
An Introductory Tutorial:

Learning R for Quantitative Thinking in the Life Sciences

Scott C Merrill

October 10
rd

, 2012

Chapter 7 Distributions!

R has a function that allows one to generate samples based on distributions such as the normal

distribution. Compile the following to see some of the available distributions:

require(animation) # you will probably have to install this package

sampling from a poisson distribution with different lambdas
lambda = mean = standard deviation in a poisson distribution

looping through lambdas from 1 to 20
with a 2 second pause between histograms
for (lam in 1:20) {
 true.pop = rpois(n=10000,lambda = lam)
 hist(true.pop)
 ani.pause(2) # creates a pause between histogram displays (animation package)
}

Generating samples from a Beta distribution
looping through a beta distribution with different shape parameters
with shape parameters 1 & 2 ranging from 1:10
for (shp1 in 1:50) {
 for (shp2 in 1:50) {
 true.pop = rbeta(n=10000,shape1 = shp1/5, shape2 = shp2/5)
 hist(true.pop, main = c("shape1 = ",shp1/5," shape2 =",shp2/5))
 ani.pause(.1)
 }
}

Generating samples from a Weibull distribution
looping through a weibull distribution with different shape parameters
with shape and scale parameters ranging from 1:10

for (shp1 in 1:50) {
 for (scale1 in 1:50) {
 Weibull = rweibull(n=10000,shape = shp1/5, scale = scale1/5)
 hist(Weibull, main = c("shape = ",shp1/5," scale =",scale1/5))
 ani.pause(.1)
 }
}

Now try a gamma distribution
for (shp1 in 1:50) {
 for (scale1 in 1:50) {
 Gamma.Distribution = rgamma(n=10000,shape = shp1/5, scale = scale1/5)
 hist(Gamma.Distribution, main = c("shape = ",shp1/5," scale =",scale1/5))
 ani.pause(.05)
 }
}

Simulation to obtaining probability density and quantile functions

We have been using the r –prefix which samples from the distribution that you have described

following the r. For example rnorm generates samples from the normal distribution with a mean

and standard deviation defined by the user.

The “d” prefix:

Alternatively, one could find the probability density function. For example dnorm, where instead

of inputting the number of samples to obtain, one would enter values, with the probability

density value returned. Try compiling:

dnorm(x = 3,mean = 5, sd = 1)

Hint: the x value is 2 standard deviations away from the mean. What would you expect the

probability density function to equal?

The “p” prefix:

One could find the cumulative density function using the “p” prefix. For example pnorm, where

instead of inputting the number of samples to obtain, one would enter values of interest, with the

cumulative density value returned. Try compiling:

pnorm(q = 7, mean = 5, sd = 1)

Hint: the q value is 2 standard deviations above the mean. What would you expect the

cumulative density function to equal?

The “q” prefix:

One could find the value of the quantile using the “p” prefix. For example qnorm, where instead

of inputting the number of samples to obtain, one would enter cumulative probability of interest

and have the corresponding x value returned. Try compiling:

qnorm(p= .1, mean = 5, sd = 1) # returns value of x with 10% of probabilities at or below

or

qnorm(p = .9, mean = 5, sd = 1) # returns value of x with 90% of probabilities at or below

Do you understand what is happening here?

For those of you who are feeling ambitious, you can glance through Vito Ricci’s distribution

manuscript. It is fairly dense and has a lot of equations/jargon but has some really good

information on there:

http://cran.r-project.org/doc/contrib/Ricci-distributions-en.pdf

Exercise:

Simulate 10,50,200,1000,100000 data points in a sequence for a normal distribution with means

looping from -10 to 10, and standard deviation looping from 1 to 5 using the distribution code:

code for generating 500 samples from a normal distribution with a mean of 100
and a standard deviation of 10 looks like
rnorm(n = 500,mean=100,sd=10)

#Create a histogram for each distribution (you do not have to output each of these plots, just
send me the code and the last plot (i.e., n=100000, mean = 10, sd = 5)

put these code sections into a three piece nested loop with loops for sample number, mean
and standard deviation.

sample.number = c(10,50,200,1000,100000)

simulation.data = rnorm(n = x[loop.variable1], mean = [loop.variable2], sd = [loop.variable3])

http://cran.r-project.org/doc/contrib/Ricci-distributions-en.pdf

hist(simulation.data)

Hint: you can create a for loop that runs from -10 to 10 using the same code structure that we

have been using:

for (x in -10:10) {

 do stuff in here

}

Exercise:

Simulate data and histograms using the following distributions:

log normal distribution e.g.,

rlnorm(meanlog=.8,sdlog = .5, n = 1000)

exponential

rexp(n = 10000, rate = 2)

What is happening here?
hint: f(x) = λ*exp^(- λ x)

Also, (from Ally’s cheat sheet) you could check out these distributions:

rt(n, df) # ‘Student’ (t)

rf(n, df1, df2) # Fisher–Snedecor (F) (c2)

rchisq(n, df) # Pearson

rbinom(n, size, prob) # binomial

rgeom(n, prob) # geometric

rhyper(nn, m, n, k) # hypergeometric

rlogis(n, location=0, scale=1) # logistic

rlnorm(n, meanlog=0, sdlog=1) # lognormal

rnbinom(n, size, prob) # negative binomial

runif(n, min=0, max=1) # uniform

rwilcox(nn, m, n)

