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a  b  s  t  r  a  c  t

Ecological  presence–absence  matrices  capture  information  of  species  occurrences  among  a  number
of sites.  Statistical  inference  of matrix  structure  often  used  a fixed–fixed  (FF)  null  model  in  which
matrix  entries  are  randomized,  but  the  row  and  column  total  of  each  random  matrix  match  those  of
the original  matrix.  However,  in  a stochastically  assembled  meta-community,  row  and  column  totals
of a  random  assemblage  might  be expected  to vary  among  matrices.  Here  we  introduce  a  4-step
proportional–proportional  (PP)  algorithm  that  creates  null  matrices  in  which  the  row  and  column  vary
randomly,  but  the  average  row  and  column  totals  in  a set  of PP  matrices  are  unbiased  and  match  those
of the  original  matrix.  We  tested  the performance  of the  PP  algorithm  with  5  sets  of artificial  matrices
and  one  large  set of  288  published  empirical  matrices.  Compared  to the  FF  algorithm,  the  PP  algorithm
eta-community
ums of square reduction

has  better  power  to detect  segregated  and  nested  matrices,  but it is  vulnerable  to  Type  I errors  if row
and column  sums  have  small  variances.  The  PP algorithm  identified  only  9%  of empirical  matrices  as  sig-
nificantly  segregated,  compared  with  30%  identified  by  the traditional  FF  algorithm.  The  choice  between
whether  to  use  the PP or the  FF  algorithm  is similar  to the  distinction  between  random  and  fixed  effects  in
a mixed-model  ANOVA.  For  robust  analysis,  it may  be  desirable  to  use  both  the  PP  and  the  FF  algorithms
with  the  same  data  matrix.
. Introduction

A major focus in community ecology for the past 40 years
as been the analysis of community assembly rules (Weiher and
eddy, 1999). Such “rules” ultimately refer to successional mecha-
isms by which an empty patch acquires a functioning community.
xamples of such rules include habitat filtering, local colonization,
riority and historical effects, orderly extinctions, and species inter-
ctions, including “negative” interactions such as competition and
redation, and “positive” interactions such as mutualism and facil-

tation.
However, ecologists are rarely able to directly observe the tem-

oral assembly of an entire assemblage, except in laboratory studies
f small sets of species with short life spans. Operationally, commu-
ity assembly has come to mean the analysis of repeated patterns of
pecies associations in replicated, censused assemblages. Diamond

1975) popularized the approach with his analyses of the distribu-
ion of 141 land-bird species on islands of the Bismarck Archipelago.
iamond introduced “rules” such as checkerboard distributions
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(pairs of species that never occur together in the same site) and
missing species combinations (particular sets of species that never
occur among replicated assemblages) and attributed both patterns
to the effects of interspecific competition. Other kinds of commu-
nity assembly rules include matrix-wide patterns of nestedness
(Ulrich et al., 2009), guild organization, and food-web structure
(Bascompte et al., 2003). More recently, community assembly rules
have been extended to similar phylogenetic patterns of over- and
under-dispersion (Webb et al., 2002).

The data for such an analysis usually consist of only a binary
presence–absence matrix, in which rows represent species or taxa,
columns represent sites or samples, and the entries represent the
presence (1) or absence (0) of a particular species in a particular
site. Connor and Simberloff (1979) argued that ostensible patterns
in such presence–absence matrices must be compared to those that
would be expected in the absence of community assembly rules.
They championed the use of explicit null model randomizations
of observed presence–absence matrices to test for such patterns.
Although null models have had a long and controversial history in
ecology (Gotelli and Graves, 1996) they have been widely adapted

to the analysis of many patterns in ecology and evolution (Gotelli
and Ulrich, 2012).

Early null models based on parametric tests for species associ-
ations (Schluter, 1984) assumed equal probabilities of occurrences
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mong matrix cells and controlled only for the grand total of occur-
ences (equiprobable–equiprobable algorithm EE). Connor and
imberloff (1979) introduced a null model algorithm in which ran-
omized matrices have row and column totals identical to those of
he original matrix. Although there have been some complications
n how to create a truly random sample of such matrices (Zaman
nd Simberloff, 2002; Miklós and Podani, 2004), this fixed–fixed
FF) algorithm has proved very popular in null model analysis in
he past 30 years.

The FF algorithm has two chief advantages: first, by preserving
ow and column sums, it retains differences among species in the
umber of sites they occupy (row sums) and it retains differences
mong sites in the number of species they harbor (column sums).
hese constraints reflect the intuition of field biologists, which is
hat widespread heterogeneity in species richness and in species
ccurrences may  reflect factors that are not related to species inter-
ctions. Non-random patterns must be above and beyond those
hat are determined by the marginal totals of the matrix. A second
dvantage of the FF algorithm is that it appears to have good statisti-
al properties. During the past 10 years, a variety of benchmark tests
ith artificial matrices have shown that the FF algorithm performs
ell when confronted with heterogeneous, but random, matrices

Gotelli, 2000; Ulrich and Gotelli, 2007a,b, in press). Because the
F randomization infrequently leads to an incorrect rejection of
he null hypothesis (Type I statistical error), it is a good choice for
nalyses of assembly rules, which are rarely based on experimental
ata.

However, there are two aspects of the FF algorithm that are
nsatisfying for a general null model. First, because row and column
ums are strictly maintained, there is a type of zero-sum depen-
ence, and the placement of species within such a matrix is not
trictly random. Second, if communities were assembled through
rocesses of random colonization and extinction, we  would not
xpect row and column sums to be precisely maintained from one
eta-community to the next, although we might expect the aver-

ge row and column sums to match those of the observed matrix.
The simplest way to introduce some variation into row and col-

mn  totals but still maintain differences among species and sites
s to use a probabilistic placement algorithm to fill the null matrix
sim8 in Gotelli, 2000; Jonsson, 2001). Unfortunately, this algorithm
s consistently biased, and results in row and column totals that are
oo even compared to the original matrix. Parametric analogs to this
ind of algorithm can be derived from contingency table analysis
Diamond and Gilpin, 1982; Navarro-Alberto and Manly, 2009), but
hey have proven difficult to implement for ecological matrices.

In this paper, we develop a new proportional–proportional (PP)
lgorithm for creating null matrices that vary in their row and col-
mn totals. We  show that the average row and column totals across

 set of such matrices are unbiased, and match those of the origi-
al data matrix. We  provide benchmark tests of the PP algorithm
gainst a set of artificial random and non-random matrices to assess
ts propensity towards Type I and Type II statistical errors. We  next
est a large set of empirical matrices for patterns of nestedness and
pecies segregation, and find interesting differences compared to
he results of the traditional FF algorithm. In the discussion, we
rovide guidelines for users to decide when to use the PP and FF
lgorithms for null model analysis of community assembly rules.

. Methods

.1. Proportional resampling of presence–absence matrices
Our PP algorithm to create random matrices with varying row
nd column totals has 4 steps: (1) assignment of matrix row and
olumn totals; (2) adjustment of marginal totals; (3) placement of
odelling 244 (2012) 20– 27 21

matrix cell occurrences; (4) adjustment of matrix cell occurrences.
The result is a random matrix for which the expected row and
column totals match those of the original matrix.

2.1.1. Assignment of matrix row and column totals
In the first step, each row and column total is assigned from a

binomial distribution centered around the observed total for each
species and site (Fig. 1). The simplest approach would be to use a
binomial distribution in which the probability of occurrence within
a particular row = (total row occurrences)/(number of columns),
and the number of trials in the binomial is the number of columns.
For example, suppose there are ten columns in a matrix, and the
number of occurrences observed in a particular row is 7. We  would
set the number of occurrences in a row by taking 10 draws from
a binomial distribution with p = 0.7. This procedure would gener-
ate a minimum of 0 and a maximum of 10 occurrences, with an
expectation of 7.0.

However, the inclusion of “empty” row or column sums is prob-
lematic. In a row with 7 occurrences, the binomial probability of
obtaining a 0 is only 5.9 × 10−6. However, if the row contained
only a single occurrence, the probability of obtaining a 0 is 0.35.
Although such missing species or empty islands might indeed arise
by stochastic colonization processes, this kind of null model would
contain an inherent bias: the number of filled rows and columns
could be less than observed, but could never greater than observed.
It is not appropriate to simply discard the trials in which the fill is
zero because this will bias the row and column sums, which would
then be consistently over-estimated.

Therefore, we constrained the binomial, by setting p = 0.5 and
centering the distribution around the observed marginal total, with
the restriction that the total number of occurrences cannot be
greater than the maximum or less than 1. For example, with an
observed row total of 7 out of 10, we take 6 draws from a sym-
metric binomial distribution with p = 0.5. The range of possible row
occurrences is 0–6, with an expectation of 3. We  then shift this dis-
tribution by adding 4 to all values, and the range becomes 4–10,
with an expectation of 7. Note that if the number of occupied cells
in a particular row or column is either 1 or the maximum, then
those values are held constant in the simulation, because using any
other distribution (and still excluding 0s) would lead to a bias. Thus,
the mean � of each row or column marginal distribution is given
by the number of observed occupancies ri and ci within a given row
and column of size r and c, respectively. Minimum (mini) and max-
imum (maxi) values of each of the row binomial distributions are
given by:

mini = 1; maxi = 2ri − 1 ni ≤ r

2
(1)

mini = 2ri − r; maxi = r ni ≤ r

2
(2)

The variance �2
� is given by (maxi − mini + 1)/4. The same equa-

tions hold for columns.

2.1.2. Adjustment of marginal totals
As in many other randomization algorithms (Diamond and

Gilpin, 1982; Gotelli and Graves, 1996; Wright et al., 1998) we
hold constant the observed total number of occurrences O in the
matrix. In most cases, our algorithm generates small differences
�O  in observed and simulated row and column totals. The relative
difference �Orel between assigned and observed occurrences totals
will asymptotically decrease by√∑r 2

∑c 2
�Orel ∝ 1�
i 1�

i

r + c
(3)

To explore the magnitude of such differences in empirical matri-
ces, we used the 288 presence–absence matrices of the Atmar and
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Fig. 1. The four step PP algorithm for resampling matrix entries with probabilities
proportional to row and column marginal totals.
odelling 244 (2012) 20– 27

Patterson (1995) data set (Fig. 2). In 237 of the matrices (82.3%),
the absolute difference between the observed and simulated O was
less than 5 occurrences. The average difference was  2.5 occurrences
(1.25%). Although the maximum observed difference was 7.25% in
matrices with more than 500 occurrences, the relative difference
was at most 3%.

Next, the few missing or exceeding occurrences in the row and
column totals are again assigned from two binomial distributions
with p = 0.5 and with the lower constraint of 1 and the upper con-
straint equaling the number of rows r or columns c, respectively
(Fig. 1). The rationale for using a binomial distribution in this second
step is that the variance in the number of occurrences is necessar-
ily larger for species/sites of intermediate numbers of occurrences
than for species/sites with either a high or a low number of occur-
rences. In summary the above two assignment steps produce row
and column marginal distributions that are centered around the
observed distributions and that have a total number of occurrence
that equals that of the observed matrix.

2.1.3. Placement of matrix cell occurrences
In the third step, occurrences are placed step by step into the

matrix. Following the classic proportional–proportional null model
(sim8 in Gotelli, 2000), a row is selected randomly with probabil-
ity pi = Ri/N, where Ri is the row total and N is the total number
of occurrences in the matrix. A column is selected randomly with
probability pj = Cj/N, where Cj is the column total. Thus, the prob-
ability of placing an occurrence in cell ij is pij = (Ri)(Cj)/(N2). The
cells most likely to be chosen are the ones with the largest row and
column totals, and the cells least likely to be chosen are the ones
with the smallest row and column totals. In the classic sim8 model,
only empty cells are filled this way, but in our model, we allow
multiple entries to accumulate, which preserves the expected fre-
quencies associated with the marginal totals established in Steps
One and Two. These multiple entries are then reduced by the sum-
of-squares reduction algorithm (SSR) of Miklós and Podani (2004)
in which submatrices with entries k, l > 1 are reduced according to(

l i

j k

)
→
(

l − 1 i + 1

j + 1 k − 1

)
(

i k

l j

)
→
(

i + 1 k − 1

l − 1 j + 1

) and (4)

with i < l, k and j < l, k until all k, l ≤ 1.
The sum of squares reduction begins by randomly choosing a

matrix cell for which the entry is >1. Next, a random row and ran-
dom column is chosen until the resulting submatrix can be reduced
according to the SSR algorithm. Repeated submatrices are chosen
until the cell total has been reduced to 1. For example, in Fig. 1
the submatrix {{3,0},{0,1}} is first reduced to {{2,1},{1,1}} and
then a new submatrix {{2,0},{0,1}} is reduced to the checkerboard
{{1,0},{0,1}}. After reduction we performed an afterburn of 10*c*r
(c columns, r rows) standard checkerboard swaps.

If, by chance, all assigned marginal totals from step two were
to equal the original matrix totals, our method should produce a
random distribution identical to that of the FF null model. This
statement is equivalent to a proof that the SSR algorithm has
the same sample space as the FF algorithm. Although there is
no formal proof of this (Miklós and Podani, 2004), we  used the
Atmar–Patterson data set (Atmar and Patterson, 1995) to compare
the results of FF and SSR when applied to the C-score (Stone and
Roberts, 1990) as a metric of species associations and to NODF (nest-

edness from overlap and decreasing fill) (Almeida-Neto et al., 2008)
as a metric of nestedness. Matrices generated by the FF and the SSR
algorithms with the same row and column totals had virtually iden-
tical null distributions with highly correlated standardized effect
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ig. 2. The absolute (A) and percentage of relative differences (B) of assigned and ob
resences–absence matrices of the Atmar–Patterson (1995) compilation.

izes (r = 0.99 for the correlation between SESFF and SESSSR for both
he C-score and NODF). Moreover, classifications by the two meth-
ds were highly concordant (100 of 102 statistically significant
-score matrices, and 61 of 75 statistically significant NODF matri-
es were jointly identified by both the FF and SSR algorithms). This
enchmark comparison shows that, for a given set of matrix mar-
in totals, the FF algorithm and the SSR algorithm are very similar.
herefore, any differences between the behavior of the FF model
nd the PP model must be caused by the variability in row and col-
mn sums that is generated by the PP model, and not by differences

n how the matrix cells are filled in each model.

.1.4. Adjustment of matrix cell occurrences
Occasionally, the assigned row and column marginal totals in

he PP algorithm can define an impossible matrix state, in which
ase the SSR algorithm will run into a dead end. For each multiple
ell entry, we attempted 10 × O trials with the SSR algorithm before
erminating the search. In a fourth step, these irreducible multiple
ntries (if present) were placed into empty cells proportional to the
redefined row/column totals (thus according to sim8). For exam-
le, in Fig. 1, the double entry in cell (1,1) cannot be eliminated
ith the SSR algorithm. Thus, one entry would be re-assigned to

n empty cell with probability proportional to both marginal total
istributions.

To estimate the frequency of irreducible entries and thus
f the potential bias in empirical matrices, we used again the
tmar/Patterson data set. Of the 288 × 200 null model matrices
enerated 17,344 (=30.1%) could not be completely reduced with
he SSR algorithm. In these irreducible matrices, there were, on
verage, 1.4 occurrences per matrix that needed to be re-assigned.
hese entries constituted an average of 0.6% of the total number
f occurrences. In 39% of the empirical matrices, all null matrices
ere completely reducible by the SSR algorithm. Reducibility was
ncorrelated with matrix size or matrix fill (p(U) > 0.05). For exam-
le, the Åland bird matrix of Fig. 3 (Haila et al., 1980) contains only
wo completely filled columns and irreducible entries were never
ncountered during the construction of 200 random matrices. The
aximum number of irreducible occurrences was 20 (=4.6% of the

otal number of occurrences) and occurred in the Brazilian bird data
atrix (Willis, 1979) in which 86 of its 216 rows are completely

lled. Because rows that are completely filled are unchanged in the
F model and in our PP model, they can simply be eliminated before
ny analyses. Thus, the very small number of re-assignments does
ot introduce a bias and influence the null model performance.

Our assignment of row and column totals and the total number
f occurrences gives unbiased random variates centered around

he observed values (Fig. 3). None of the observed marginal totals
n Fig. 3A and C was outside the 95% confidence limit of the null dis-
ribution. The average skewness of the row distributions (Fig. 3A)
as −0.04 and that of the column distributions (Fig. 3C) was 0.004.
d numbers of occurrences in dependence of the total number of occurrences in 288

Both values do not significantly differ from zero. In contrast, the
classic proportional null model (Gotelli, 2000) yields consistently
biased row and column totals (Fig. 3B and D),  with over-estimates
of occurrences for rare species and species-poor sites, and under-
estimates of occurrences for common species and species-rich sites
(Gotelli and Graves, 1996). 15% of the marginal totals in Fig. 3 fell
outside the 95% confidence limits of the distribution generated by
the classic proportional model.

In summary, our PP algorithm provides for the first time a set
of null matrices with the following useful properties: (1) each null
matrix has the same fill as the original matrix, the same matrix
dimensions, and contains no empty rows or columns; (2) in contrast
to the popular FF algorithm, the row and column sums do not match
the empirical matrix exactly and vary randomly from one random
matrix to the next; (3) the average row and column sums for a set
of random matrices are unbiased and match the observed row and
column sums of the empirical matrix.

2.2. Artificial and empirical matrices

We  created five sets of artificial presence–absence matrices with
specified amounts of randomness and structure using the software
application Matrix (Ulrich and Gotelli, 2007a).  Similar to previous
approaches (Ulrich and Gotelli, 2007a,b), we constructed two  types
of random matrices (Mequi and Mprop) designed to span the range of
empirical matrices that are typically generated by field ecologists
who sample replicated assemblages at local and regional spatial
scales. We  generated 100 Mequi matrices with uniform, randomly
drawn numbers of rows (10 ≤ m ≤ 100) and numbers of columns
(10 ≤ n ≤ 50), and a uniform distribution of the percentage of matrix
cells that were occupied (matrix fill; 0.1 ≤ fill ≤ 0.9). Next, to gen-
erate 100 equally dimensioned Mprop matrices, we sampled row
sums (=species occurrences) with placement probabilities from an
exponential distribution, and column sums (=site richness) with
placement probabilities from a uniform random distribution. Thus,
the first simulation produced matrices with relatively uniform row
and column sums (Mequi), whereas the second simulation produced
matrices with relatively uniform column sums and highly hetero-
geneous row sums (Mprop). A third simulation was  used to generate
a set of matrices (Mrand) in which both the row and the column
totals were sampled from exponential distributions.

These three sets of matrices (Mequi, Mprop, and Mrand) differed
in the whether the row and column sums were sampled from
uniform or exponential distributions, but the cell entries were all
random. We  also generated two sets of non-random matrices, one
in which some of the species pairs were segregated (Msegr), and one

in which some of the species pairs were nested (Mnest). In the Msegr

matrices, we  filled the matrix with 2 × 2 checkerboard submatrices
{{1,0},{0,1}} until a predefined matrix fill (drawn from a random
uniform distribution between 0.1 and 0.9) was reached. In the Mnest
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ig. 3. Row (A and B) and column (C and D) totals (black dots) of the Åland island b
lgorithm (A and C) and by a traditional placement algorithm (sim8 in Gotelli, 2000
nd  lower 95% confidence limits of the null distribution (N = 200).

atrices, we first filled the matrix with row and column placement
robabilities drawn from two random exponential distributions.
fter sorting the matrix according to row and column totals, we
andomly introduced a small number (5–10% of matrix fill) of unex-
ected absences in the upper left corner of the matrix and a few
nexpected presences in the lower right corner. The Mnest matri-
es were therefore moderately to highly nested. Both matrix types
epresent a pattern of species segregation or nestedness in which
pecies differ greatly in their occurrence frequency, and sites differ
reatly in their suitability, but species within individual pairs tend
o segregate or co-occur in classic checkerboard or nested patterns.

For empirical analyses, we compared the performance of the
P, FF, and EE null models when applied to the well-known set
f 288 biogeographical presence–absence matrices compiled by
tmar and Patterson (1995).

.3. Benchmark tests and empirical comparisons

We  used two metrics of metacommunity structure proposed to
ccount for pattern in presence–absence matrices. First, we  esti-
ated matrix wide species segregation (and aggregation) with a
odified version of Stone and Robert’s (1990) C-score (Ulrich and
otelli, in press), which is a normalized count of the number of
heckerboard submatrices ({{1,0},{0,1}} or {{0,1},{1,0}}).

-score =

4
∑

i,j

⎛
⎝ 1 ... 0

... ... ...

0 ... 1

⎞
⎠ ∨

⎛
⎝ 0 ... 1

... ... ...

1 ... 0

⎞
⎠

mn(m − 1)(n − 1)
(5)

Because the original normalization of the C-score regards the
umber of species pairs only (Stone and Roberts, 1990) the C-score
as been positively correlated with the number of sites (Ulrich and

otelli, 2007b).  Our modification accounts for the number of site
ombinations [n(n − 1)/2] and corrects this bias (Ulrich and Gotelli,
n press). Second, we used the NODF index (Almeida-Neto et al.,
008) to estimate the degree of nestedness.
g bird matrix (Haila et al., 1980). The line gives the mean values assigned by the PP
 probability proportional to marginal totals (B and D). Error bars denote the upper

We used these two metrics with our PP null model to com-
pare the performance with the FF null model implemented with
the independent swap algorithm (Gotelli, 2000) and 10*c*r swaps.
Null distributions of metric scores were based on 200 randomized
matrices each. Because the null model distributions were in most
cases approximately symmetrical, we  converted each estimated
probability value to a Z-transformed score (Z = (x − �)/�, where x is
the observed metric, � is the average metric of the 1000 simulated
matrices, and � is the standard deviation of the 1000 simulated
matrices). Assuming normality, Z-transformed scores should have
approximate values of ±2 at the two-sided 95% confidence lim-
its. We  compared the performance of the two metrics (C-score and
NODF) in combination with the three null models (EE, PP, and FF).

3. Results

Both the FF and the PP models correctly identified the Mprop

random matrices as being random, but the PP model failed when
applied to the simple Mequi matrices (Table 1). The PP model incor-
rectly identified 76 (C-score) and 65 (NODF) of the Mequi matrices
as non-random. The FF model correctly identified this same set of
matrices as being random. The reason for the failure of the PP model
to identify random matrices with equiprobable row and column
totals appears to be a systematic bias in all randomizations that
relax the marginal totals (see Section 4).

The PP algorithm identified more matrices as being non-random
than FF when applied to the Msegr and Mnest matrices (Table 1). PP
identified 73% of the Msegr matrices and 65% of the Mnest matri-
ces as being not segregated while FF did so in only 37 and 21% of
the cases, respectively. In line with previous work (Gotelli, 2000;
Ulrich and Gotelli, 2007a,b) EE failed to identify segregated matrices
but tend to classify them as being aggregated (Table 1). PP worked
properly when applied to the Mnest matrices and correctly identi-

fied nestedness in 62% of the matrices. The behavior of the C-score
was not clearly opposite to NODF.  When used with FF the NODF
had a much lower power than PP while the C-score identified 95%
of the matrices as being segregated. This fact demonstrates again
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Table  1
Numbers of presence–absence matrices below (<LCL) or above (>UCL) the two  sided 95% confidence limits (CL) in five artificial matrix sets (M), and one empirical matrix set
(AtPa:  Atmar and Patterson, 1995). N: total number of matrices; fixed–fixed (FF), equiprobable–equiprobable (EE), proportional–proportional (PP) algorithms. C-score = Stone
and  Roberts (1990) C-score to measure species segregation. NODF = ) index to measure nestedness.

N FF EE PP

C-score NODF C-score NODF C-score NODF

<LCL >UCL <LCL >UCL <LCL >UCL <LCL >UCL <LCL >UCL <LCL >UCL

Mequi 100 1 2 1 2 5 2 1 3 0 76 65 0
Mrand 100 4 7 17 0 98 0 0 88 3 1 12 1
Mprop 100 1 4 18 0 100 0 0 99 2 0 8 0
Msegr 100 1 37 21 2 60 4 6 55 0 73 65 0
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Mnest 100 0 95 9 22 100 

AtPa  288 2 108 70 5 224 

hat nestedness and species segregation are not mutually exclusive
atrix patterns as has been claimed by recent work on meta-

ommunity structure (Almeida-Neto et al., 2007; Presley et al.,
010, but see Gotelli and Ulrich, 2012).

The differences in performance can be understood by examin-
ng the null distributions from the three algorithms when applied
o the same matrix. Fig. 4A and B shows the null distributions of
he C-score and NODF obtained from PP, FF, and EE randomizations
f one of the Mrand matrix with 50 rows and 15 columns. The three
ull model distributions differ in both their average and their stan-
ard deviation. In all of the 500 theoretical matrices (Mequi, Mprop,
rand, Msegr, and Mnest) the FF distribution of the C-score and NODF

ad the smallest � whereas the standard deviations of the PP dis-
ribution were greatest in 83% (C-score) and 64% (NODF) of the

atrices. Thus, more than 60% of the matrices followed the inequal-
ty �FF < �EE < �PP (Fig. 4). Further, in 74% of the matrices the EE
xpectation � of the C-score was largest and in 73% of the matrices
he expectation � of NODF was the smallest. The PP expectations
f both metrics were either lower than those of FF (C-score: 66%,
ODF: 68%) or ranged intermediate between FF and EE (C-score:
4%, NODF:  32%). Hence for the C-score about 2/3 of the matri-
es followed the inequality (�FF ∧ �PP) < �EE (Fig. 4). Because the
xpectation and standard deviation of all 3 algorithms are differ-
nt, they can give contrasting results when applied to the same
atrix. For example, FF identified the Åland bird matrix of Fig. 3

Haila et al., 1980) as being significantly segregated and anti-nested
Fig. 4C and D), whereas PP and EE identified this matrix as being
ggregated and nested.

When applied to the empirical Atmar–Patterson data set, the PP
lgorithm identified a substantially lower number of significantly
tructured biogeographic matrices than the FF algorithm (Table 1).
nly 9% of the matrices were identified as being significantly segre-
ated whereas previous studies (Gotelli and McCabe, 2002; Ulrich
t al., 2009) and our present reevaluation based on the FF null
odel pointed to more than 30% of the matrices as significantly

egregated. For nested patterns, the PP algorithm identified 5% of
he matrices as significant, compared to approximately 9% in other
ecent studies (Ulrich and Gotelli, 2007a; Ulrich et al., 2009). We
ote that 229 SESs of the C-score were positive with FF and 194 with
P pointing in both cases to a prevalence of “moderate” segregation
n the empirical data set.

. Discussion

The PP algorithm has the desirable property of introducing vari-
tion in row and column totals among a set of null matrices (Fig. 2),
ut avoids the biases that were present in previous algorithms

sim8 in Gotelli, 2000). Temporal variability in species richness of
ites (column totals) and total numbers of occurrences of species
row totals) is of course a general feature of ecological communities
pread among a number of sites. Our null model thus introduces
0 0 100 35 31 4 62

12 5 233 24 26 29 14

more ecological realism into the randomization of matrices. This
variation naturally leads to a wider range of possible values in the
null distribution, but also changes the null expectation compared
to the classic FF model (Fig. 4). The new algorithm has surpris-
ingly good power for detecting non-random patterns (Table 1),
although it identifies a substantially smaller number of the empir-
ical Patterson–Atmar data matrices as non-random.

The choice between the two algorithms is not clear-cut, and
depends, in part, on the kind of data being analyzed. The PP
algorithm seems especially well-suited to small-scale survey data
(such as invertebrate or plant occurrences in quadrats or traps),
in which sampling regions (such as quadrat areas) are arbitrary,
and occurrence records would be expected to vary substantially
in subsequent surveys. On the other hand, the FF algorithm might
be more appropriate for large-scale species occurrence records on
islands (such as checklists of Darwin’s finches on all of the Gala-
pagos islands), for which it might seem more realistic to fix the
number of species per site and the number of sites per species in
the null matrices. In many ways, the choice between the FF and
PP algorithm is analogous to the choice of a fixed-factor versus a
random-factor in an analysis of variance model (Quinn and Keogh,
2002).

At least compared to the artificial structured matrices used in
our analyses, the PP algorithm has better statistical power to detect
effects than does the traditional FF algorithm. This feature does not
depend on the predefined confidence limit (two sided 5% in this
paper). Similar to the FF and EE null model distributions (Ulrich and
Gotelli, 2007a,b) the respective PP distributions are approximately
normally distributed and confidence limits of 1% or less do not qual-
itatively change the results reported in Table 1. However, the PP
algorithm suffers from serious Type I errors (incorrect rejection of a
true null hypothesis) when confronted with random matrices with
equiprobable row and column totals (Table 1). This bias appears to
be a general property of any null model that relaxes row and column
totals (Appendix). In the FF algorithm, deviations from randomness
reflect only the “internal” structure of the matrix, that is the pat-
tern of co-occurrence conditioned on the marginal totals. In the
PP algorithm, deviations from randomness reflect both the internal
structure of the matrix, as well as the “external” structure – the row
and column totals. Because negative species interactions will tend
to reduce the variance in species richness among sites (Schluter,
1984), the PP algorithm can potentially detect non-random matri-
ces that would be missed by the FF algorithm.

Because the choice between the PP and FF algorithm is not obvi-
ous, it might be prudent to analyze the same matrix with both
methods. If both methods give qualitatively similar results, the
pattern is robust to the details of the null model analysis. For the

C-score 34% of the Atmar–Patterson matrices were classified as seg-
regated by the FF or PP algorithm, 6% by both algorithms, and 60%
of the matrices were classified as random by both algorithms. If
the PP algorithm gives a significant result, but the FF algorithm
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Fig. 4. Null model distributions (1000 null matrices each) of the of the FF (full line), PP (broken line), and EE (dotted line) applied to one of the Mrand matrices (50 species
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5  sites) (A and B) and the empirical Åland island breeding bird matrix (Haila et al.,
hat  the peak of the FF distribution in A is truncated to increase readability.

oes not, then the distribution of row and column sums should
e carefully scrutinized. If the variance in row and column totals
atches the expectation of a zero-truncated Poisson distribution

hen it might be prudent to use the FF results because the pat-
ern may  reflect random variation in row and column totals. We
ote that in the Atmar–Patterson data set 61% of the row and 69%
f the column marginal distributions deviated from a truncated
oisson model at the 5% error level in having too high variances.
he variance–mean relationship in these 288 meta-communities
ather followed a power function (�2 ∝ �z) according to Taylor’s
ower law (Taylor, 1961) with exponents of z = 1.61 for the column
site) distribution and z = 2.24 for the row (species) distribution.
f the variance in row and column totals is greater than expected
rom a zero-truncated Poisson, then the significant result with PP
annot be attributed to random, equiprobable occurrences. Con-
ersely, if the variance in row and column totals is substantially less
han expected by chance, the result may  indeed indicate significant
pecies segregation, which will lead to this effect (see discussion
n Appendix).  For the Atmar–Patterson matrices, only one matrix
lassified as significant by PP, but non-significant by FF.

Finally, if the FF model is significant but the PP is not, it is instruc-
ive to examine the null distributions directly to see whether the
esult is due solely to the greater variation generated by the PP
odel, or whether it is due to shifts also in the expected value

as is the case for the Åland archipelago data in Fig. 4). For the
tmar–Patterson matrices, 28% were classified as significant by the
-score–FF algorithm combination, but were not significant when
ested with the PP algorithm. These kind of differences reflect the
dded variability in co-occurrence metrics that is associated with
ariation in row and column totals.

There are two additional issues to consider. First, the PP algo-
ithm mimics a random colonization process by allowing for
ariation in row and column totals, but it does not represent an
xplicit mechanistic meta-community model (Gotelli and Ulrich,
012). If independent data are available, row and column proba-
ilities can be conditioned on other variables. For example, Jenkins
2006) constructed null models in which occurrence probabilities
ere weighted by habitat area, and Gotelli et al. (2010) constructed
ull models in which occurrence probabilities were proportional to

he biomass or population size of a species. These algorithms rep-
esent more mechanistic null models, although it is very likely in
oth cases that the simulated marginal distributions will not match
hose of the original matrix.
 C and D). The vertical lines mark the respective observed NODF and C-scores. Note

One final point is that null model analyses that rely on tra-
ditional summary metrics (such as the C-score or NODF)  may
not be reliable for classifying non-random patterns as segregated,
nested, or aggregated. Recent analyses have demonstrated that a
single matrix may  simultaneously contain embedded structures
that reflect different kinds of patterns (Ulrich and Gotelli, in press;
Gotelli and Ulrich, 2012). It may  be more informative to examine
patterns of segregation, aggregation, or nestedness for the indi-
vidual pairs of species in a presence–absence matrix (Gotelli and
Ulrich, 2010).
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