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SUMMARY

Statistical genetic mapping methods are powerful tools for finding genes that contribute to complex human
traits. Mapping methods combine knowledge of the biological mechanisms of inheritance and the random-
ness inherent in those mechanisms to locate, with increasing precision, trait genes on the human genome.
We provide an overview of the two major classes of mapping methods, genetic linkage analysis and
linkage disequilibrium analysis, and related concepts of genetic inheritance. Copyright © 1999 John Wiley
& Sons, Ltd.

1. INTRODUCTION

In recent years, genetic study of complex human traits has increased dramatically. Most human
diseases are now viewed as having some genetic component, and considerable effort is being made
to find and study the genes involved. As a result, statistical methods used to find disease genes are
receiving a great deal of attention, and improvements in methodology are continually being
proposed. In this article we provide an overview of genetic mapping methods. We first explain
concepts in genetic inheritance, focusing primarily on the genetic mechanisms that investigators
exploit in genetic mapping, and introduce relevant terminology. We then introduce the reader to
the two main areas of mapping methodology: genetic linkage analysis and linkage disequilibrium

mapping.

* Correspondence to: Jane M. Olson, Department of Epidemiology and Biostatistics, Rammelkamp Center for Educa-
tion and Research, 2500 MetroHealth Drive, Case Western Reserve University, Cleveland, Ohio 44109, U.S.A. E-mail:
olson@darwin.cwru.edu

Contract/grant sponsor: National Center for Human Genome Research
Contract/grant number: HG01577

Contract/grant sponsor: National Center for Research Resources
Contract/grant number: PR03655

Contract/grant sponsor: National Cancer Institute
Contract/grant number: CA73270

Contract/grant sponsor: National Institute of General Medical Sciences
Contract/grant number: GM28345

CCC 0277-6715/99/212961-21817.50 Received June 1998
Copyright © 1999 John Wiley & Sons, Ltd. Accepted January 1999



2962 J. M. OLSON, J. S. WITTE AND R. C. ELSTON

2. GENETIC TERMINOLOGY AND LINKAGE CONCEPTS
2.1. Genetic Models

Simple genetic models are derived from Mendelian laws of inheritance. Each individual has two
sets of 23 chromosomes, one maternal and one paternal in origin. One of the 23 pairs of
chromosomes are the sex chromosomes, and we shall concern ourselves with the remaining 22
pairs of autosomal chromosomes in this tutorial. Each chromosome consists of a long strand of
DN A, a linear molecule with units known as base pairs. A chromosomal location (which may be
a single base pair or a collection of consecutive base pairs) is termed a genetic locus. At each locus,
there may be distinct variants, called alleles. In common parlance, the term gene is often used to
denote both locus and allele, but the two should be regarded as distinct concepts by the
statistician. For an individual, the pair of alleles (maternal and paternal) at a locus is called the
genotype. A genotype is called homozygous if the two alleles are the same allelic variant and
heterozygous if they are different allelic variants. If more than one locus is involved, the pattern of
alleles for a single chromosome is called a haplotype; together, the two haplotypes for an
individual is still called a (multilocus) genotype. Each offspring receives at each locus only one of
the two alleles from a given parent; alleles are transmitted randomly (that is, each with probability
1/2), and offspring genotypes are independent conditional on the parental genotypes. The
probability that a parental genotype transmits a particular allele or haplotype to an offspring is
called the transmission probability, and is the first component of a genetic model.

The second component of a genetic model concerns the relationship between the (unobserved)
genotypes and the observed characteristics, or phenotype, of an individual. The phenotype may be
discrete or continuous. We define penetrance to be the probability (mass or density) of a pheno-
type given a genotype; a complete genetic model requires specification of the penetrances of all
possible genotypes. The third component of a genetic model is the (distribution of) relative
frequencies of the alleles in the population. These allele frequencies are used primarily to
determine prior probabilities of genotypes when inferring genotype from phenotype.

These three components, taken together, fully describe the genetic model of a trait. Given a set
of phenotypic data on pedigrees, one can estimate the genetic model using statistical techniques
collectively known as segregation analysis.**? While segregation analysis is beyond the scope of
this paper, it is helpful to realize that in a segregation analysis, genotypes are latent variables
inferred from trait phenotypes. For simple Mendelian traits, in which only one genetic locus is
segregating, estimation of the genetic model is usually straightforward, as only one set of latent
variables (genotypes) is involved. For complex traits, which are the emphasis of most genetic
studies today and which are probably due to the effects of more than one locus, estimation of the
genetic model is difficult to impossible, because each locus represents a different set of (possibly
interacting) latent variables. As a result, two approaches to genetic linkage analysis have evolved:
those that require prior specification of a genetic model for the trait under study (model-based
methods), and those that do not (model-free methods). For a more detailed review of genetic
models and genetic likelihoods, see Thompson.®> We now discuss concepts specific to linkage
analysis.

2.2. Recombination and Linkage

Two loci that are on the same chromosome are said to be syntenic. If they are close enough
together, the alleles at the two loci that are paternal (maternal) in origin tend to pass to the same
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Figure 1. Diagram showing part of two homologous chromosomes at the time of gamete formation. In (a), the two

chromosomes have paired up and each chromosome (parental solid, maternal open) has divided into two identical

chromatids. Alleles at three loci (4, B and C) are indicated. In (b), a cross-over forms between loci A and B. In (c),

the four resulting gametes are shown; two have recombined between the loci 4 and B, two between 4 and C, none
between B and C

gamete (sperm or egg) and hence are transmitted together to an offspring; we thus have
cosegregation at the two loci. However, when the chromosomes pair up together at the time of
gamete formation (a process known as meiosis), portions of the paternal and maternal chromo-
somes interchange by a process known as crossing over (Figure 1). If an odd number of
cross-overs occurs between two loci, then the alleles at the two loci that an offspring receives from
one parent are no longer identical to those that occur in one of the parental chromosomes, but
rather have recombined. Thus, at one locus the offspring receives from a parent an allele that
comes from a grandmother, and at the other locus the allele from the same parent comes from
a grandfather (Figure 1). The closer the loci are together, the smaller the probability of a recombi-
nation, and hence the larger the probability of cosegregation, a phenomenon known as genetic
linkage.

The proportion of gametes in which recombination is expected to occur between two loci is the
recombination fraction between them, usually denoted 6. If the two loci are far apart, segregation
at one locus is independent of that at the other, and 0 = 1/2; all four types of gametes are
produced in equal frequencies. When linkage occurs, 0 < 0 < 1/2, and the ‘parental-type’ gametes
are more frequent than the ‘recombined-type’ gametes. In linkage analysis, one locus is a meas-
ured locus called a genetic marker, for which the genotype is known with a high degree of
certainty, and the other is a disease locus with unknown genotype, for which the genotype is
inferred (with varying degrees of accuracy) only through the disease or trait phenotype. After
typing marker loci at known locations in the genome, we can test each marker for linkage to
a disease or trait and approximate the location of the disease or trait to the chromosomal region
harbouring the linked marker.

If the parent is heterozygous at both loci, the recombination can be observed and the parent (or
resulting offspring) is said to be informative for linkage. Otherwise, although an odd number of
cross-overs may have occurred between the two loci, the recombination cannot be observed. The
further apart two loci are, the higher the probability of recombination between them and this
leads to the concept of genetic distance. Genetic distance is correlated with physical distance, but
there is no simple function that relates them because the frequency of recombination changes as
one moves along the chromosomes. The unit of recombination is the Morgan, defined as the
distance in which exactly one cross-over is expected to occur. A Morgan is divided into
centiMorgans (¢cM), where 1 Morgan = 100 cM.
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Figure 2. Prior distribution of the number of alleles shared identical-by-descent (X') by a sib pair

2.3. Identity-by-descent

A pair of related individuals shares an allele identical-by-descent (IBD) if that allele has a common
ancestral source, that is, if the allele in each relative is from the same chromosome of the same
ancestor. In the context of linkage analysis, the common ancestor is taken to be a recent ancestor,
one within the sampled pedigree. For example, if the pair is a sib pair, the common ancestors are
their parents, and the sibs may have inherited the same paternal allele and/or maternal allele at
a particular locus. The concept of IBD plays an important role in linkage analysis, particularly
model-free linkage analysis, because it forms the basis of a measure of genetic similarity of a pair
of related individuals. If a pair of relatives shares alleles IBD at one genetic locus, they will also
share alleles IBD at a second, linked locus with high probability, because linked loci tend to
cosegregate. Generally, one correlates the extent of marker IBD sharing to some measure of
disease or trait similarity to determine the genomic location of the disease or trait locus.

We now introduce notation that will be useful in later discussion. Consider a pair of siblings
and a single genetic locus. Figure 2 shows the distribution of genotype pairs inherited from their
parents according to Mendelian laws of segregation. The sibs are expected to share 0, 1 or 2 alleles
IBD with probability 1/4, 1/2 and 1/4, respectively. In Figure 2, we have assumed that both
parents are different heterozygotes and that IBD sharing can be determined with certainty. More
generally, the number of alleles shared IBD by a particular sib pair, a, can be determined
probabilistically. For notational use, let f;, i = 0, 1, 2, be the prior (unconditonal) probability that
the sib pair shares i alleles IBD at a locus, and f: the estimated probability that the sib pair shares
i alleles IBD conditional on available marker data, denoted I,,,. A general form for computing
IBD sharing probabilities is

where the denominator is the probability, or likelihood, of the pedigree marker data and may be
computed using an Elston-Stewart* (‘peeling’) algorithm, and the numerator can be written as
a sum of the terms of the denominator consistent with sharing i alleles IBD, each term
representing a phase-known (that is, the maternal or paternal origin is known for each allele)
pedigree genotype.®*° Finally, let # = % fl +f; be the estimated proportion of alleles shared IBD
conditional on available marker data.

Algorithms for computing IBD sharing probabilities using data from multiple linked markers
is an area of on-going research.”’ 12 Use of multiple markers, generally termed multipoint linkage
analysis, increases the power of a linkage study by increasing the overall marker informativity in
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Table 1. Haplotype frequencies for two diallelic loci
under linkage equilibrium

Disease allele Marker allele Total
B b

A PaPB pa(1 — pp) Pa

a (1 —pdpp 1 —p)(L —pg) 1—py

Total DB 1 —ps 1

a chromosomal region. Multipoint computational algorithms usually employ a hidden Markov
model that assumes that IBD sharing at consecutive loci behaves in a first-order Markov manner.

2.4. Linkage Disequilibrium

The phenomenon of linkage results in the cosegregation of the alleles of two linked loci and thus
in within-family association of specific alleles. Among families, it is common to assume in
a linkage analysis that no association between the allelic variants of different loci is present, as
different marker alleles may cosegregate with the disease allele in different families. If no
population association exists between alleles at two loci, the loci are said to be in linkage
equilibrium, and the population frequencies of each two-locus haplotype are the products of the
single-locus allele frequencies (Table I). If a population association does exist, the loci are said to
be in disequilibrium.

As an example of disequilibrium, assume we have two diallelic loci, one a disease locus with
alleles A and a (with frequencies p, and 1 — p,, respectively), and the other a marker locus with
alleles B and b (with frequencies pgs and 1 — pg, respectively). Under random mating, the
frequencies of the two-locus genotypes are determined by the products of the frequencies of the
four haplotypes AB, Ab, aB and ab, which change over time (usually measured in genera-
tions).1313 Specifically, at a particular point in time, let the haplotype frequencies for AB, Ab, aB
and ab be

hap = paps + D

hay = pa(1 — pg) — D

hip = (1 — p)ps — D

hay = (1 — pa)(1 — pg) + D

respectively, where D = hygh,, — hyph,p 1s the departure from equilibrium; that is, D is the
disequilibrium between A and B.

The magnitude of disequilibrium between the disease and marker alleles dissipates as future
generations of a population emanate and recombination occurs. How quickly equilibrium is
reached depends on the number of new generations that have passed since the disease allele arose
(mutation age), and the genetic distance between the disease and marker loci. Fewer recombina-
tions imply that the disease and marker alleles are in stronger disequilibrium. This inverse
relation implies that when there is very close linkage, disequilibrium may persist for long periods

Copyright © 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 2961-2981 (1999)



2966 J. M. OLSON, J. S. WITTE AND R. C. ELSTON

of evolutionary time.!® Other effects influence allele and haplotype frequencies in the population
over evolutionary time, including genetic drift, the random component of allele frequency change
over generations. The magnitude of genetic drift is inversely related to the size of the portion of
the population relevant to mating and gene transmission, called the effective population size.

3. MODEL-BASED LINKAGE ANALYSIS

In a model-based linkage analysis we completely specify the mode of inheritance of the trait being
studied: the number of loci involved; the number of alleles at each locus and their frequencies; and
the penetrances of each genotype (which may further depend on age or other covariates).
Typically, for computational reasons we assume that the trait is caused by segregation of just two
alleles at a single locus, and that there is no other cause of familial aggregation for the trait. Thus
one allele frequency and three penetrances need to be specified. The marker allele frequencies are
also specified, but we shall see that these have no effect on the evidence for linkage if the marker
genotypes of all the pedigree founders (those pedigree members from whom all other pedigree
members are descended) are known or can be inferred with certainty.

Denoting the joint probability of all genotypes P(g), and the joint probability of all observed
data x (trait and marker phenotypes) conditional on genotypes P(x|g), the likelihood for a set of
data is

L =Y P(g9)P(x|g)

where the summation is over all the possible joint genotypes g (trait and marker) for all pedigree
members. We assume that the only unknown parameter in this likelihood is the recombination
fraction 0, on which P(g) depends. (We shall assume in this account that 0 is a scalar, though more
generally it may be a vector if, for example, multiple marker loci are involved, or 0 is made
sex-dependent.) Thus the likelihood of interest is

L(0) = Y. P(g10)P(x|g)

and we base inferences about 6 on the likelihood ratio A = L(0)/L(1/2) or, equivalently, its
logarithm. In human genetics it is usual to take logarithms to base 10 and we define the lod score
at 0 to be Z(0) = log,o[L(0)/L(1/2)], with a maximum Z(0) at the maximum likelihood estimate
0. Bernard'” introduced the term lod, carefully distinguishing between the forward lod and the
backward lod. The former is the logarithm of the odds for a hypothesis, that is, the probability
that the hypothesis is true divided by the probability that it is false; the latter is now called the
logarithm of the likelihood ratio. In the genetics literature lod is often mistakenly interpreted as
the logarithm of the odds for linkage. Note that if L(1/2) > L(0) for some value of 0, then the
corresponding lod score is negative.

The vector of genotypes g can be partitioned into those that pertain to the pedigree founders,
gs, and those that pertain to the non-founders, g,. We can thus write

Y. P(gl0) =33 P(gr)P(gulgs, 0)
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where P(g;) is determined by the marker and trait allele frequencies, while P(g,|gs, 0) is deter-
mined by the transmission probabilities. Furthermore, if the trait and marker genotypes are
independently distributed in the population, an assumption often realistic when linkage analysis
is performed, we can write P(gs) = P(gm) P(gs), Where gy, and gy, are, respectively, the founders’
marker and trait genotypes. It follows that, if the founders’ marker genotypes are known, that is,
there is only one possible marker genotype for each founder,

Z ZP(gfm)P(gft) = P(gem) z P(gs),

Itm 9rt It

so that P(g;,) is a constant multiplier in the likelihood. It follows that the marker allele
frequencies are then irrelevant when making inferences about 6.

Model-based linkage analysis has been described in detail by Ott.'® Here we highlight some of
the main statistical results when the trait is known to be monogenic (that is, caused by segregation
of alleles at a single locus) and then briefly discuss the effects of analysing data under this

assumption when it is false. Traditionally, Z(0) > 3 has been taken as ‘proof’ of linkage.!® 2°

From general likelihood theory, under the null hypothesis 8 = 1/2, 2[log. 10]Z(0) is asymp-
totically distributed as Xf ifZ (é) is a maximum, so that Z (é) > 3 corresponds asymptotically to
a Xf value > 13-8, which translates to p < 10~ if we allow for the fact that we want a one-sided
test of 0 = 1/2. Use of such an extremely small p-value was chosen in an attempt to limit to 0-05
the probability of making an error when concluding that linkage is present, using the fact that the
prior probability of linkage between two random autosomal loci in the human genome is about
0-054. (If we assume all 22 pairs of autosomal chromosomes have equal length, the probability
that two random loci are on the same chromosome is 1/22 = 0-045; the figure 0-054 allows for the
different lengths of the chromosomes.) On the assumption that there is no appropriate prior
probability of linkage in the case of complex traits, Lander and Kruglyak?! proposed that the
appropriate p-value should be based on the multiple testing performed when the whole genome is
scanned for linkage, whether or not such a scan has been performed.??23

Model-based linkage analysis is often used with guessed values of the disease allele frequencies
and penetrances, and this will not inflate the significance of a result (that is, probability statements
about the data on the assumption 6 = 1/2) provided the disease is in fact monogenic and there are
no errors in the probability model assumed for the marker (it is not necessary for the marker to be
error-free — only that the allele frequencies and penetrance functions for it to be correct).>4:2>
Furthermore, under the assumptions underlying the likelihood, we can maximize the lod score
over both 0 and the parameters that describe the mode of inheritance of the trait, to obtain
consistent estimates of these latter parameters, and, provided the pedigrees are ascertained on the
basis of the trait only, under the assumptions the lods do not depend on the mode of ascertain-
ment.>%-27

Model-based linkage analysis has been used to show that more than one locus can cause
a simple Mendelian disease. This was first done by determining if the recombination fraction is
heterogeneous among pedigrees, indicating 0 < 1/2 in some and = 1/2 in others, using the usual
heterogeneity chi-square.?® Later, Smith?® proposed a model in which a proportion « of the
families exhibit linkage with recombination fraction 6, while a proportion 1 — o show no linkage.
Thus the likelihood was formulated as L(o,60) = aL(0) + (1 — ) L(1/2) and maximized over
0<a<1landO0 <0< 1/2. We test the null hypothesis of no heterogeneity, « = 1, by comparing
the usual likelihood ratio statistic to a chi-square distribution with one d.f., taking half the
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indicated probability because of the one-sided nature (x < 1) of the alternative. In order
to test for linkage in the presence of heterogeneity, we can use the same likelihood to define the
model, but now the null hypothesis is 6 = 1/2, with « free to vary between 0 and 1. Because « is
irrelevant when o = 1, it is difficult to derive the null distribution of the likelihood ratio
statistic.3%-3!

These tests for heterogeneity, or for linkage in the presence of heterogeneity, assume that L(0)
and L(1/2) are appropriate for a particular mode of trait inheritance. The assumption of
a monogenic mode of inheritance, and the reliance on Z (é) > 3 in general as the criterion for
accepting linkage, have led to anomalous statements being made in the genetics literature. For
example, it is believed by some that a more powerful test for linkage, in the case of a complex
disease, can be obtained by using trait model parameter estimates that overestimate the genetic
effect of the locus being linked, because these estimates are more likely to result in Z (0) > 3 in the
presence of linkage. This argument ignores the fact that the significance level associated with such
a test is affected by ignoring trait familial correlations that are due to loci other than the one that
is modelled in the linkage analysis. However, it is generally recognized that estimates of 0 made
under a wrong model are usually biased upwards, and that a trait locus cannot be excluded from
a genomic region on the basis of Z(0) being less than, for example, —2; what is excluded by such
a criterion is the existence, within a recombination fraction 0 of the marker, of a trait locus with
the particular mode of inheritance assumed in the calculation of Z(6).

4. MODEL-FREE LINKAGE ANALYSIS

In contrast to model-based linkage methods, model-free linkage methods do not depend on prior
specification of a model of inheritance for the disease or trait of interest. In other words, the
frequencies and penetrances of disease genotypes need not be known in advance, and functions of
these quantities and the recombination fraction may be estimated. It is important to recognize,
however, that many of the methods do rely on assumptions about the underlying genetic model
and some methods are in fact parametric or semi-parametric in nature. Generally, however,
assumptions about the genetic model affect only parameter estimation and not the validity of the
method for detecting linkage. In this section, we differentiate between two general types of
model-free linkage analysis — those designed for qualitative traits and those designed for
quantitative traits — although both theory and applications of these two groups of methods
overlap. Model-free linkage methods typically evaluate marker locus IBD relationships among
family members, often pairs of siblings, and thus are often referred to as relative-pair, or sib-pair,
methods.

4.1. Qualitative Trait

Model-free linkage methods designed for qualitative traits usually consider samples of affected sib
pairs or sibships with at least two affected members. If a trait and marker are linked, affected sib
pairs should share more marker alleles IBD than expected by chance. Assuming that at least one
genetic locus contributes to trait variability, under the null hypothesis of no linkage, sib pairs are
expected to share exactly 0, 1 or 2 alleles IBD at a single marker locus with respective
probabilities 3, 3 and 3. If the marker IBD state can be determined with certainty, so that a sample
of n pairs can be partitioned into ng, n; and n, pairs, corresponding to sharing 0, 1 or 2 alleles

IBD, the data can be modelled using a multinomial distribution. If the marker IBD state cannot
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be determined with certainty, then IBD probabilities can be used to model the data using
a hidden multinomial framework.

In this context, estimated IBD probabilities can be used to compute non-parametric test
statistics or parametric likelihoods. The most commonly used non-parametric test statistic, called
the mean test,>? has power close to optimal for most one-locus genetic models,>373> and
compares the observed mean proportion of marker alleles shared IBD to its null value of 3:

_ [ +m/2]/n—1/2
" [1/8m)]"?

A more general mean statistic substitutes 7 = Yo #/n for [ny +ny/2]/n and an em-
pirical variance estimate for the denominator when IBD sharing cannot be determined with
certainty.

Parametric modelling of affected sib pairs is based on the hidden multinomial distribution.>®
Let z; be parameters defined as the probability that an affected sib pair shares i marker alleles
IBD. The distribution of affected sib pair IBD sharing can be parameterized in terms of the
relative risk of disease to siblings (/) and offspring (4,) of affected individuals (that is, the risks to
these individuals relative to the population prevalence of disease), and the recombination fraction
between trait and marker loci (0), assuming a single genetic locus underlies the disease:

o= 4~ 3. @ = DIC— 1+ 200 = PG — )]
11 L

=5 =gy Q= VL~ )
1

=3+ 3 Q0= DIG— )+ 20 = ) — )]

where = 0% + (1 — 0)>. Note that, using the hidden multinomial framework, only two free
parameters, which are functions of A, 4, and 0, can be estimated, as the z; must sum to one. The
relative risks are therefore identifiable only when 0 is known, such as when there is complete
linkage (6 = 0). In terms of the relative risks and 0, the hypotheses of interest are in fact composite
hypotheses. Under the null hypothesis, either 8 = 1/2 or A, = A, = 1, or both. The alternative
hypothesis requires both linkage and a genetic effect: H;:0 < 1/2, A, 4, > 1.

For a single affected sib pair (ASP), the lod score for the pedigree marker data (MD) can be
written

A

Z(MD|ASP) =log,, Y =4
i=0,1,2 ﬁ

Under the null hypothesis, z; = f;, fori = 0,1,2 and Z(MD|ASP) = 0. The lod score (1), summed
over independent pairs, can then be maximized over the z;. The likelihood ratio statistic equals
2log. 10 times the maximum lod score. The asymptotic distribution of the likelihood ratio
statistic is non-standard, as constraints on the z; consistent with a one-locus genetic model
(z0 2 0,2, + zo > z; and z; > 2z) are usually imposed, giving mixture of 77, 7 and 7 random

<

(1)
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variables.>” In a later data example, we will refer to this statistic as the ASP (affected sib pair) lod
score.

Affected sib pair methods are particularly useful for detecting linkage to complex diseases,
which are expected to the oligogenic (that is, have a few underlying loci). The single-locus lod
score provides a valid test of linkage even if more than one locus contributes to a disease.
Multilocus models can also be fitted.>®7#° A general multilocus model allows for epistasis, or
interactions among loci. Specialized multilocus models are available that treat the loci as
interacting multiplicatively or additively.

When small pedigrees are available for linkage analysis, affected sib pair analysis may not
capture all the linkage information in the sample, and non-parametric model-free approaches
have been proposed to analyse general pedigree structures. An example of a non-parametric
approach can be found in Kruglyak et al,** who propose calculating a scoring function S(v, x)
(first proposed by Whittemore and Halpern*?) that depends on an inheritance pattern v and the
observed disease phenotypes x in the pedigree. When the inheritance pattern is unknown, one
computes its conditional expectation

S(x) =Y S(v,x)P(v)

where P(v) is estimated using available marker data. The authors further discuss a model-free
scoring function that considers IBD sharing among sets of affected family members. In a later
data example, we will refer to this statistic as the NPL (non-parametric linkage) statistic.

4.2. Quantitative Trait

Many biomedical traits of interest are measured on a continuous or ordinal scale. Development
of model-free methodology to study linkage between a marker locus and a locus underlying
a quantitative trait has, for the most part, proceeded separately from methods for studying
linkage to qualitative traits. It is useful to recognize, however, that both sets of methods employ
similar concepts, most notably that of IBD sharing, and that the methods are often used in
multiple settings. For example, if both affected and disordant sib pairs are collected, disease status
can be treated as a quantitative trait using a method originally intended for continuous traits.
Conversely, some investigators studying quantitative traits sample siblings from the extremes of
a continuous distribution and treat the outcome as a qualitative variable.

We first consider the problem of linkage to a quantitative trait by assuming that a single genetic
locus underlies a quantitative trait. For an observation X from the trait distribution, the genetic
model may be written

X=p+g+e

where p is an overall mean, g is effect of the genotype at the major locus and e is a residual effect
with an unspecified distribution. The variance of g is a function of the parameters of the genetic
model (allele frequencies and penetrances) and can be partitioned into additive (¢2) and dominance
(¢3) components; the dominance genetic variance measures the variance due to the effect on
penetrance of interaction between the individual’s two alleles.

The squared difference Y = (X; — X,)? between the measurements of a quantitative trait for
a randomly sampled pair of siblings is a linear function of the Bayesian (taking the known allele
frequencies as prior probabilities) estimate of the proportion of marker alleles shared IBD
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between the members of the pair (7) and the estimated probability that the pair share exactly
1 marker allele IBD (f), that is

E(Y|I,) = o + Bt + /1
where
Be = —202(1 — 20)?
e =03l —20)*

and « is an intercept containing no linkage information. This model is the well-known Haseman-
Elston model,® and is often implemented assuming 7, = 0. As with the affected sib pair lod score
model, only two free parameters containing linkage information can be estimated, and the genetic
variance components are identifiable if 6 is known. Under the null hypothesis of no linkage
(0 = 1/2) or no genetic effect (¢ = a3 = 0), the regression parameters equal zero. After fitting the
regression model using least squares, an asymptotically normal one-sided Wald-type test of
linkage may be constructed based on the estimate of .°

As in the case of a qualitative trait, extensions to include families larger than sibships are of
interest. Extensions to the Haseman—-Elston regression model have been proposed that model all
informative relative pairs in an extended family using regression relationships derived for specific
relationships, such as half-sibling, grandparental and cousin.** Generalized estimating equations
can be used to combine the information from multiple relative pairs in a sibship or extended
family.** Likelihood-based approaches designed for extended families have also been proposed.
For example, one might treat the pedigree quantitative trait values as multivariate normal, with
a covariance matrix that is parameterized in terms of variance components, IBD sharing and the
recombination fraction.*>#® Parameters may be estimated using maximum-likelihood methods,
if multivariate normality of errors is assumed, or by estimating-equation approaches. Modelling
the trait covariance rather than the squared-pair trait difference gives an increase in power.

To this point, we have assumed that sib pairs, or pedigrees, are randomly sampled. Often, an
investigator selects families based on the value of the trait of interest or some related character-
istic. For example, an investigator interested in stroke might wish to study the genetics of blood
pressure in families ascertained through stroke patients or through patients attending a blood
pressure clinic. Such selected samples often contain more information about linkage by increasing
the frequency of the ‘interesting’ alleles in the sample, relative to the population. For the purpose
of detecting linkage (as opposed to estimating genetic variance), the methods we have discussed
thus far can be used on families acquired through some type of specialized sampling scheme,
provided the selection criteria depend only on the trait phenotype. On the other hand, by
tailoring the statistical model to allow for the sampling scheme used, one can often maximize
power as well.

For example, suppose we believe that high values of a particular trait are due in large part to
a low frequency allele at some unknown locus. In this case, we might sample index cases from the
upper tail of the trait distribution to increase the frequency of this allele in the sample of sib pairs,
and thus also increase the potential information for linkage. A regression model developed
specifically for this sampling scheme is more powerful than the Haseman-Elston model when
applied to the resulting data.*”-*® Another design that has high power for most, but not all,
genetic models is the extreme discordant sib pairs design, in which pairs comprising one sib with
a trait value from the upper tail and the other from the lower tail of the trait distribution are

Copyright © 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 2961-2981 (1999)



2972 J. M. OLSON, J. S. WITTE AND R. C. ELSTON

sampled.*?->° For example, given a large sample of probands with an extreme value in one
direction (usually that indicating disease), one might genotype only those pairs for which the
sibling has a trait value in the opposite tail.

5. LINKAGE DISEQUILIBRIUM MAPPING

The genetic variants that one might be interested in mapping arise through, for example, novel
mutations or immigration of carriers of mutant alleles into a population. When a mutation
initially arises, it has a particular chromosomal location and specific neighbouring marker alleles.
At this incipient point in time, the mutation is completely associated with the adjacent alleles; it is
only observed when the marker alleles are also present.’' Marker alleles that were in the
neighbourhood of the disease gene when its mutation was introduced into the population will
generally remain nearby over numerous generations (that is, in disequilibrium). One can estimate
whether a particular marker locus appears to be in disequilibrium with a disease locus. In
particular, if specific marker allele frequencies are higher among diseased versus normal chromo-
somes (for example, in unrelated unaffected subjects), this suggests linkage between that locus
and a disease locus. The extent of this disequilibrium depends on the number of subsequent
generations since the mutation was introduced into the population, the recombination between
the disease and marker alleles, mutation rates and selective values. This allelic dis-
equilibrium is commonly referred to as ‘linkage disequilibrium’, although linkage need not be
present for disequilibrium to exist; allelic association is a better term to describe the general
phenomenon.!®

While model-based and model-free linkage analysis approaches have proved successful for
mapping many disease and trait genes, in some gene mapping investigations the limited number
of meioses occurring within available pedigrees limits one’s ability to detect recombination events
between closely spaced (<1 ¢M) loci.’? One can instead use information on all recombinations
occurring since the incipient mutation, and attempt to map disease genes more finely by
disequilibrium.

Mapping by disequilibrium entails determining the relative location of a disease locus by
comparing marker allele locations with estimators of the relation between the corresponding
alleles and disease alleles.’® %455 These include measures of association and recombination
between disease and marker alleles. As with linkage analysis, relevant properties of the disease
locus are inferred based on phenotype.

The most basic linkage disequilibrium efforts contrast single markers with disease. Let
B denote a single marker allele that is being evaluated in relation to a disease allele A. Standard
linkage disequilibrium models assume that a randomly mating population is in a steady state;
a constant size and in equilibrium between the effects of genetic drift and recombination. These
steady-state assumptions imply that the number of generations that have passed since the
mutation was introduced is of the same order as the constant effective population size, N,. Under
these conditions, the squared correlation between linked disease and marker alleles is

p> =D?/[ps(1 — p)ps(l — pp)]1,

using the notation given in the above subsection on disequilibrium concepts. For a particular
data set, one can estimate the squared correlation by substitution of observed frequencies. This
observed squared correlation is equivalent to y2/n, where y2 is the standard test statistic from
a 2 x 2 table of observed haplotype counts (Table 11), and n is the total number of haplotypes.®®
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Table II. Observed haplotype counts for
two diallelic loci

Disease Marker allele Total
allele _

B b
A nyp Nap ny
a Ngp Ngp n,
Total np n n

Table III. Observed counts for transmission/disequilib-
rium test

Non-transmitted allele Transmitted allele  Total

A a
A a b n.4
a c d n
Total ny. Ng. n

One can also investigate disequilibrium using the transmission/disequilibrium test (TDT).>5~3°

The TDT compares the frequencies of alleles transmitted from parents to diseased offspring with
those of alleles that are not transmitted (Table III). Because each parent of an affected offspring
contributes exactly one transmitted and one non-transmitted allele, the TDT is simply the
McNemar test resulting from a matched case-control design. The TDT provides a joint test of
linkage and association (that is, linkage in the presence of association or vice versa). By combining
evidence of association between marker and disease alleles among families (disequilibrium) and
within families (linkage), the TDT provides increased power to detect disease gene location.
The squared correlation between linked disease and marker alleles can also be written as

p? =1/@4N,0 + 1) (2)

where 0 is the recombination fraction.®® Note that (2) models disequilibrium as being inversely
related to the recombination fraction. If one has estimates of N, and p?, then (2) provides an
estimate of the recombination fraction 0. In large, stable populations, however, p? can be quite
small.®* Furthermore, due to large variances, p? can be relatively uninformative for estimating
0.52:%3 Note that 0 and N, are completely confounded (N, must generally be estimated from
external data). There exists in the literature numerous other formulae for the expected value of p2,
though there is no general exact explicit equation.®? Devlin and Risch®* and Guo®? evaluate the
properties of some of these disequilibrium measures.

For most populations the conventional linkage disequilibrium assumption of a steady-state
(that is, equilibrium) population over evolutionary time is unreasonable. Furthermore, isolated or
small populations that have recently undergone rapid expansion can have more linkage disequi-
librium,®! and can provide reasonable estimates of founding population size and founding date
(to approximate the mutation’s age) while addressing issues of admixture. When one does not
have an equilibrium population, the Luria-Delbriick method for estimating mutation rates in
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exponentially growing bacteria®® can be applied to estimate recombination frequencies — using
disequilibrium information - in populations.>? To model this in a basic fashion, we assume that
all disease alleles arise from the original mutation introduced into the population. Then,
m successive generations after the ancestral mutation was introduced, under complete random
mating, disequilibrium can be modelled as

D,=(1—6"D, (3)

where D; is the disequilibrium at generationi,i =0, ... ,m, and the two loci in disequilibrium are
linked with recombination fraction 6. If one assumes that there was complete disequilibrium
when the disease mutation was introduced into the population, then D, = 1. An estimate of D,,, is
given by the observed proportion of diseased individuals who have the marker allele. With this
and an estimate of the number of generations m (that is, the age of the mutation), the correspond-
ing recombination fraction 6 can be estimated. This approach, however, may not provide very
accurate confidence bounds for the recombination fraction.®”-3' Another approach for dealing
with non-steady-state populations entails using a Poisson branching process to model disease
progression in a growing population and simulations to estimate the likelihood for the recombi-
nation fraction and corresponding support intervals.®®

Likelihood-based linkage disequilibrium approaches provide a unifying framework for fine-scale
mapping. Hill and Weir®® derive likelihoods for D conditional on the observed number of
haplotypes, N, and 0. One can also use a likelihood approach to estimate disequilibrium while ac-
counting for demographic factors that might affect a population’s steady state (that is, growth,
sampling effects and genealogical associations).®® When observed data appear compatible with a
large number of potential ancestries, however, evaluating likelihoods may become cumbersome.”°
Ultimately, iterative approaches will be required to estimate disequilibrium.”! For example, one
can obtain linkage disequilibrium estimates from population-based data by using the EM algo-
rithm’? or Markov chain Monte Carlo simulation approaches.’* When mapping more complex
traits, linkage disequilibrium approaches may require extension to allow for multiple markers. For
multiple alleles and/or loci, basic extension of the single marker disequilibrium measures presented
above have been developed.®”- 987374 Like linkage analysis, multipoint disequilibrium can be more
efficient than single-marker analysis.>*®*7% Furthermore, using multiple markers can provide
estimates for ancillary population ancestry parameters and possibly give more accurate translation
from genetic to physical disease.”® A likelihood-based multipoint approach to linkage disequilib-
rium mapping loci can be found in Terwilliger.”> When a narrow region is being considered for
linkage disequilibrium fine-scale mapping, conditioning on the distances between markers allows
the use of a composite likelihood to extract information from multiple markers.”® Xiong and Guo>*
give a general likelihood framework for linkage disequilibrium mapping that incorporates multi-
allelic markers, multiple loci and mutational processes at the disease and marker alleles. Finally,
estimating linkage disequilibrium measures is easiest and most efficient if one has haplotype data,
which will generally require familial information.'® Nevertheless, linkage disequilibrium estimates
can still be obtained from genotypic data.””

6. EXAMPLE

To illustrate the use of some of the methods described in this tutorial, we simulated a set of 25
small pedigrees. Each pedigree contains marker and disease phenotype data for both parents and
two offspring. We assumed that, in the population, the marker locus has 20 equally frequent
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Table IV. Example genetic data set

Family  Disease status* Marker phenotype

Mother Father Mother Father Offspring

1 1 2 13,15 1,17 1,15 1,15
2 1 2 6,11 1,12 1,6 1,6
3 2 1 1,11 8,14 1,14 1,14
4 2 2 1,8 3,5 1,5 1,3
5 1 2 11,13 1,4 1,11 1,11
6 1 1 3,17 5,7 5,17 3,7
7 1 2 16, 18 1,10 1,18 1,16
8 2 1 1,6 10,13 1,13 1,13
9 1 2 16, 20 1,19 1,20 1,16
10 2 1 1,15 8,10 1,8 1,10
11 2 1 1,15 8,16 15,16 1,16
12 2 1 L5 11,17 1,11 1,11
13 2 1 L5 11,19 1,19 5,19
14 1 2 10, 17 1,5 1,10 1,10
15 2 1 1,20 8,12 1,12 1,8
16 2 1 1,18 17,20 1,20 1,20
17 1 1 3,8 2,7 3,7 3,7
18 2 1 1,18 7,16 1,7 1,16
19 2 1 1,19 3,12 1,12 1,3
20 1 1 10, 19 1,18 1,10 1,19
21 2 1 1,12 3,15 1,3 1,3
22 2 1 1,14 5,7 1,7 1,5
23 2 1 1,16 6,10 1,6 6,16
24 2 1 1,17 9,19 1,9 1,9
25 1 1 6,16 1,12 1,6 1,6

*1, unaffected; 2, affected. All offspring are affected

alleles, numbered from 1 to 20 that were measured without error, so that the marker phenotype and
genotype are the same. Individuals with one or two copies of the disease allele are affected with
probability 0-8, while individuals with no copy of the disease allele are affected with probability 0-05
(sporadics or phenocopies). (In such a situation, we say that the disease allele is dominant to the
normal allele. If individuals with two copies of the disease allele are affected with high probability,
while those with zero or one copy are affected with low probability, we say that the disease allele is
recessive to the normal allele.) In our simulation, we further assumed that the disease and marker
loci are tightly linked and perfectly correlated; chromosomes carrying marker allele 1 also carry the
disease allele and chromosomes carrying other marker alleles do not carry the disease allele. The
frequency of the disease allele in the population is therefore assumed to be 0-05.

We sampled only those families with two affected offspring and further required that the
parents carry four distinct marker alleles. The first requirement increases the probability that the
sampled families are segregating for the disease allele and is a common practice in genetic studies.
The second requirement was imposed artificially so that the reader can observe segregation more
directly. In practice, however, selection procedures that rely on both marker and disease
phenotype may be biased, so care should be used in the design of such studies. The data are shown
in Table IV.

Copyright © 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 2961-2981 (1999)



2976 J. M. OLSON, J. S. WITTE AND R. C. ELSTON

Table V. Analysis of example data set

Method Statistic p-value
Model-based
Dominant 2-40 (lod score) 0-00044
Recessive 0-87 (lod score) 002262
Model-free
ASP 2-39 (lod score) ~0-00090
NPL 3-32 (normal) 0-00018
TDT (2-allele) 3478 (x32) 1'1x1077
TDT (20-allele) 69:62 (110) 37x107°

We then tested for linkage and/or association using several methods and report the test
statistics and approximate p-values in Table V. We first estimated the recombination fraction
assuming the (correct) dominant model. The recombination fraction was correctly estimated to
equal 0-0. The lod score, when converted to a likelihood ratio statistic and compared to
a y; distribution (one-sided) showed considerable evidence for linkage. If the genetic model was
incorrectly assumed to be recessive, so that the penetrance of the heterozygote was 0-05, evidence
in favour of linkage decreased considerably.

We then computed two model-free linkage statistics, the affected sib pair (ASP) lod score,
which uses no information about parental affected status, and the non-parametric linkage (NPL)
statistic, which uses some information about parental affected status. Both statistics give con-
siderable evidence for linkage. The NPL statistic follows a normal distribution for a one-sided
test, while the ASP likelihood ratio statistic follows a distribution that is a mixture of Xé» x1 and
,(i and is roughly stochastically slightly smaller than a xf, so we report the p-value associated
with % as a crude approximation.

To illustrate the presence of the evidence in favour of linkage, consider the ASP lod score.
Because we have chosen families in such a way that the markers are fully informative, that is,
identity-by-descent (IBD) sharing can be determined with certainty, one can easily show that, of
the 25 ASPs, 1 shares zero alleles IBD, 12 share one allele IBD, and 12 share two alleles IBD.
Using the multinomial distribution, estimates of the IBD sharing parameters (zq, z;, z,) are
(0-04, 0-48, 0-48), which are quite different from their null hypothesis (no linkage) values of
(0-25,0-5,0-25). In particular, the estimated mean number of alleles shared IBD
(0-48 + 2(0-48) = 1-44) is larger than the value of 1-0 expected if no linkage is present. The lod
score is computed as follows:

1 12 12
lod score = 1 x 10g10<4 ><25> + 12 x log10<2 ><25> + 12 % 10g10<4 ><25> = 2-39.

By only using sib pair IBD sharing, the ASP lod score excludes information about the marker
contribution from affected parents. Model-based methods compute the likelihood of the entire
pedigree, conditional on the genetic model of inheritance. Consider, for example, family 7. The
allele shared IBD (allele 1) is inherited from the affected parent, which provides additional
support in favour of linkage. If the allele shared IBD had been inherited from the unaffected
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parent, support in favour of linkage would have been reduced. The ASP lod score makes no
distinction between these two cases. The model-based dominant lod score and the ASP lod score
gave about the same p-value. If the disease had been solely due to the disease locus (no sporadics),
the model-based lod score would have exceeded the ASP lod score by a larger amount. In
our data set, however, five families had offspring whose disease status was not due to the disease
allele, but to random effects uncorrelated with genetic status. In these five families, the model-
based lod score contribution was negative and cancelled out some of the positive evidence for
linkage from the other families. For the traditional ASP lod score, such evidence against linkage
is included only by failing to increase the lod score, not by subtracting from it. Had the sporadic
rate been higher, the ASP lod score may have been more powerful than the model-based lod
score.

Transmission/disequilibrium tests (TDTs) were also performed. TDTs detect linkage only in
the presence of association (or association only in the presence of linkage). Because we treated all
affected offspring as independent, our results are valid tests of linkage, but not association, as
affected sibs in the same family are independent only under the null hypothesis of no linkage. We
report the results of two tests, a McNemar y{ test of allele 1 versus all others, and a marginal
homogeneity 72, test of all alleles. Both tests are highly significant for linkage, reflecting the fact
that TDT tests include information about both linkage and association, while the linkage tests
above ignored the strong among-family association between marker allele 1 and disease status
(that is, disequilibrium). For these data, TDTs, which require the presence of both linkage and
association, proved most powerful but, depending on the history and structure of the population
under study, power may fall to zero if a different marker had been chosen, even if the new marker
were also tightly linked.

The p-values we report here are referred to as pointwise p-values because they concern only the
marker locus being tested. In larger studies, researchers may perform similar tests on hundreds of
marker loci, leading to multiple testing concerns that continue to be debated.?? It has been
suggested that, in the context of scanning the human genome for evidence of linkage to any of
200-300 markers, a pointwise p-value be less than 2x 107> to be considered statistically
significant at a genomewise level of o = 0-05.2!

We simulated these data using a model of a highly heritable disease. Most tests designed to
detect linkage or association would have detected linkage in these data. In fact, detection of
linkage to highly heritable diseases is now routinely performed with great success. Many real
diseases, however, are considerably more complex and therefore more challenging. The usefulness
of model-free as opposed to model-based methods, and of linkage methods as opposed to
disequilibrium methods, for detecting genes underlying complex diseases remains the subject of
vigorous discussion. As our discussion of the results of our analyses indicate, even data in which
the presence of linkage is obvious give different answers for a variety of reasons. In practice, it is
difficult to predict in any given data set which of the many methods available will be best able to
detect a disease gene.

7. DISCUSSION

Recently there has been an explosion of genetic mapping studies. Human diseases and traits of all
types and levels of complexity are the subject of gene searches. However, there is much that is not
known about the statistical properties of these methods, including the effects of sampling design
and proper procedure for genome-wide inference. Further, new methods and new ideas for
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statistical approaches to complex disease mapping regularly appear in the literature. As a result,
there are many opportunities for statistical theorists to contribute in meaningful ways. The
analyses of the example data set were intended to demonstrate both the diversity of methods and
the practical challenges the genetic statistician faces when searching for disease susceptibility
genes. Unfortunately, because genetic terminology and the specialized nature of the methodology
can appear at the same time overwhelming and too narrowly focused, few general medical
statisticians become familiar with this area. We hope that this overview of genetic mapping
methods will encourage more statisticians to pursue the subject further. The recently published
Encyclopedia of Biostatistics’® contains many entries concerning genetic analysis and serves as an
excellent starting point.
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