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Electronic Supplementary Material 
 
Materials and Methods 
 

Data 
 
Sources of Museum Specimens. Primary distributional data were derived from the 
collections of the Academy of Natural Sciences (Philadelphia), American Museum of 
Natural History (New York), Carnegie Museum of Natural History (Pittsburgh), 
Colección Ornitológica Phelps (Caracas), Delaware Museum of Natural History, Field 
Museum of Natural History (Chicago), L'Institute Royal des Sciences Naturelles 
(Bruxelles), Louisiana State University Museum of Natural Sciences, Moore Laboratory 
of Zoology (Los Angeles), Museo Argentino de Ciencias Naturales (Buenos Aires), 
Museo de Historia Natural "Javier Prado" de la UNMSM (Lima), Museo de Historia 
Natural Universidad de Cauca (Popayán), Museo Ecuatoriano de Ciencias Naturales, 
(Quito), Museo Nacional de Ciencias Naturales (Bogotá), Museo Nacional de Historia 
Natural (La Paz), Museo Nacional de Historia Natural (Santiago), Museu de Zoologia da 
Universidade de São Paulo, Museu Nacional (Rio de Janeiro), Museu Paraense Emílio 
Goeldi (Belém), Museum Alexander Humboldt (Berlin), Museum Alexander Köenig 
(Bonn), Museum of Comparative Zoology(Harvard University), Museum of Natural 
History of Los Angeles County, Muséum d'Historie Naturelle (Neuchatel), Muséum 
National d'Histoire Naturelle (Paris), National Museum of Natural History (Washington, 
D.C.), Natural History Museum of Gothenburgh, Rijksmuseum van Natuurlijke Historie 
(Leiden), Royal Ontario Museum (Toronto), Swedish Museum of Natural History 
(Stockholm), The Natural History Museum (London and Tring), Western Foundation of 
Vertebrate Zoology (Los Angeles), Zoological Museum (University of Copenhagen).  

 
 

Models 
 
The two basic models (the Range Scatter model and the Range Cohesion model) are 
described in general terms in the body of this article. Here we note additional details.  

Range Size Frequencies Distributions. The observed number of grid cells occupied by 
each species was preserved in all stochastic models, so that the modelled range size 
frequency distribution (RSFD) always matched the observed RSFD, and the modelled 
richness map matched the observed richness map in terms of the grand total number of 
cell x species occurrences. Using the empirical RSFD in species richness models 
preserves the direct effect of environmental factors (including gradients, seasonality, and 
adaptive limits) on the statistical distribution of range size, while not directly determining 
range placement or richness (Colwell et al. 2005), ensuring that model results depend on 
patterns of range placement, not on the departure of a theoretical model for the RSFD 
from the observed RSFD (Colwell et al. 2004).  

Map Cell Probabilities. For each of the ten environmental drivers modelled (table 1, 
main text, as detailed above), we prepared a probability map, represented mathematically 
as a rectangular matrix composed of 90 rows and 80 columns, with each cell representing 
a 1° x 1° latitude-longitude region of the map of South America and its surroundings. The 
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1,676 terrestrial cells (including inland lakes and rivers), arranged in their correct 
geographic relationship to one another, were each assigned a non-zero probability of 
occurrence, as specified below. These terrestrial cells represent the bounded geographical 
domain for the stochastic models. (Occurrence probability was set to zero in the 
remaining 5524 cells, which represented the Atlantic and Pacific oceans, the Gulf of 
Mexico, and portions of eastern Panama.) 

To create the probability map for a particular environmental variable x, we began 
with raw value xij for cell in row i, column j of the matrix (terrestrial cells only). Maps of 
these raw values for most of the environmental drivers are illustrated in figure 1 (main 
text). (Surface area is not illustrated, and the raw values for the geometric constraints 
model are uniform.) The raw probability of occurrence Pij for the cell was then defined as 
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For the simple environmental variables, Equation 1 assumes the probability of 
species occurrence is proportional to the magnitude of environmental factor. Under this 
assumption, if ranges are small compared to the size of the domain (as for the avifauna of 
South America), the relationship between the environmental factor and expected species 
richness is also approximately linear, with no intermediate peak of richness. We did not 
find evidence of strong non-linearities in avian species richness as a function of 
environmental variables. Supplementary Fig. 1 illustrates one of these patterns by means 
of simple, bivariate scatterplots of observed species richness as a function of NPP in each 
grid cell. At the spatial scale of our analyses, there appears to be little non-linearity in 
these relationships, supporting our use of probability maps (Pij) based on linear scaling of 
the simple environmental variables (xij) (Equations 1 and 2). 

For the Range Scatter model and, separately, for the Range Cohesion model, 
ranges were placed stochastically in an initially empty, 90 row by 80 column species 
richness map, guided by each of the ten environmental probability maps. Thus there were 
20 models in all. For a given model, all species' ranges were assigned to a richness map 
stochastically, using the same environmental probability map. The distribution of each 
species was mapped as a matrix of ones (present in cell) and zeros (absent from cell). The 
total species richness for each cell was equal to the sum of species occurrences. 

Initial Occurrence. The initial cell chosen for each species was chosen stochastically, 
based on the environmental probability maps. Mathematically, the probability that the 
initial occurrence for a species' range was in cell (i, j) was simply Pij (Equation 1, above). 
Thus, initial occurrence was more likely in some grid cells than others, based on their 
environmental characteristics. The procedure for assigning the cell of initial occurrence 
was identical for the Range Scatter and Range Cohesion and models. The models differed 
only in how subsequent cells were chosen. 

Subsequent Events. In the Range Cohesion model (based on the “spreading dye” model 
of Jetz & Rahbek 2001), the placement of each range was completed by choosing any 
second and subsequent cells from among the set of terrestrial cells bordering (by sides of 
corners) the cells already occupied by that species, with the choice again guided 
probabilistically by the values of the environmental probability map in those cells. 
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Mathematically, if there were N terrestrial cells bordering the cell or cells already 
occupied by the species, but not yet occupied by the species, the probability Qij of cell (i, 
j) being chosen from among the N was 
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where the summations were taken over the N candidate cells. The probability of any other 
cell being chosen was zero. With this algorithm, range cohesion was enforced, but the 
initial placement and the subsequent assignment of occurrences that locate and shape the 
range were guided by the environmental probability map.  

In contrast, the Range Scatter model enforced no range cohesion. Second and 
subsequent cells were chosen from among all terrestrial cells not already occupied by that 
species, anywhere in the richness map, whether or not adjacent to cells already occupied 
by the species, guided by the cell values of the environmental probability map. 
Mathematically, if there were N terrestrial cells on the entire map that were not yet 
occupied by the species, then the probability of cell (i, j) being chosen, at any given step 
of the process, is exactly as in the Equation 2 above, with the summations take over all N 
candidate cells. 

Our models assumed complete independence among species, so the presence of 
one species did not affect the probability of occurrence of any other species. Once all 
species occurrences were placed, the species richness for each cell was summed and 
recorded. The stochastic range placement procedure was repeated 300 times for each of 
the 10 environmental maps and for the Range Scatter and Range Cohesion models (20 set 
of runs in all), as listed in Table 1 (main text). Each iteration of the procedure was 
initiated by setting the random number seed from the system clock. At the conclusion of 
each set of 300 iterations a particular model, the average number of species recorded in 
each map cell was taken to be the statistical expectation of richness per cell for that 
model. Because modelled cell richness for each run is the sum of many independent, 
stochastic processes of range placement (one for each species), the distribution of 
modelled cell values, among runs, converges on a normal distribution by the central limit 
theorem. Approximate normality has been demonstrated for one-dimensional models 
based on the corresponding range placement algorithm (R. Colwell, unpublished data). 
The analyses were conducted with a dedicated software application built by Gary 
Entsminger in Delphi 7.0 and run on a Windows PC. 

The assumption of range cohesion. In a heterogeneous environment, the Range 
Cohesion model integrates the simple, but often realistic geometric constraints that 
produce the mid-domain effect (boundary constraints and range cohesion (Colwell et al. 
2004) with environmental heterogeneity. The result is a unified, stochastic model that 
incorporates a further element of realism by weighting the probability of occurrence in 
map cells by an environmental factor or factors. However, the qualitative results of this 
model do not require an assumption of strict range cohesion. Stochastic models based on 
a Poisson dispersal function from occupied cells produce qualitatively similar results for 
small or moderate dispersal distances (see also Connolly 2005). At large dispersal 
distances, this Poisson model converges to the Range Scatter model (Gotelli et al., 
unpublished results). 
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Statistical Analyses. Each of the 95 stochastic models (main text, table 1) generated an 
expected species richness value for every 1 × 1° grid cell in the map. We compared the 
quantitative fit of observed species richness to these model predictions for each model. 
All statistical analyses of observed and predicted species richness were conducted in the 
dedicated software package Spatial Analysis in Macroecology (SAM, Version 1.1; 
Rangel et al. 2006).  

We did not produce predicted richness maps for the five Range Scatter models for 
environmentally homogeneous maps (indicated by n/a in Table 1 in the main text), 
because the results would themselves be stochastically uniform.  

As an initial assessment of the remaining 95 stochastic models, we fit the 
observed species richness to the expected species richness using an ordinary least-square 
(OLS) regression model (Sokal & Rohlf 1995). However, because the analysis is based 
on gridded data, pairs of observations at a given spatial distance may be not statistically 
independent, and this spatial autocorrelation may inflate Type I errors in statistical 
analysis (Legendre 1993; Diniz-Filho et al. 2003). To quantify the amount of spatial 
autocorrelation contaminating the OLS regression model, we analyzed spatial 
autocorrelation in regression residuals using Moran’s I coefficient 
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where d indexes the different distance classes, yi and y j  are observations measured at 
sites i and j, y  is the grand mean, n is the total number of sampling sites, and S is number 
of pairs of observations (or their weights) for a given distance class (Legendre & 
Legendre 1998). For this analysis, we used geodesic surface distances, which take into 
account the earth’s curvature. 

We used a standardized measure of spatial autocorrelation (de Jong et al. 1984; 
Lichstein et al. 2002), the ratio of Moran’s I to its maximum possible value I d( ) Imax d( ), 
where Imax d( ) is defined as 
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and wij  is the geographic distance between sampling sites i and j. 
We calculated I d( ) Imax d( ) for spatial distance d ranging between 0 and 500 km, 

and considered as spatially autocorrelated those residuals with I d( ) Imax d( ) higher than 
0.3. According to this criterion, all our OLS models were spatially autocorrelated. Note 
that this is a conservative criterion that may over-estimate the importance of spatial 
autocorrelation because it is based on a standardized Moran’s I calculated over a 
relatively short distance of 500 km (where positive autocorrelation is most likely to 
occur). 

Next, we calculated the effective number of degrees of freedom (n*) according to 
Dutilleul's method (Dutilleul 1993; Dale et al. 2002): 
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n* =1+ n2 trace ˆ R Y1

ˆ R Y 2( )[ ]−1

 

where R̂  are square matrices (n x n) describing the spatial correlation of the variables Y1 
and Y2, built using the spatial correlograms of these variables, and n is total number of 
sampling sites. This method reduces the number of degrees of freedom in a linear 
correlation analysis according to the magnitude of spatial autocorrelation in both 
variables, as measured by a correlogram. The significance of r2 (or, equivalently, of the 
test for a slope of 0.0) in an OLS regression can be evaluated in the presence of spatial 
autocorrelation using n*, which corrects for the inflation of Type I error due to 
autocorrelation. Without this adjustment, the sample size in our analyses is so large (n 
=1676 grid cells) that patterns would be statistically significant at P = 0.05 for any r2 > 
0.005. 

Because the OLS residuals were spatially autocorrelated in all of our models, we 
used a generalized least squares (GLS, sometimes called “kriging regression" Haining 
1990; Cressie 1993) model to estimate the “true” regression coefficients (β ), while taking 
the spatial component into account: 

β = XTC−1X( )−1
XTC−1Y 

where Y is the response variable (observed species richness), X is the explanatory 
variable (predicted species richness from a particular stochastic model), and C is a square 
matrix (n x n) describing the covariance among pairs of OLS residual values (Haining 
1990; Cressie 1993). For each model, the matrix C was modelled by choosing the best fit 
among the following models describing the semi-variogram of the OLS residuals 
(Legendre & Legendre 1998; Banerjee et al. 2004).  
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The exponential models are defined as 

γ(d) = C0 + C1 1.5 − exp −3
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The Gaussian models are defined as 

γ(d) = C0 + C1 1− exp −3
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The hole effect, or wave, models are defined as 
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where γ is the semi-variance; cov is the covariance; d is the distance among pairs of 
sampling sites; and C0, C1, and a are fitted parameters (Legendre & Legendre 1998).  

GLS is a regression in which the spatial component is defined by the fitted semi-
variogram and is explicitly modelled in the residual terms. Therefore, these residuals 
contain a strong spatial component, which must be decomposed using Cholesky 
decomposition into spatially-structured residuals and a pure error term (Haining 1990; 
Cressie 1993). This error vector e, or noise component, is defined as 

e = L−1 Y − Xβ( ) 
where β  is the vector of estimated slopes and LLT = C, so that the L matrix can be 
obtained by the Cholesky decomposition of the covariance among residuals.  

After fitting the GLS model, we calculated I d( ) Imax d( ) for spatial distance d 
ranging between 0 and 500 km of the GLS error term. To determine whether the fitted 
GLS model effectively controlled for spatial autocorrelation, we assessed the significance 
of the overall spatial correlogram (using 20 distance classes) using the Bonferroni 
correction for multiple tests of significance (Diniz-Filho et al. 2003). We found that, for 
all of the correlograms, none of the Moran’s I coefficients was significant at P = 0.1. 
However, for the error term of 5 GLS models, I d( ) Imax d( ) was higher than 0.5 for the 
distance class 0-500 km. Therefore, for these cases, we fit a Simultaneous Autoregressive 
Model (SAR, Haining 1990; Cressie 1993), which is a GLS-based model, but with the 
matrix C defined as 

C = σ 2 I − ρW( )T[ ]−1

I − ρW( )[ ]−1
 

where σ2 is the variance of the OLS residuals, ρ is the autoregression parameter to be 
estimated for the model, W is matrix of neighbour weights, computed as an inverse 
power function of geographic distances among sampling units ( )31 ijij dw = , and I is an n 
x n identity matrix. Among the 5 models that required SAR, I d( ) Imax d( ) decreased in 4 
models in the distance class 0-500 km, and the overall correlograms remained non-
significant. 
 
Model Selection. To choose among competing models for each data quartile, we used the 
spatially corrected slope values (based on the GLS or SAR models) and the corrected P 
value for the statistical significance of r2 (based on Dutilleul's method). We used a 
hierarchical method to determine the best-fitting models. First, we eliminated any model 
for which the statistical significance of r2 was P > 0.05. For these models, we could not 
reject the null hypothesis that the relationship between observed and predicted species 
richness was not different from zero. This criterion eliminated 53 of the 95 models 
(unshaded cells in table 1, main text, and Supplementary table 1). Next, we eliminated 
models for which the 95% confidence interval of the spatially corrected slope did not 
bracket 1.0. The predicted species richness in these models was correlated with observed 
richness, but the quantitative prediction of a slope of 1.0 was not met (Romdal et al. 
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2005). This criterion eliminated 37 of the remaining 42 models (shaded in gray in table 1, 
main text, and Supplementary table 1). Thus, of the 95 original models, only 5 models 
had slopes that were significantly different from 0.0, but whose 95% confidence intervals 
bracketed 1.0 (shaded in green in table 1 main text, and Supplementary table 1), after 
accounting for spatial autocorrelation. For Quartile 2 only 1 model fit these criteria. For 
Quartiles 1 and 3 and for all species, none of the models fit these criteria. For Quartile 4 
(the most widespread species), 4 models (Geometric Constraints, Temperature, Water-
Energy, and Temperature Kinetics) met these criteria. Of these 4, we eliminated the 
Geometric Constraints model because its slope (0.74) was substantially shallower than 
the slopes for theWater-Energy (1.03), Temperature (0.98), and Temperature Kinetics 
(0.99) models. Among these three models, we chose the Water-Energy model as the best 
fitting because its r2 value was slightly higher, and its intercept bracketed zero 
(Supplementary table 1). 
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Supplementary Information 

Supplementary Figure 1 

Supplementary Fig. 1. Species richness of South American endemic birds in 1° x 1° (latitude-longitude) cells as a function of net 
primary productivity (NPP), for first (smallest ranges) through fourth (largest ranges) range size quartiles and for all quartiles 
combined. Red lines fitted by LOWESS smoothing procedure.  
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Supplementary Information 

Supplementary Tables 1 to 4 
 
Supplementary Table 1. Detailed results from 95 explanatory models for species richness of endemic birds of South America (n = 
2,248). (See table 1, main text, for summary results, especially for easier comparison of Range Scatter and Range Cohesion models.) 
Each titled sub-table (Supplementary Table 1a to 1j), below, represents a range size quartile category (First, Second, Third, Fourth, or 
All Quartiles) for either Range Scatter or Range Cohesion models. Columns represent environmental models and rows organize the 
statistical results. A successful model should explain a significant proportion of the variation in species richness and have a slope that 
is close to 1.0. Unshaded cells indicate non-explanatory models, for which the r2 value does not differ significantly from 0, based on 
the effective number of degrees of freedom using Dutilleul's method to adjust for spatial autocorrelation (Dutilleul 1993). Grey cells 
indicate models for which the r2 value was significantly different from 0, but for which the 95% confidence interval of the slope for 
the best-fitting spatial model did not bracket 1.0. (Note that some models in this category have negative slopes.) Green cells (which 
have italic type) indicate models for which both the r2 and the slope criterion were satisfied. Within each quartile, the model for which 
the slope is closest to 1.0 is boldfaced, indicating the best-fitting model for that quartile. Note that for some quartiles, a best-fitting 
model could not be identified that satisfied our criteria. For the 4th quartile species, the slope values for the Water Energy , 
Temperature, and Temperature Kinetics models were virtually equidistant from 1.0, but the Water-Energy model was marked as the 
best because it had a slightly higher r2 and a better-fitting intercept.  
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Supplementary Table 1a: First Quartile - Range Scatter Models 

 
Topographic 
surface area NPP Precipitation Temperature

Topographic 
Relief 

Ecosystem 
Diversity 

Species 
Energy 

Water 
Energy 

Temperature 
Kinetics 

Ordinary 
Regression          

r2 0.007 0.003 0.000 0.006 0.342 0.212 0.002 0.003 0.009 
P (n*) 0.466 0.738 0.859 0.669 0.000 0.000 0.815 0.776 0.558 

I d( ) Imax d( ) 
(0-500km) 0.689 0.684 0.683 0.688 0.691 0.701 0.683 0.687 0.688 

Spatial 
Regression Needed Needed Needed Needed Needed Needed Needed Needed Needed 

Model GLS GLS GLS GLS GLS GLS GLS GLS GLS 
Intercept 9.773 12.524 11.561 18.093 -0.199 1.144 10.700 17.412 36.325 
P-Value  

(H0: a = 0) 0.000 0.000 0.000 0.000 0.935 0.637 0.000 0.000 0.000 
Lower C.I. 
(P=0.95) 4.569 6.848 6.240 12.436 -5.011 -3.601 5.049 11.869 28.877 

Higher C.I. 
(P=0.95) 14.977 18.200 16.882 23.750 4.613 5.889 16.351 22.955 43.773 

Slope 1.923 -1.508 -0.889 -4.913 1.532 3.013 -0.722 -5.148 -11.892 
P-Value (H0: 

b = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Lower C.I. 
(P=0.95) 1.360 -1.986 -1.222 -5.693 1.426 2.772 -1.134 -7.108 -14.181 

Higher C.I. 
(P=0.95) 2.486 -1.030 -0.556 -4.133 1.638 3.254 -0.310 -3.188 -9.603 

I d( ) Imax d( ) 
(0-500km) 0.430 0.402 0.410 0.425 0.471 0.410 0.404 0.407 0.407 
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Supplementary Table 1b: First Quartile - Range Cohesion Models 

 
Topographic 
surface area NPP Precipitation Temperature

Topographic 
Relief 

Ecosystem 
Diversity 

Species 
Energy 

Water 
Energy 

Temperature 
Kinetics 

Geometric 
Constraints 

Ordinary 
Regression           

r2 0.005 0.007 0.000 0.006 0.328 0.225 0.007 0.003 0.000 0.009 
P (n*) 0.519 0.629 0.911 0.664 0.000 0.000 0.628 0.756 0.827 0.000 

I d( ) Imax d( ) 
(0-500km) 0.687 0.684 0.683 0.686 0.691 0.708 0.683 0.685 0.685 0.687 

Spatial 
Regression Needed Needed Needed Needed Needed Needed Needed Needed Needed Needed 

Model GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS 
Intercept 10.703 11.804 10.902 13.943 0.980 2.531 9.929 13.565 8.392 4.504 
P-Value  

(H0: a = 0) 0.000 0.000 0.000 0.000 0.674 0.283 0.000 0.000 0.004 0.125 
Lower C.I. 
(P=0.95) 5.440 6.075 5.581 8.253 -3.583 -2.085 4.090 7.963 2.694 -1.245 

Higher C.I. 
(P=0.95) 15.966 17.533 16.223 19.633 5.543 7.147 15.768 19.167 14.090 10.253 

Slope 1.394 -1.577 -0.826 -3.087 1.398 2.926 -1.149 -3.398 1.535 3.767 
P-Value (H0: 

b = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 
Lower C.I. 
(P=0.95) 0.910 -2.006 -1.142 -3.763 1.298 2.705 -1.516 -4.096 0.349 2.650 

Higher C.I. 
(P=0.95) 1.878 -1.148 -0.510 -2.411 1.498 3.147 -0.782 -2.700 2.721 4.884 

I d( ) Imax d( ) 
(0-500km) 0.427 0.404 0.407 0.408 0.468 0.421 0.401 0.395 0.420 0.422 
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Supplementary Table 1c: Second Quartile - Range Scatter Models 

 
Topographic 
surface area NPP Precipitation Temperature

Topographic 
Relief 

Ecosystem 
Diversity 

Species 
Energy 

Water 
Energy 

Temperature 
Kinetics 

Ordinary 
Regression          

r2 0.003 0.004 0.001 0.016 0.419 0.217 0.004 0.008 0.017 
P (n*) 0.593 0.704 0.842 0.447 0.000 0.000 0.711 0.603 0.435 

I d( ) Imax d( ) 
(0-500km) 0.703 0.698 0.698 0.703 0.671 0.703 0.696 0.702 0.703 

Spatial 
Regression Needed Needed Needed Needed Needed Needed Needed Needed Needed 

Model GLS GLS GLS GLS GLS GLS GLS GLS GLS 
Intercept 27.012 37.181 33.003 59.813 4.939 7.883 33.111 56.152 153.701 
P-Value  

(H0: a = 0) 0.000 0.000 0.000 0.000 0.270 0.100 0.000 0.000 0.000 
Lower C.I. 
(P=0.95) 16.518 25.801 22.450 47.918 -3.846 -1.513 21.759 44.502 132.972 

Higher C.I. 
(P=0.95) 37.506 48.561 43.556 71.708 13.724 17.279 44.463 67.802 174.430 

Slope 1.166 -0.797 -0.300 -3.768 1.099 1.881 -0.385 -3.461 -13.197 
P-Value (H0: 

b = 0) 0.000 0.000 0.009 0.000 0.000 0.000 0.004 0.000 0.000 
Lower C.I. 
(P=0.95) 0.809 -1.109 -0.527 -4.262 1.034 1.726 -0.650 -3.969 -15.116 

Higher C.I. 
(P=0.95) 1.523 -0.485 -0.073 -3.274 1.164 2.036 -0.120 -2.953 -11.278 

I d( ) Imax d( ) 
(0-500km) 0.424 0.399 0.411 0.406 0.393 0.373 0.401 0.400 0.394 
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Supplementary Table 1d: Second Quartile - Range Cohesion Models 

 
Topographic 
surface area NPP Precipitation Temperature

Topographic 
Relief 

Ecosystem 
Diversity 

Species
Energy 

Water 
Energy 

Temperature 
Kinetics 

Geometric 
Constraints 

Ordinary 
Regression           

r2 0.000 0.018 0.000 0.032 0.384 0.193 0.022 0.022 0.017 0.001 
P (n*) 0.836 0.414 0.877 0.254 0.000 0.000 0.373 0.362 0.176 0.456 

I d( ) Imax d( ) 
(0-500km) 0.697 0.695 0.699 0.695 0.678 0.719 0.692 0.696 0.685 0.695 

Spatial 
Regression Needed Needed Needed Needed Needed Needed Needed Needed Needed Needed 

Model GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS 
Intercept 32.337 35.179 32.626 37.806 8.322 14.378 29.931 36.437 34.998 26.791 
P-Value  

(H0: a = 0) 0.000 0.000 0.000 0.000 0.071 0.002 0.000 0.000 0.000 0.000 
Lower C.I. 
(P=0.95) 21.530 23.211 21.683 25.425 -0.698 5.144 17.644 24.346 23.395 15.652 

Higher C.I. 
(P=0.95) 43.144 47.147 43.569 50.187 17.342 23.612 42.218 48.528 46.601 37.930 

Slope 0.547 -1.165 -0.486 -2.066 0.988 1.800 -1.013 -2.144 -0.371 0.988 
P-Value (H0: 

b = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.195 0.000 
Lower C.I. 
(P=0.95) 0.241 -1.430 -0.694 -2.429 0.925 1.651 -1.244 -2.522 -0.932 0.437 

Higher C.I. 
(P=0.95) 0.853 -0.900 -0.278 -1.703 1.051 1.949 -0.782 -1.766 0.190 1.539 

I d( ) Imax d( ) 
(0-500km) 0.423 0.388 0.405 0.392 0.418 0.409 0.381 0.382 0.411 0.420 
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Supplementary Table 1e: Third Quartile - Range Scatter Models 

 
Topographic 
surface area NPP Precipitation Temperature

Topographic 
Relief 

Ecosystem 
Diversity 

Species 
Energy 

Water 
Energy 

Temperature 
Kinetics 

Ordinary 
Regression          

r2 0.013 0.005 0.018 0.017 0.219 0.185 0.004 0.003 0.019 
P (n*) 0.170 0.621 0.329 0.308 0.000 0.000 0.644 0.659 0.276 

I d( ) Imax d( ) 
(0-500km) 0.726 0.717 0.713 0.722 0.762 0.732 0.719 0.711 0.722 

Spatial 
Regression Needed Needed Needed Needed Needed Needed Needed Needed Needed 

Model GLS GLS GLS GLS GLS GLS GLS GLS GLS 
Intercept 10.646 27.564 21.228 68.280 4.460 2.396 20.791 60.343 14.010 
P-Value  

(H0: a = 0) 0.023 0.000 0.000 0.000 0.265 0.572 0.000 0.000 0.000 
Lower C.I. 
(P=0.95) 1.454 17.825 11.708 57.657 -3.390 -5.916 11.571 49.412 -13.450 

Higher C.I. 
(P=0.95) 19.838 37.303 30.748 78.903 12.310 10.708 30.011 71.274 41.470 

Slope 0.793 -0.122 0.111 -1.521 0.468 0.679 0.205 -1.266 -6.180 
P-Value (H0: 

b = 0) 0.000 0.094 0.041 0.000 0.000 0.000 0.000 0.000 0.000 
Lower C.I. 
(P=0.95) 0.654 -0.265 0.005 -1.739 0.441 0.618 0.091 -1.495 -7.050 

Higher C.I. 
(P=0.95) 0.932 0.021 0.217 -1.303 0.495 0.740 0.319 -1.037 -5.310 

I d( ) Imax d( ) 
(0-500km) 0.400 0.408 0.403 0.432 0.463 0.419 0.407 0.433 0.429 
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Supplementary Table 1f: Third Quartile - Range Cohesion Models 

 
Topographic 
surface area NPP Precipitation Temperature

Topographic 
Relief 

Ecosystem 
Diversity 

Species
Energy 

Water 
Energy 

Temperature 
Kinetics 

Geometric 
Constraints 

Ordinary 
Regression           

r2 0.000 0.000 0.006 0.024 0.171 0.107 0.000 0.012 0.016 0.008 
P (n*) 0.827 0.967 0.627 0.238 0.000 0.012 0.839 0.438 0.253 0.343 

I d( ) Imax d( ) 
(0-500km) 0.715 0.717 0.718 0.708 0.743 0.742 0.716 0.711 0.704 0.707 

Spatial 
Regression Needed Needed Needed Needed Needed Needed Needed Needed Needed Needed 

Model GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS 
Intercept 18.650 30.264 24.930 33.296 4.269 8.955 25.928 33.110 17.464 7.363 
P-Value  

(H0: a = 0) 0.000 0.000 0.000 0.000 0.291 0.043 0.000 0.000 0.000 0.146 
Lower C.I. 
(P=0.95) 9.820 20.989 15.685 23.968 -3.651 0.298 16.796 23.602 7.537 -2.553 

Higher C.I. 
(P=0.95) 27.480 39.539 34.175 42.624 12.189 17.612 35.060 42.618 27.391 17.279 

Slope 0.895 -0.414 0.006 -0.611 0.533 0.748 -0.183 -0.614 0.542 1.184 
P-Value (H0: 

b = 0) 0.000 0.000 0.922 0.000 0.000 0.000 0.012 0.000 0.000 0.000 
Lower C.I. 
(P=0.95) 0.726 -0.573 -0.121 -0.819 0.500 0.674 -0.326 -0.847 0.232 0.872 

Higher C.I. 
(P=0.95) 1.064 -0.255 0.133 -0.403 0.566 0.822 -0.040 -0.381 0.852 1.496 

I d( ) Imax d( ) 
(0-500km) 0.419 0.399 0.411 0.421 0.477 0.431 0.401 0.416 0.411 0.412 

 



Rahbek, Gotelli, et al., Electronic Supplementary Material, Page 17 

 

 

Supplementary Table 1g: Fourth Quartile - Range Scatter Models 

 
Topographic 
surface area NPP Precipitation Temperature

Topographic 
Relief 

Ecosystem 
Diversity 

Species 
Energy 

Water 
Energy 

Temperature 
Kinetics 

Ordinary 
Regression          

r2 0.220 0.625 0.494 0.468 0.217 0.000 0.657 0.545 0.474 
P (n*) 0.005 0.000 0.004 0.005 0.002 0.999 0.000 0.003 0.006 

I d( ) Imax d( ) 
(0-500km) 0.822 0.781 0.809 0.813 0.796 0.894 0.736 0.805 0.813 

Spatial 
Regression Needed Needed Needed Needed Needed Needed Needed Needed Needed 

Model GLS GLS GLS GLS GLS GLS GLS GLS GLS 
Intercept 83.520 -25.791 -6.364 29.784 38.144 53.622 17.675 -4.137 -142.939 
P-Value  

(H0: a = 0) 0.000 0.278 0.729 0.048 0.206 0.004 0.253 0.818 0.000 
Lower C.I. 
(P=0.95) 55.245 -72.384 -42.426 0.237 -21.019 17.372 -12.652 -39.397 -195.732 

Higher C.I. 
(P=0.95) 111.795 20.802 29.698 59.331 97.307 89.872 48.002 31.123 -90.146 

Slope 0.050 0.581 0.361 0.410 0.043 0.061 0.420 0.566 1.764 
P-Value (H0: 

b = 0) 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Lower C.I. 
(P=0.95) 0.011 0.524 0.316 0.330 0.029 0.039 0.379 0.484 1.413 

Higher C.I. 
(P=0.95) 0.089 0.638 0.406 0.490 0.057 0.083 0.461 0.648 2.115 

I d( ) Imax d( ) 
(0-500km) 0.069 0.342 0.296 0.040 0.217 0.173 0.468 0.093 0.038 
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Supplementary Table 1h: Fourth Quartile - Range Cohesion Models 

 
Topographic 
surface area NPP Precipitation Temperature

Topographic 
Relief 

Ecosystem 
Diversity 

Species 
Energy 

Water 
Energy 

Temperature 
Kinetics 

Geometric 
Constraints 

Ordinary 
Regression           

r2 0.481 0.737 0.649 0.684 0.238 0.106 0.721 0.710 0.517 0.365 
P (n*) 0.009 0.000 0.002 0.001 0.011 0.258 0.000 0.000 0.006 0.029 

I d( ) Imax d( ) 
(0-500km) 0.806 0.760 0.809 0.783 0.833 0.893 0.755 0.772 0.833 0.861 

Spatial 
Regression Needed Needed Needed Needed Needed Needed Needed Needed Needed Needed 

Model GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS 
Intercept 87.026 16.226 19.046 7.339 18.117 58.237 63.461 5.219 -26.169 20.902 
P-Value  

(H0: a = 0) 0.000 0.069 0.093 0.038 0.441 0.033 0.000 0.128 0.000 0.411 
Lower C.I. 
(P=0.95) 61.017 -1.275 -3.186 0.408 -28.012 4.827 58.040 -1.494 -39.962 -28.919 

Higher C.I. 
(P=0.95) 113.035 33.727 41.278 14.270 64.246 111.647 68.882 11.932 -12.376 70.723 

Slope 0.119 0.888 0.877 0.981 0.072 0.227 0.383 1.025 1.246 0.744 
P-Value (H0: 

b = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 
Lower C.I. 
(P=0.95) 0.048 0.792 0.808 0.887 0.048 0.174 0.309 0.935 1.062 0.311 

Higher C.I. 
(P=0.95) 0.190 0.984 0.946 1.075 0.096 0.280 0.457 1.115 1.430 1.177 

I d( ) Imax d( ) 
(0-500km) 0.036 -0.021 0.404 0.598 0.344 0.254 -0.271 0.574 0.605 0.048 
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Supplementary Table 1i: All Quartiles - Range Scatter Models 

 
Topographic 
surface area NPP Precipitation Temperature

Topographic 
Relief 

Ecosystem 
Diversity 

Species 
Energy 

Water 
Energy 

Temperature 
Kinetics 

Ordinary 
Regression          

r2 0.196 0.439 0.390 0.250 0.004 0.064 0.463 0.330 0.243 
P (n*) 0.004 0.002 0.005 0.036 0.647 0.013 0.002 0.018 0.042 

I d( ) Imax d( ) 
(0-500km) 0.733 0.652 0.658 0.692 0.780 0.820 0.642 0.667 0.692 

Spatial 
Regression Needed Needed Needed Needed Needed Needed Needed Needed Needed 

Model GLS GLS GLS GLS GLS GLS GLS GLS GLS 
Intercept 97.601 74.689 92.064 137.315 40.729 35.949 101.028 122.670 291.227 
P-Value  

(H0: a = 0) 0.000 0.000 0.000 0.000 0.166 0.244 0.000 0.000 0.000 
Lower C.I. 
(P=0.95) 57.268 41.925 38.741 96.017 -16.868 -24.017 74.327 82.315 191.471 

Higher C.I. 
(P=0.95) 137.934 107.453 145.387 178.613 98.326 95.915 127.729 163.025 390.983 

Slope 0.211 0.273 0.043 -0.166 0.214 0.285 0.241 -0.073 -1.113 
P-Value (H0: 

b = 0) 0.000 0.000 0.239 0.009 0.000 0.000 0.000 0.265 0.000 
Lower C.I. 
(P=0.95) 0.148 0.186 -0.029 -0.290 0.196 0.253 0.187 -0.201 -1.652 

Higher C.I. 
(P=0.95) 0.274 0.360 0.115 -0.042 0.232 0.317 0.295 0.055 -0.574 

I d( ) Imax d( ) 
(0-500km) 0.021 0.095 0.010 0.083 0.254 0.140 0.037 0.083 0.229 
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Supplementary Table 1j: All Quartiles - Range Cohesion Models 

 
Topographic 
surface area NPP Precipitation Temperature

Topographic 
Relief 

Ecosystem 
Diversity 

Species 
Energy 

Water 
Energy 

Temperature 
Kinetics 

Geometric 
Constraints 

Ordinary 
Regression           

r2 0.271 0.437 0.423 0.343 0.018 0.119 0.426 0.385 0.256 0.162 
P (n*) 0.026 0.006 0.008 0.011 0.473 0.111 0.008 0.013 0.033 0.088 

I d( ) Imax d( ) 
(0-500km) 0.738 0.684 0.693 0.716 0.775 0.811 0.688 0.702 0.748 0.774 

Spatial 
Regression Needed Needed Needed Needed Needed Needed Needed Needed Needed Needed 

Model GLS GLS GLS SAR GLS GLS SAR SAR SAR GLS 
Intercept 93.457 50.713 58.206 59.031 28.315 23.496 82.817 48.136 -3.781 -24.488 
P-Value  

(H0: a = 0) 0.000 0.001 0.000 0.003 0.360 0.420 0.000 0.013 0.900 0.448 
Lower C.I. 
(P=0.95) 55.406 19.844 25.004 19.757 -32.338 -33.641 54.523 10.231 -63.067 -87.808 

Higher C.I. 
(P=0.95) 131.508 81.582 91.408 98.305 88.968 80.633 111.111 86.041 55.505 38.832 

Slope 0.337 0.634 0.532 0.512 0.294 0.508 0.492 0.613 0.977 1.192 
P-Value (H0: 

b = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Lower C.I. 
(P=0.95) 0.233 0.501 0.404 0.319 0.266 0.452 0.400 0.422 0.585 0.792 

Higher C.I. 
(P=0.95) 0.441 0.767 0.660 0.705 0.322 0.564 0.584 0.804 1.369 1.592 

I d( ) Imax d( ) 
(0-500km) -0.026 0.009 -0.032 -0.024 0.281 0.356 -0.002 -0.026 0.000 0.311 
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Supplementary Table 2. Explanatory factors for species richness of endemic birds of South America (n = 2,248). Tabled values are 
coefficients of determination (r2) from simple (OLS), one-predictor regressions of observed species richness on raw environmental 
variables. Results are shown for species partitioned into range size quartiles, for the species of the first three quartiles pooled, and for 
all quartiles pooled. Shaded gray cells contain results for all climate models for species of the first three quartiles (smaller ranges). A 
denotes a negative regression slope. Supplementary table 4 shows the corresponding results for all breeding birds of South America (n 
= 2,891). 
 

Quartile First 
quartile 

Second 
quartile 

Third 
quartile 

Quartiles  
(1 + 2 + 3) 

Fourth 
quartile 

All 
quartiles 

Factor       
Precipitation (mm/yr-1)  0.00 0.00  0.02 0.01 0.43 0.35 
Temperature (mean annual, °C)  0.01A 0.02A  0.02A 0.02A 0.47 0.25 
Net primary productivity (tons 
carbon per hectare per year) 

 0.00A 0.00A  0.00 0.00A 0.64 0.44 

Topographic surface area (km2)  0.01 0.00  0.01 0.01 0.24 0.21 
Ecosystem diversity (number of 
ecosystems in cell) 

 0.21 0.22  0.19 0.24 0.00 A 0.07 

Topographic relief  
(elevational range, m a.s.l.) 

 0.34 0.42  0.22 0.36 0.19 A 0.00 A 
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Supplementary Table 3. Explanatory factors for species richness of all breeding birds of South America (n = 2,891). Tabled values 
are coefficients of determination (r2) for predictors of species richness, generated by the Range Scatter model (RS) and the Range 
Cohesion model (RC) based on a simple (OLS) regression of observed on predicted species richness. Species were partitioned into 
range-size quartiles. Shaded gray cells contain results for all climate models for species of the first three quartiles (smaller ranges). 
ADenotes negative regression slope. The corresponding for endemic birds of South America (n = 2,248) are shown in Supplementary 
table 1.  

 

Quartile First quartile Second quartile Third quartile Fourth quartile All quartiles 
 

Factor  RS RC RS RC RS RC RS RC RS RC 
Precipitation (mm/yr-1) 0.01 0.00 0.01 0.00  0.08 0.03 0.67 0.80  0.60  0.62 
Temperature (mean annual, °C) 0.00A 0.00A 0.00A 0.02A  0.00 0.00A 0.67 0.74  0.48  0.48 
Net primary productivity  
(tons carbon per hectare per year) 

0.00 0.00A 0.00A 0.01A  0.05 0.01 0.79 0.83  0.66  0.60 

Topographic surface area (km2) 0.00 0.00 0.00 0.00 A  0.02 0.00 0.20 0.42  0.16  0.27 
Ecosystem diversity (number of 
ecosystems in cell) 

0.21 0.21 0.23 0.22  0.18 0.10 0.00 0.12  0.06  0.11 

Topographic relief  
(elevational range, m a.s.l.) 

0.31 0.29 0.38 0.35  0.16 0.11 0.17A 0.20A  0.02A  0.04A 
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Supplementary Table 4. Explanatory factors for species richness of all breeding birds of South America (n = 2,891). Tabled values 
are coefficients of determination (r2) from simple (OLS), one-predictor linear regressions of observed species richness on raw 
environmental variables. Results are shown for species partitioned into range size quartiles, for the species of the first three quartiles 
pooled, and for all quartiles pooled. Shaded gray cells contain results for all climate models for species of the first three quartiles 
(smaller ranges). A denotes a negative regression slope. Supplementary table 2 shows the corresponding results for endemic birds of 
South America (n = 2,248). 
 

Quartile First 
quartile 

Second 
quartile 

Third 
quartile 

Quartiles  
(1 + 2 + 3) 

Fourth 
quartile 

All 
quartiles 

Factor       
Precipitation (mm/yr-1) 0.01 0.01 0.07 0.04 0.57  0.53 
Temperature (mean annual, °C) 0.00A 0.00A 0.00 0.00A 0.69  0.48 
Net primary productivity (tons 
carbon per hectare per year) 

0.00A 0.00A 0.05 0.01 0.82  0.67 

Topographic surface area (km2) 0.00 0.00 0.02 0.00 0.24  0.21 
Ecosystem diversity (number of 
ecosystems in cell) 

0.21 0.23 0.19 0.25 0.00  0.07 

Topographic relief  
(elevational range, m a.s.l.) 

0.31 0.39 0.16 0.33 0.14A  0.00A 
 

 
 


