a very handy statement. More about missing data later.

7.3.2 Accessing data frames using attach( )

Ok, up to now we have done things the hard way, because then you will appreciate the easy
way. The syntax in column 2 of the table above that relies on the $ operator is admittedly
complicated. Is there a way to simplify these statements? You can dispense with the
elk.data$—– part of the syntax above using the statement:

attach(elk.data)

After you executed the attach( ) statement, then the statements in Table 5 have the same
effect as the statements in Table 4.
Thus, by using attach(elk.data), R knows you mean elk.data$Year when you give it Year. It
knows that you mean elk.data$Year[2] when you give it Year[2]. So, the attach( )statement
allows shorthand because R knows the column headings associated with the data frame
you have attached. To make it forget what the column headings, you use the statement
detach(elk.data). It is important to understand that attach and detach don’t have any-
thing to do with whether R sees the data frame—they only affect the named variables in the
data frame. To illustrate enter the following code line by line:
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attach(elk.data)
elk.data
Year
Population_size
SE
detach(elk.data)
elk.data
Year
Population.size
SE

Exercise: Using attach and detach After attaching elk.data, find the data for which the
standard errors (SE) are < 100 with a statement using the column name SE.

These are important concepts, so be sure that you understand them before proceeding. Talk
things over with me and with the lab instructors until you have a firm grasp of how to
manipulate data frames.

7.3.3 Why not always use attach( )?

Because attach() seems so convenient, why not simply use it all the time, forgoing the
somewhat cumbersome $ notation. The reason is this: convenience always comes at a price
and the price here is potential confusion with what data you are accessing. As long as you
working with a single dataset (which we often will do), then using attach( ) is just fine.
There is no potential for confusion. But, when you are working with more than one dataset,
particularly datasets that have the same name for different variables, then it is easy to see
that you can create some nasty errors if you forget which data set is attached. That is why
the most carefully coded programs use $ and [] notation to specify what data are being
accessed. One other alternative for doing so, is the with() statement, which is described
next. It is probably telling that I almost never use attach().

7.3.4 Accessing data using with( )

If you want to specify the data frame to use with a specific function you can use a with ( )
statement. For example, if you want to know the mean of Population_size, you would use

with(elk.data, mean(Population_size))

To summarize the data for Population.size you would use

with(elk.data, summary(Population_size))

Multiple statements can be executed within the context created by with using:
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with(data frame name,{
statements
})

Just as a warning, you are likely to forget to put the ) after the closing }. The statements
will not execute unless you do.

Exercise: Using with() to couple datasets to functions Detach the elk.data data frame.
Plot the population size as a function of year using variable names and a with () state-
ment. Then do the same plot using $ and [] notation. You should have 3 plots generated
by 3 lines of code. For Windows users, , put the following statement: par(ask=TRUE)
in front of your plotting code. This will allow you to scroll though the three plots one
at a time (by hitting enter) rather than having them displayed on top of the other.

7.4 Manipulating elements of data frames

The data you get is almost never in the specific form that you need, so a crucial skill in the
analysis of ecological models and data is to be able to manipulate datasets by summarizing,
subsetting, transposing, sorting, joining and merging, processes that are often referred col-
lectively to as data reduction. This is a deep topic and I am constantly sharpening my data
reduction skills with new tricks. Here, I provide some of the R tools I use most frequently.
Remember, however, in R there are almost always more than one way to accomplish the
same thing, so what I am showing you here is not the only code that works. Moreover,
although I am illustrating several R functions using data frames as examples, they can also
be applied to vectors and matrices.

7.4.1 Joining

Often we have columns (or rows) of data that we want to bring together to form a new
data set. This task in accomplished using cbind() for columns and rbind()for rows. The
syntax joining columns is: cbind(object1, object2) where the two objects can be vectors,
matrices, or data frames. The two objects must have the same number of rows. Here is an
example to illustrate.
We have the classic time series of data on lynx pelts taken by Canadian fur trappers (I
will give you an appropriate Excel file containing these data). The data consist of the
number of lynx pelts in a 114 year sequence, but we don’t have those data associated with
specific years. So, our data frame has an observation number ranging from 1 to 114 and the
observed number of lynx pelts and we want to add a column containing the years. Execute
the following code and study it.
#Find path for Lynx data
file.choose()

#Import lynx data
#Note capital L in Lynx to prevent conflict with the
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#internal R data set named lynx. Also note that you need to
#put your path in the following statement.
Lynx = read.csv(Put path to your data here)
#Create sequence of years
Year = seq(from=1821, to=1934, by = 1)
#Check length of year sequence
length(Year)
#get column names from Lynx data frame
names(Lynx)
#check number of rows in Lynx data set
nrow(Lynx)
#Join columns of Lynx data with sequence of years
#Lynx_by_year = cbind(Lynx,Year)
head(Lynx_by_year, n = 10)
#Plot lynx abundance by year
with(Lynx_by_year, plot(Year, Lynx, type = "l"))

There are some things you haven’t seen before in this example. Notice that we use the
names( ) statement to find out the names of variables in the Lynx data frame. We check
the number of rows in the Lynx data set using nrow(Lynx). This must be the same as the
length of the vector we want to join to the Lynx column. We create a new data frame called
Lynx_by_year using the cbind( ) command that glues the columns of one data frame to
the column(s) of another data frame, array, or vector. To be sure we got things right, we
then take a look at the top 10 rows of the new data frame and the column (i.e., variable)
names using head( ). Finally, we plot the new data.
Two other points. First, you can bind together more than 2 data frames, as many as you like
really, but they must have the same column lengths. Second, the left-right order of the data
frame names in the cbind( ) statement determines the left-right order of the columns in
the new data frame. The leftmost argument in the cbind() statement defines the leftmost
columns in the newly created data frame. rbind ( ) works similarly, but it joins rows
rather than columns. The leftmost argument to rbind( ) determines the rows at the top
of the newly created data frame. Data frames to be joined must have the same number of
variables (columns).

7.4.2 Merging

Joining requires that the two objects we bring together have the same number of columns
(or rows). There are many times, however, when we want to bring together data that differ
in the number of rows, but that share a variable, which is to say that have a column in
common. This is best understood by example. I provided you with a couple of condensed
versions of files that I recently used modeling the effects of lynx predation on reindeer in
Sweden. The first file (“Reindeer_units.csv”) contains columns for index, year, unit name,
and number of lynx family groups in a unit. The second file (“Reindeer_area.csv) contains
index, county abbreviations, and the area of the unit. We want to bring these two data
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frames together so that we can calculate lynx density in each unit. We do this by merging
them on the shared variable, index. The syntax for merge is

merge(data1,data2, by=shared.column)

Exercise Merging data frames: Read in the two Reindeer datasets and produce a single
data set with columns index, year, unit, lynx.total, county, total.area.

7.4.3 Ordering data frames

Often we want to arrange the rows of a data frame ordered from top to bottom using some
particular column. Using the reindeer data as an example, we might want to create a data
frame ordered by year. Presuming that the name for the reindeer data frame is y, the syntax
for producing a new data frame ordered by year is:

y.ordered = y[order(y$year),]

You really must think about this to understand what is going on. Take the expression apart,
executing the following statements in sequence:

y.ordered
y
y$year
order(y$year)
y[order(y$year),1:2]
y.ordered = y[order(y$year),]
y.ordered
y

Discuss this with your lab mates. If you don’t understand this thoroughly, call on me or the
TA’s. One more point–you can accomplish the same thing using the sort() function, but I
avoid it because it can result in data frames that are misaligned–that is, where one column
is sorted and the others are not. Obviously, this is an undesirable result, creating errors that
are very hard to detect.

7.4.4 Editing data frames

Sometimes you want to edit data without going through the trouble of re-entering it from
Excel. As you saw above, you can do this using the statement edit(data frame name).
For example, enter edit(elk.data) from the console. As you can see, this opens up a
spreadsheet interface that allows you to manually edit the data. I strong recommend against
doing this.
Here’s why. Your programs should provide absolute documentation of your work starting
with the data file you imported. If you make manual changes in a data frame in R, and
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then import that file again the re-imported file will not reflect your edits. It is really easy
to forget about the changes you made. So, I urge you to make you data edits in Excel and
re import the edited file using the read.csv() approach. This way you can keep all of the
steps you executed in one program. I know this sounds like a lot of trouble, but believe me,
it will save you headaches in the long run.

7.4.5 Dealing with missing values

As you have learned, the symbol for missing data in R is NA. There are a couple of things you
need to know about missing data. First, many functions in R will not accept missing data
unless you use the proper logical switch. For example, enter the following at the console:

b = c(3,2,5,NA)
mean(b)
mean(b, na.rm = TRUE)

What is going on here? The first mean() function returns NA because any calculation that
includes NA returns NA. In the second mean statement, you set a switch, na.rm = TRUE,
which causes missing values to be eliminated before the mean is calculated.
Now, what if you wanted to do this yourself, that create a new vector c from b such that
c does not contain any missing values. Well, it would seem that you could use a statement
like

c =b[b != NA]
c

Try it and see what you get. Hmmm. That seem odd. Now try this

c = b[b != 2]
c

So, it seems that R treats values like 2 and missing values like NA differently. Yes, NA is
not a value but is simply a marker for something that is not available. So, when you set up
a logical expression with NA like b != NA , R treats it as un-decipherable because you are
looking for something that R doesn’t know anything about. Therefore, all of the values it
returns are NA. Now try this:

is.na(b)
!is.na(b)
b[is.na(b)]
b[!is.na(b)]
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Discuss what is happening with your lab mates. This shows that for vectors, you can
eliminate missing values using !is.na( ) and the usual logic for subsetting we have learned
above. To eliminate entire rows of data from data frames that contain any missing values,
use na.omit(). If you give a data frame name to na.omit( ), it returns a data frame
after eliminating all rows with missing values. However, you should be cautious using this.
Remember, it eliminates all rows with missing values, and this may be throwing away data
for many relationships in your data.

Exercise: Manipulating data frames with missing data Convert the single value of
NA in the elk.data data frame to 9999 using a single line of code without eliminating
any rows.

7.4.6 Converting arrays and matrices to data frames

Sometimes it is helpful to convert an array or matrix into a data frame (and vice versa).
This allows you to give names to column headings, the use of which makes your code easier
to understand. In other words a statement like plot(A$year, A$N.content) is far more
informative than plot(A[,1], A[,5]) but both could do the same thing if the data structure
A has data for year in column 1 and nitrogen content of litter in column 5.
Enter following example at the console, using the matrix M that you created earlier:

#Create a new data frame from the matrix M:
is.data.frame(M)
is.matrix(M)
D = as.data.frame(M)
is.matrix(D)
is.data.frame(D)
names(D)

This illustrates a bunch of stuff. First, we can test to see if the R object M is a data frame
or a matrix using the is() statement19, showing how you can determine if M is an object
of a given class. [The inquisitive among you will also wish to explore mode(M), type(M),
and class(M)]. You create a new data frame D by coercing the matrix M into a data frame
using the as.data.frame( ) statement and list the column names of D using the names(
) statement. Notice that R assigns default names to the columns of D, V1 and V2. This is
considerate of R, but not terribly helpful because V1 and V2 are no more informative than
M[,1] and M[,2]. To improve their clarity, you can give new, more informative names to
the columns of D using:

names(D) = c(“year”, “mineralization”)

19Paraphrasing a former US president, you can find out “. . . what the meaning of is is.” by doing ?is at
the console.
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8 More about plotting

Graphics are a very deep topic in R and we will only cover a tiny bit of its graphical capability
here. For a great resource for learning what R can do, see
http://addictedtor.free.fr/graphiques/thumbs.php
Up to now, we have used simple plot statements producing unadorned 2 dimensional plots
of one variable. Here, we cover some ways to improve them.

8.1 Controlling Output to the Plot Window

The default method for writing plots to the graphic window of R, oddly (well, maybe not
for Windows), is to simply write one plot on top of another, so that when you make multiple
plots in a program, the only one you will see (unless your eyes are quicker than mine) is the
last one. In Mac OS R you can sensibly scroll through the plots in the Quartz window by
clicking on Quartz and Back or Forward or by putting the cursor in the Quartz window and
pressing cmd arrow left or cmd arrow right. In Windows, if you want to scroll through a
series of plots, use

par(ask=TRUE)

Each time you hit Enter, another plot is produced. For Windows, I have not yet figured out
how to keep a plot history (the way SAS does and Mac OS does), allowing you to scroll up
through plots you have created.

8.2 Options for plotting

Two dimensional plotting will be a workhorse in this course. The basic syntax of the plot
function is:

plot(x,y,options)

where x is a vector of values for the x-axis, y is a vector of the same length for the y-axis20

and options are optional statements to change the appearance of the plot. So, I admit,
the plots we have done so far are pretty ugly—weird labels, funny symbols, etc. In this
section we learn ways to make the plots look spiffy. This is a deep topic and I refer you
to the R documentation(enter ?plot.default) for a thorough treatment. You should also
understand that the options that work for the plot( ) function also work for many other
types of graphics. Here, I will cover the options that will be most useful to you. You can
mix and match these as needed by separating them with a comma in the plot statement

20The y vector must contain the same number of elements as the x-vector, but some of those elements can
be NA. They will simply show up a blank in the plot.
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8.2.1 Specifying the type of plot

You have already seen how to plot lines or points using the option type = within the plot
statement, i.e. plot(x,y) for points (points are the default) and plot(x,y, type = “l”)
for lines. Here are some other, potentially useful types:
type="b" Plot points connected by lines
type="o" Plot points overlaid by lines
type="h" Plot vertical lines from
See documentation for plot (?plot at the console) for some additional types.

8.2.2 Adding labels

You have no doubt noticed that R will label the x and y axis with the variable names you
give it in the plot(x, y) statement. In the case of data frames, R is smart enough to put
the column labels on the appropriate axes. But what if you want to specify the label? You
use an option in the plot statement like:

plot(x, y, xlab=”text” , ylab = “text”)

To illustrate, plot the lynx data using:

with(Lynx,
plot (Year, Lynx, xlab = “Year”, ylab = “Number of Pelts”)
)

8.2.3 Scaling the axes

Often you may want to limit a plot to a specific range of the data. To do this, you use the
options:

xlim = c(lower, upper)
ylim = c(lower, upper)

where lower and upper are the endpoints of the axes.

8.2.4 Mathematics, Greek symbols, subscripts and superscripts

Sometimes you need labels that include non-conventional fonts, like Greek symbols or su-
perscripts. You also may want to annotate your plots using mathematical expressions. This
is shockingly easy to do in R. Here is an example. Lets say you wanted to put the following
text on the y axis of your plot “Nitrogen Mineralization Rate (g/m2).” To do this you would
use

ylab = (expression(paste("Nitrogen mineralization g/", m^2)))
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There are a few key bits here. First, you use expression( ) to tell R that there will be
some special characters needed in the y axis label. If all you needed were special characters
(e.g, m2) then your work would be done. You would simply write

ylab =expression(m^2)

However, you want to combine regular characters with special ones, which is where the R
statement paste( ) comes in. paste( ) makes 1 character statement from the arguments
you give it so, for example, enter the following at the console:

new = paste(“A”, “B”, “C”)
new

So in the ylab = option, you paste together the text string "Nitrogen mineralization g/” with
the special expression m^2 to produce the desired string. The expression () statement
can be used to do all sorts of special things, for details see ?plotmath. Figuring these out
can easily occupy an otherwise dull afternoon.
Sometimes, getting the expression() statement to do what you want is a bit more trouble
than it is worth. So, if I want presentation quality graphics and can’t do make it work
relatively quickly, I just punt and make a graph without labels in R and then add them in
another program like Power Point or Paint. To make a plot without labels specify
xlab = “ “ and ylab = “ “ as options to the plot statement.

8.2.5 Adding headings

Headings can be added with the option main = “text”. For example,

with(Lynx_by_year,
plot(Year, Lynx, xlab = "Year", ylab = "Number of Pelts",
main ="Canada Lynx Trapped")
)

Again, note the double parentheses at the end of the statements—one to close the with()
statement and another to close the plot() statement.

8.2.6 Changing symbols and line types

It is possible to change the plotting symbols using the pch = option and line types using the
lty = option (Table 6)
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Table 6: Some codes for symbols and line types used as options in R plotting statements.

Symbol pch code Line type lty numeric code lty text code
blank -1 blank 0

solid circle 19 solid 1 “solid”
bullet (smaller circle 20 dashed 2 “dashed”

square 21 dotted 3 “dotted”
diamond 22 dotdash 4 “dotdash”

triangle point-up 23 longdash 5 “longdash”
triangle point-down 24
bullet (small circle) 25

8.2.7 Multiple plots on a page

It is often useful to make collages of plots on a single page. To do that, use the statement

par(mfrow=c(row,col))

where row is the number of rows and col is the number of columns containing plots. So, for
example

par(mfrow = c(2,2))

will output four plots, two across the page and two down. If you only produce three, one
window is left blank initially, but thereafter the plots go in sequence, which may cause you
to loose one or more. It is best if the number of rows times number of columns equals the
number of plots you will produce. If you want to produce an odd number of plots, simply
execute the par() statement before you call the plots.

8.2.8 Specifying options in one statement

You can set up a series of options for plotting in a single statement such that these do not
have to be re-specified every time you plot. This is done with the par( ) statement. For
example:

par(ask = TRUE, pch = 22, lty = “dashed”)

will cause all subsequent output to pause awaiting an Enter to proceed, will set the default
plotting character to a square and the default line type to dashed. The many options available
to par can be discovered by entering ?par at the console. The settings of the current options
can be viewed by entering par().
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8.2.9 Overlaying points and lines on a basic plot

After a basic plot has been made using a plot() function, you can add lines or points to the
plot using

#overlay lines
plot(x1-data, y1-data, options)
lines(x2-data, y2-data, options)
#overlay points
plot(x1-data, y1-data, options)
points(x2-data, y2-data, options)

Options for the lines and points functions are limited; for example xlab and ylab must go
with the original plot and are ignored if you put them with lines() or points(). However,
you can specify options for line types and symbols in lines() and points().

8.2.10 Adding legends

When you have a series of data on the same plot, it is nice to be able to place a legend on
the plot to identify the plotting symbols used. The syntax for a legend statement is

legend(x,y, legend=text, pch=v1, lty=v2, col = v3)

where x and y give the coordinates for the upper left corner of the legend scaled in the same
units as the two axes, text is a character vector giving the text of the legend, ordered in
the same way as the columns being plotted, v1 is a vector of symbol codes, v2 is a vector of
line types, and v3 is a vector of color codes. One or more of the v vectors can be included
in the legend.
The following code produces the plot in Figure 3.

h=.04
Rmax=15
S=seq(0,4,.1)
I=S*Rmax/(h*Rmax+S)
data=rnorm(length(I), I, .10*I) #generate some fake data
plot(S,I ,typ="l", ylab="Dry matter intake (g/min)", xlab = "Bite mass (g)", ylim=c(0,15))
points(S,data, pch=19)
text=c("model prediction", "observations")
sym=c(-1, 19)
lines=c(1,0)
legend(1,6,legend=text, pch=sym, lty=lines, bty="n")
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Figure 3: Illustration of x-y plot using legend() and plot() options.

8.2.11 Exporting graphics to documents

Depending on what word processor you use21it is often possible to simple copy the contents
of the graphics window and paste them into a document. From experience I know that
this works well with the beautiful .pdf output from the Quartz window in Mac R into Mac
programs like Pages and Keynote, and if you use Windows (my sympathy), I think it works
for pasting pictures into Word as well.
However, there is a way that should always work, regardless of which word processing or
presentation program you use. Consider the following:

pdf(file=”filename.pdf”)

21If you are a scientist and you are using the same software to write your documents as soccer-moms use to
make banners and lawyers use to prepare briefs, then perhaps you should explore a different word processing
program. This document was prepared with LYX, a front end for LaTex, which, in my view, is the ultimate
tool for scientific writing. Appreciation to my son, Nicholas Hobbs, an engineer at Google, who told me
about it. It is open source, rock solid, and free. See http://wiki.lyx.org/LyX You will learn to use LYX
as part of this course.
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#put your plotting code here
dev.off()

What this does is to route the graphics output into a pdf file saved in the location specified
by “filename.pdf”. The trick here, which took me too long to learn, is that every time you
output a file, you must close it using dev.off(). Otherwise, the receiving program (e.g.,
Adobe Acrobat, etc) will think the file is corrupt. If you get that message, then chances are
you forgot to close the file with dev.off().
You can write other types of graphics files, for example ps(file=”filename”) exports post-
script files, jpg(file=”filename”) exports jpegs, and tiff(file=”filename”) does tiffs.
For more details and options, follow your nose from ?device().

8.3 Some other plotting functions

As I said above, R graphics are a very deep topic and I can’t hope to do justice to that depth
here, but there are a few other plotting functions that can be very useful. I will briefly here.

8.3.1 Plotting columns of matrices as series

Often we will want to plot a series of responses against the same x-axis. This is done using
matplot( ), which is shorthand for matrix plot. The syntax is
matplot(x,y,options)
Where x is a vector of values for the x-axis and y is a matrix. The plot includes one series
for each of the columns in the matrix y. It is analogous to overlaying a line or points plot
for each of the columns. The default symbol used by matplot() is the number of the column.
You can modify this to make a prettier plot using a vector specifying symbol or line codes
(Table 6).

8.3.2 Plotting mathematical expressions

Building models usually requires that we visualize equations and examine how they behave
as parameter values change. R has a very nice tool for doing that. To illustrate, consider
the Michalis Menten function, which is commonly used in ecological modeling to describe
phenomena that change asymptotically with changes in an independent variable:

y =
µx

h+ x
(16)

To plot this function from 0 to 100 you would use:

mu = 100
h = 30
curve(mu*x/(h+x), from = 0, to = 100)
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As with all options, this can be condensed to curve(mu*x/(h+x), 0,100)as long as the
order of the arguments is correct. If you want to put all of the statements on the same line
to allow you to recall them more easily in the console, then you can use mu =100; h = 30;
curve(mu*x/(h+x), from = 0, to =100)
So, the general syntax is

curve(equation, from = f, to = t)

where equation is the expression you want to plot, f is the lower limit and t is the upper
limit. The equation must contain an x for the independent variable. The parameters (i.e.,
mu and h in the example above) must be given numeric values.

Exercise: Exploring the Gompertz equation: Recall the equation we used earlier to
describe the rate of growth of a plant as a function of its biomass:

dBt

dt
= µBt

[
1− k

µ0

ln

(
Bt

B0

)]
(17)

Explore the behavior of this function using the curves( ) function by varying its
parameters, . To start, use values in the neighborhood of μ = 1, k = .3, and B0 = 10,
and the range of independent variables 0 to 300. Then try some radical departures in
parameter values which will probably require rescaling the x axis to see what is going
on. Describe the effect of each parameter on the behavior of the function.

Exercise Plotting model predictions and observations

1. Use the discrete logistic equation, to model the growth of the Rocky Mountain National
Park elk population during 1965-2005. I have estimated the parameters in this model
for you, although you will soon learn how to do this yourself. For now, however, use
N1= 346, r = .172, and K = 940. Make a vector containing predictions of the model
over time.

2. Update your elk.data frame by adding data for 2000-2005. I will give you an Excel file
containing these data.

3. Make a single data frame containing year, the observed population size, its standard
error, and your model predictions.

4. Make a plot with upward pointing triangles for the data and a line with solid dots for
the model predictions. Label the plot with “Population Size” on the y-axis and “Year”
on the x-axis.

5. Make a legend in the upper left of the plot showing the symbols for observed and
predicted.

6. Your final plot should look like Figure 4.
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Figure 4: Plot of observations and predictions of the size of the RMNP elk population.

Algorithm 4 Example code for creating a table for importing into a spreadsheet.
data(CO2)
#make a table with first 10 lines of CO2 dataset
table=CO2[1:10,]
#write table to working directory
write.csv(table)

9 Special topics

9.1 Making tables

9.1.1 Output to spreadsheets

One of the easiest ways to make a table is to construct a data frame in R, write it to a .csv
file, and import it to a spreadsheet.
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Algorithm 5 Example of making a table using the xtable package. LaTex code can be cut
and pasted into a LYX ert box. It can probably be imported as a file as well, but I haven’t
figured that out yet.
library(xtable)
data(CO2)
#make a table with first 10 lines of CO2 dataset
table=CO2[1:10,]
print(table)
#create LaTex code for import into Lyx or Latex Document
LaTex.table=print(xtable(table))
save(LaTex.table, file="/Users/Tom/Documents/Ecological Modeling Course/R
manual/2012 Revision/xtable_example.tex")

9.1.2 Writing LaTex code using the xtable package

This is a very useful trick that I am learning only just now. But I recommend it to you as
a way to test your newly developed abilities to learn new R skills and blend them with your
newly learned LYX skills. The xtable package is a tool for converting R tabular objects
including data frames, statistical summaries and so on to LaTex code that can be imported
into you LYX or LaTex document. It makes stunning tables, perfectly suited for publication.

9.2 Numerical Solutions to Differential Equations

One of the standard tools for ecological modelers is function for solving systems of differential
equations. R has an excellent set of industrial strength functions for numerical solutions to
differential equations found in the odesolve package. The function that we will use is called
lsoda( ).. So, given a model, linear or non-liner, and values for parameters and initial
conditions lsoda( ) will return a list that includes the time steps in column 1 and the values
of the state variables in the other columns.
Here is the syntax:

lsoda(x0,times,function_name,parms)

x0 is a vector containing the initial values of the state variables.
times is a vector containing a sequence of time steps.
function_name is the name of the function containing the model.
parms is a vector containing the parameter values, which may be left empty as illustrated
below.
As always, you can use other names for these vectors if you wish. This call to lsoda( )
requires that you set up a function properly. So, the essential parts of the function are as
follows:
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function = function_name(y, t, parms){
#some code for the differential equations goes here
return(list(dY)
}

The vector y contains the values of the state variables. The scalar t is the unit of time of
the current estimates of the state variables, and, as above, parms is a vector with length
equal to the number of state variables. t is valuable if your differential equations are non-
autonomous, that is, if they depend on time. The return statement is required. It is also
required that you return a list of the left hand side of the derivatives. (Why is must be a
list is a topic only for those who have too much time on their hands, but if you qualify, see
the documentation. ) A critical thing to bear in mind is that the vectors for state variables
and initial conditions must be in the exact same order.
The best way to understand lsoda( ) is, of course, by example. Consider the following
implementation of the classical Lotka-Voltera model:

#This program illustrates the use of R’s tool #
#for solving systems of differential equations #
#using the Lotka-Voltera model as an example. #
#It also illustrates how to perturb the system #
#at a specified time. #
#################################################
library(odesolve)
rm(list=ls()) #start with the workspace clean
#Fucntion describing the model.
#It must have arguments t, y, and parms
Lotka.Voltera=function(t, y,parms){
#Assign values of y to state variables.
#This order must be maintained in the initial conditions.
V = y[1]
P = y[2]
#Equations for derivatives
# You could make the lhs a function of t
# if you needed to do so.
dV = r*V - beta*V*P
dP = -mu*P + epsilon*beta*V*P
#The function must return a list containing the
#left hand side of the derivatives.
dY = c(dV,dP)
return(list(dY))
}
#parameter values given global scope to make it easy to code equations.
r = .8
beta = .1
mu = .3
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epsilon = .05
parms = numeric(4)
#initial conditions
V0 = 10
P0 = 5
end1 = 50 #last time step before perturbation
#Initial conditions for prey and predators in order V, P
#This must be the same order as in the state vector y, above.
x0=c(V0,P0)
times=seq(0,end1,by=1) # time steps
#create first output file from ode solver
out1 = lsoda(x0,times,Lotka.Voltera,parms)
# do perturbation
end2 = 100 #end of simulation
#this finds the last value for prey
preyN = out1[out1[,1]==end1,2] predN = 1
#Reduce the predator numbers to 1 (ok, ok, there really # need to be 2 of them....)
#New initial conditions for predators, keep prey as they #were
x0=c(preyN, predN) #
#This simulation will start at end1 and end at end2
times=seq(end1,end2,by=1)
out2 = lsoda(x0,times,Lotka.Voltera,parms)
out = rbind(out1,out2)
#Use the following plot to be sure you know which
#state variable is which, then make legend and comment out
#matplot(out[,1],out[,2:3],xlab="time t",ylab="V,P");
matplot(out[,1],out[,2:3],type="l",xlab="Time",ylab="Population Size");
title(main = "Numerical Solution to Lotka Voltera")
text = c("Prey", "Predators")
lines = c("solid", "dashed")
colors = c("black","red")
legend(15, 350, text, lty = lines, col = colors)

There are a few things notable about this code. First is that I gave the parameters global
scope so that I could use informative parameter names in the function rather than elements
of parm (i.e., parm[1] for r). However, I did need to declare numeric vector for parm even
though I didn’t use it. I also assigned the values of the state vector y to scalars V and P in
the function to make the differential equations more readable.
Second, study how I introduced a perturbation at time step 50—predators were reduced to
1. This illustrates how you can set model experiments that contain shifts in state variables.
This code should offer a useful template for virtually any set of differential equations. You
will need to modify it, but the essentials are all here.

66



R Primer NR 575 Systems Ecology

10 Answers to exercises

10.1 The diameter of the earth

#Diameter of the earth
ckm = 24901.55 /.6215 ckm
earth.diameter = ckm / pi
earth.diameter

10.2 Vectors

#Vectors
v1 = c(234, 17, 42.5, 64)
v1[2]
ages = c(21,23,26)

10.3 Logical operations on vectors

v1.new = v1[v1>20]
v1.new v1.new = v1[v1 > 20 & v1 < 200]
v1.new v1.new = v1[v1 != 17]
v1.new
v1.new = v1[v1 == 17 | v1 == 42.5]
v1.new

10.4 Creating a matrix

#Creating matrix
B = matrix(7, nrow=5, ncol = 7)
B

10.5 Matrices

# Answer to matrix exercise
M <- matrix(0,nrow=5, ncol=2)
#Enter data M[1,] <- c(1995, 10.0)
M[2,] <- c(1996, 12.2)
M[3,] <- c(1997, 15.6)
M[4,] <- c(1998, 19.5) M[5,] <- c(1999, 24.4)
#Outputs rows
M[1,]
M[2,]
M[3,]
M[4,]
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M[5,]
#Outputs columns
M[,1]
M[,2] #
Find largest value in matrix
max(M)
#Find average of second column mean(M[,2])

10.6 Matrices, continued

#Find all values in column 2 < 19
M[M[,2] < 19,2]
#Finds and outputs the row containing the minimum value of # column
2 M[M[,2] == min(M[,2]),]

10.7 3 dimensional arrays

#capture history example
#create the array
x = array(0,dim=c(4,5,100))
#output first 5 tables
x[„1:5]
#set initial conditions for all animals to susceptible, alive
x[1,1,]=1
x[„1:5]
#create history for animal 5
x[1,2,5]=1
x[2,3,5]=1
x[2,4,5]=1
x[4,5,5]=1
x[„5]

10.8 A Gompertz model of plant growth

#Gompertz model-vector version for exercises 1 and 2.
#parameter values
k =.3
mu = 1
# vector for holding plant biomass B = numeric(30)
R = numeric(30) #added for exercise 2
r = numeric(30) #added for exercise 2
#inital plant mass B[1] = 10
for (t in 2:length(B)){

B[t] = B[t-1] + mu* B[t-1]*(1-(k/mu * log(B[t-1]/B[1])))

68



R Primer NR 575 Systems Ecology

# the next two statements are added for exercise 2
R[t] = mu* B[t-1]*(1-(k/mu * log(B[t-1]/B[1])))
r[t] = R[t]/B[t]

}
par(mfrow=c(2,2))
plot(B) x = seq(2,30)
plot(x,R[2:30])
plot(x,r[2:30])
#Gompertz model-array version for exercises 3.
#parameter values
k =.3
mu = 1
# matrix for holding time (column 1) and plant biomass (column 2)
B = matrix(0,nrow=30,ncol=2)
#inital plant mass B[1,2] = 10
for (t in 2:length(B[,1])){

B[t,1] =t
B[t,2] = B[t-1,2] + mu* B[t-1,2]*(1-(k/mu * log(B[t-1,2]/B[1,2])))
}

par(mfrow=c(2,2))
plot(B[,1],B[,2])

10.9 Nested for loops

#Model experiment example
#vector holding value of growth rate
lambda =seq(from = 1, to=1.6, by = .1)
#matrix with 10 rows and columns for each growth rate
N = matrix(0, nrow = 10, ncol =length(lambda))
#Initial value of N
N[1,]=100
#Loop over values of lambda
for (i in 1:length(lambda)){
#Loop to calculate N over time. Use t to index vector.
for (t in 2:10){
# store the values of N in array
N[t,i] = lambda[i] * N[t-1,i]
}
}
matplot(N, type = ’b’)
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10.10 Function for normalizing a vector

#Normalizing a vector
z = c(12.3, 45.6, 16.4, 88)
normalize = function (v){
normal.v = v/sum(v)
return(normal.v)
} z.norm = normalize(v=z) z.norm sum(z.norm)
# alternative syntax normaliz = function(v) normal.v = v/sum(v)
z.norm = normalize(v=z)
z.norm
sum(z.norm)

10.11 Functions for moment matching

shape_from_stats <- function(mu , sigma ){
a <-(mu^2-mu^3-mu*sigma^2)/sigma^2
b <- (mu-2*mu^2+mu^3-sigma^2+mu*sigma^2)/sigma^2
shape_ps <- c(a,b)
return(shape_ps)
}
a=shape_from_stats(mu=.7,sigma=.07)
#check the function
y=rbeta(10000,a[1],a[2])
mean(y)
sd(y)
#plot the beta distributoin
x=seq(0,1,.01)
y=dbeta(x,a[1],a[2]) #beta density function
plot(x,y,typ="l", xlab="y", ylab="P(y)")
#function for moment matching in either direction
mm <- function(x1,x2,flag){
if (flag=="shapes"){
mu=x1
sigma=x2
a <-(mu^2-mu^3-mu*sigma^2)/sigma^2
b <- (mu-2*mu^2+mu^3-sigma^2+mu*sigma^2)/sigma^2

shape_ps <- c(a,b)
return(shape_ps)
} #end of shape if
if(flag == "moments"){
a=x1
b=x2
mu=a/(a+b)
var=a*b/((a+b)^2*(a+b+1))
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shape_ps <- c(mu,var)
return(shape_ps)
} #end of moments if
} #end of function
#get shapes
a=mm(x1=.7,x2=.07,flag="shapes")
#plot the beta distributoin
x=seq(0,1,.01)
y=dbeta(x,a[1],a[2]) #beta density function
plot(x,y,typ="l", xlab="y", ylab="P(y)")
#get moments
b=mm(x1=a[1],x2=a[2],flag="moments")
mu=b[1]
sd=sqrt(b[2])

10.12 Lists

#List example
name = "Poudre"
n = 100
a = c(.30, .20, .50)
m = array(0,dim = c(3,3))
m[1,1] = 0
m[1,2] = 1.1
m[1,3] = 1.7
m[2,1] = .6
m[3,2] = .9
m[3,3] = .9
m
#create a list
population = list(location = name, size = n, composition = a, transition = m)
population
population$size
population$composition
population$composition[2:3]
population$composition[population$composition >.2]
population$transition
population$transition[1,3]

10.13 Lists and functions

AIC.stats = function(likelihood, K, n, small, log){
AICc = get.AIC(likelihood, K, n = 20, small, log )
Delta_i = get.Delta_i(AICc)
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L=get.Lmod(Delta_i)
Akwt = get.Akwt(L)
stats = list(AICc = AICc, Delta_i = Delta_i, Like = L, Akwt = Akwt)
return(stats)
}
stats = AIC.stats(LLike, n = 20, K, small = TRUE, log = TRUE)
stats$Like
stats$Like[1]
stats$Akwt
stats$Akwt[3]
Data into R
#Data into R example
file.choose()
#make the following all one line in R
elk.data <- read.csv( "C:\\Documents and Settings\\tom\\My Documents\\Ecological Modeling Course\\R manual\\RMNP elk time series.csv")
elk.data
is.data.frame(elk.data)

10.14 Manipulating data frames with $ and [ ]

#Data frame exercise
std.err = elk.data$SE
std.err = elk.data[,3]
std.err
elk.data[elk.data$Year == 1990,2]
elk.data[elk.data[,1] == 1990, 2]
big.years=elk.data[elk.data$Population_size > 1000,1]
big.years = elk.data[elk.data[,2]>1000,1]
big.years
big.years=elk.data[elk.data$Population_size > 1000,]
big.years = elk.data[elk.data[,2]>1000,]
big.years
big.years=elk.data[elk.data$Population_size > 1000,2:3]
big.years = elk.data[elk.data[,2]>1000,2:3]
big.years

10.15 Using attach and detach

#attach and detach
attach(elk.data)
elk.data[SE < 100,]
Using with( ) to couple datasets to functions
#attach and detach
attach(elk.data)
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#The , within the [] assure that all columns are included
elk.data[SE < 100,]

10.16 Replacing NA’s

elk.data[is.na(elk.data)] = 9999
Using matplot( )
matplot(N2[,1],N2[,2:7])
#label for x = N2[,1]
#label for y = N2[,2:7]

10.17 Exploring the Gompertz

k =.3
mu = 1
B0 = 10
curve(mu* x*(1-(k/mu * log(x/B0))), from = 1, to = 300)

10.18 The final problem

#Final Problem
#Find path for new elk data
file.choose()
new.elk = read.csv("C:\\Documents and Settings\\tom\\My Documents\\Ecological Modeling Course\\R manual\\RMNP elk data update.csv")
elk.data2 = rbind(elk.data, new.elk)
tail(elk.data2)
head(elk.data2)
#Elk model predictions
#set up vector to hold model predictions
N = numeric(length(elk.data2$Year))
#set initial conditions and parameter values
N[1] = 346
r = .172
K = 940
#conduct simulation
for(t in 2:length(N)){
N[t] = N[t-1] + r*N[t-1]*(1-N[t-1]/K)
}
#make data frame containing observations and predictions
elk.data3 = cbind(elk.data2, N)
#do plots
with(elk.data3, {
plot(Year, Population_size, type = "p", pch = 24, , xlab = "Year", ylab="Population Size")
lines(Year,N)
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points(Year, N, pch = 19)
legend(1968,1400,c("Observed","Predicted"),pch =c(24,19))
}
)
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