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Growing concern about biodiversity loss underscores the need to quantify and understand temporal

change. Here, we review the opportunities presented by biodiversity time series, and address three related

issues: (i) recognizing the characteristics of temporal data; (ii) selecting appropriate statistical procedures

for analysing temporal data; and (iii) inferring and forecasting biodiversity change. With regard to the first

issue, we draw attention to defining characteristics of biodiversity time series—lack of physical bound-

aries, uni-dimensionality, autocorrelation and directionality—that inform the choice of analytic

methods. Second, we explore methods of quantifying change in biodiversity at different timescales,

noting that autocorrelation can be viewed as a feature that sheds light on the underlying structure of tem-

poral change. Finally, we address the transition from inferring to forecasting biodiversity change,

highlighting potential pitfalls associated with phase-shifts and novel conditions.

Keywords: biological diversity; time; legacy data; traits; global change; conservation
1. INTRODUCTION
A key scientific challenge is to quantify and forecast tem-

poral change in biodiversity attributable to both natural

and anthropogenic causes [1,2]. Forecasting biodiversity
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change is essential for developing successful policies to

mitigate biodiversity loss [3] and for addressing basic eco-

logical issues, such as the relationship between diversity

and ecosystem function [4], the linkage between diversity

and stability [5] and the detection of ecological tipping

points [6] in relation to the existence of alternative

stable states [7]. Because most biodiversity studies are

observational rather than experimental—particularly at

large scales, we argue that temporal relationships between
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biodiversity, ecosystem services and hypothesized driver

variables are among the strongest possible evidence for

causal links. Moreover, temporal studies of biodiversity

are essential for forecasting future change in community

structure and ecosystem function.

We begin by discussing key characteristics of biodiver-

sity time series, presenting details on the advantages and

limitations of different data sources in the electronic sup-

plementary material. Second, we address the quantitative

analysis of biodiversity time series, identifying four main

factors affecting observed biodiversity temporal change:

measurement error, process error, systemic change and

historical influence. We discuss methods used to estimate,

quantify or (when appropriate) minimize these sources of

change. Third, we highlight approaches and potential pit-

falls in forecasting biodiversity change, on the basis of

inferences drawn from past trends. We are restricted to

time series of one (any) quantitative metric of biodiversity.

We are purposely agnostic about which metric, and illus-

trate that the same analysis tools can be used for different

metrics. We highlight that anecdotal evidence and histori-

cal records can provide important information, which

need only be translated into a quantitative assessment

for these tools to be useful for this sort of data.
2. CHARACTERISTICS OF TEMPORAL
BIODIVERSITY DATA
A biodiversity time series documents the abundances (or at

least presence–absence) of multiple genes, traits or taxa

at multiple points in time. Taxa—species, in particular—are

the most common units of diversity, but most of the methods

we discuss are also applicable to other units of diversity (see

figure 1 and electronic supplementary material, figures S4

and S5 for an illustration of this point). These data are typi-

cally used to estimate one or more biodiversity metrics at

each time point. Common diversity metrics include species

richness (the total number of species), evenness (the relative

dominance of taxa), species diversity (indexes that combine

both richness and evenness), functional diversity (the range

of traits present in the community, which are often respon-

sible for ecosystem function), phylogenetic diversity (the

evolutionary breadth of the community) or compositional

analysis. The merits of different biodiversity metrics have

been thoroughly discussed elsewhere [10].

Collecting (or assembling) temporal data involves dis-

tinct challenges from investigations made using spatial

data. In space, the grain (the units of observation),

extent (the universe encompassed by the data) and cover-

age (the proportion of the extent that is observed) [11]

can always be adjusted, assuming that sufficient resources

are available. However, researchers cannot travel in time,

and so must be opportunistic and creative in identifying

temporal data sources.

Four sources of data can be used for temporal inference:

temporally replicated sampling, chronosequences (in which

space is used as a proxy for time), legacy or historical records

and palaeobiological assemblages (see the electronic sup-

plementary material). Integrating data from different

sources can provide insights not possible to get from any

one source and may overcome some of the weaknesses of

each type of data. For example, a comparison of temporally

replicated sample data with chronosequences can directly

test the validity of the space-for-time substitution [12].
Proc. R. Soc. B
Also, combinations of multiple time series, including

palaeobiological, historical and contemporary data, can

extend time series or provide more frequent sampling [13].

Temporal data differ from spatial data in at least three

crucial characteristics. First, temporal data are directional,

which creates an asymmetry in the relationship among

data points: the past can influence the future, but not

the reverse. This critical property of temporal data can be

used to strengthen inference about causality [14] because

effects cannot precede causes. This asymmetry in the

cause–effect relationships can be used to predict change.

Additionally, the statistical estimation of time lags can shed

light on cause-and-effect relationships in temporal data.

Second, time is uni-dimensional, whereas space has

three dimensions. In this respect, strictly temporal patterns

are simpler to analyse than spatial patterns. In fact, spatial

patterns are often collapsed into fewer dimensions, such

as transects along latitudinal, topographic and habitat

gradients [15]. However, time and space are frequently

confounded, as in historical fisheries records that cover

time periods when the fleet was focusing on different

areas, or palaeo records that cover different spatial locations

as well as periods of time. Every time series is embedded in

a spatial context, just as every spatial dataset is embedded

in a temporal context. Hence, it is important to either

assess change in a spatio-temporal context or to consider

the contribution of spatial variation in the time series to

measurement and process error (see §3).

Third, temporal domains are often unbounded because,

in principle, the beginning and end of a time series is

arbitrary. However, there are several potential ‘natural’

boundaries to time series, including colonization of new

space, adaptive radiations, the annihilation of a community

(e.g. continental glaciation or mass extinction), sharp tran-

sitions into alternative states and the present day. In spatial

data, boundaries can directly or indirectly generate strong

signals. For example, even if species are randomly distribu-

ted within a spatial domain, geometric constraints in range

distribution lead to a non-uniform accumulation of species

at the domain centre (the mid-domain effect [16]). These

patterns would not be expected to occur on unbounded

temporal series. For bounded time series, directionality

means that the effect of a starting boundary is different

from that of an ending boundary. The starting point is an

important part of the successional pattern that follows

[17]. Moreover, when studying temporal change relative

to an arbitrary starting point, sensitivity of the conclusions

to the chosen baseline needs to be considered, and poten-

tial effects of a shifting baseline should be recognized [18].

Temporal and spatial datasets also share some qual-

ities. The concept of grain [11,19] is equally applicable

to spatial and temporal data. For temporal data, grain

size is the degree of time averaging within each data

point, which is akin to spatial averaging where biodiversity

is quantified within an area, rather than at a single point

in space. In practice, almost all data include some com-

ponent of both temporal and spatial averaging because

spatial data are seldom simultaneously collected in a

single ‘snapshot’, and temporal data are rarely collected

at exactly the same spatial location. Grain size can be

standardized across multiple time series by temporally

averaging higher resolution series, or it can be statistically

controlled in the analysis [20]. Census interval (the time

period between two discrete samples) also affects

http://rspb.royalsocietypublishing.org/
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Figure 1. Four ways of analysing trends in biodiversity. The data are range in gastropod fossil shell size (a metric of trait diver-
sity) through the Phanerozoic from Kosnik et al. [8]. Similar figures analysing taxonomic and genetic diversity are included in
the electronic supplementary material, figures S4 and S5 to illustrate how similar analysis tools can be used for different com-

ponents of biodiversity. Grey lines show the observed data. All analysis done in R v. 2.12.2 (90); the code is included as
electronic supplementary material. (a) t-test comparing shell size diversity in two time intervals (plotted as a box plot) with
observed mean shell size range significantly different at p , 0.001. (b) Global trend analysis; a linear trend is fit using both
ordinary least squares (OLS; which ignores the non-independence of errors close in time, black solid line), and generalized
least squares (GLS) using a model with AR1 temporal autocorrelation of errors (dashed line). The two lines estimated by

the two methods are identical; hence, only the solid line is visible. The main difference in the two models is for the p value
with p ¼ 0.007 for the OLS and the more conservative and correct value from the GLS of p ¼ 0.033. (c) Local trend analysis;
local regression using LOESS smoothing (black solid line) and a GAM spline model (dashed line) of richness versus time are
plotted. The results are similar with both methods suggesting that the change in trait diversity over time is nonlinear.
(d) Threshold regression [9] to formally identify both the number and location of breakpoints. The plot shows the null

model of no threshold (black solid line), the preferred model of one threshold break (dashed line) and the second best
model of two thresholds (pointed line). The preferred model shows a DBIC of .8 versus the null model showing very little
evidence to select the null model. An F-test also shows the null model rejected at p , 0.001. Similar figures are included in
the electronic supplementary material, using examples of genetic and taxonomic diversity on the y-axis.
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temporal resolution. Increased census interval tends to be

associated with increased temporal turnover [21,22].
3. ANALYSING TEMPORAL CHANGE
Regardless of the methods used to gather data (see the elec-

tronic supplementary material), observed temporal change

in biodiversity can be attributed to four main factors:

measurement error, process error, historical influence and

systemic change. Measurement error includes sources of
Proc. R. Soc. B
apparent change that reflect bias or imprecision in measure-

ment (including detection error), and can reduce our

ability to identify patterns of interest. Process error refers

to mechanisms that are not included in the model, and is

different from measurement error. Historical influence

is reflected in the patterns of temporal autocorrelation of

the biodiversity time series. Typically, we are interested in

understanding the effects of particular drivers of interest

on systemic change. Systemic change reflects a non-

stationary system in which there are long-term changes in

http://rspb.royalsocietypublishing.org/
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ecological drivers, both anthropogenic (ongoing climate

change and increases in nutrient deposition) and natural

(shorter-term successional change and long-term changes

in speciation and extinction rates). Temporal change due

to other drivers may occur as a result of process error,

and this partitioning depends on the questions being

addressed. Explicitly recognizing sources of error allows

the investigator to statistically control for these when test-

ing for systemic change in a biodiversity time series (see

the electronic supplementary material, figure S1 for an

example in which seasonal variation is removed to focus

on longer-term trends).

Each temporally based observation of biodiversity

arises from the combined effects of deterministic and

stochastic drivers of change. Ultimately, the processes

involved in systemic change depend on the component

of biodiversity being studied and the spatial and temporal

extent of the data. At the most general level, the main

processes behind change within and among species are

mutation, drift, selection, dispersal, speciation and

extinction [23]. In order to draw inferences about how

different predictor variables affect these processes and

to forecast biodiversity change, measurement and process

error must be minimized or estimated, and historical

effects must be understood [24].
(a) Dealing with measurement error

Measurement error is often the elephant in the room:

everyone who has collected empirical data is aware of its

existence, but we are sometimes reluctant to discuss its

presence for fear it undermines the credibility of results.

However, identifying and quantifying measurement

error minimizes its effects on drawing inference. More-

over, reporting relevant sources of measurement error

stimulates the development of methods to minimize or

control for error, and allows future data users to make

informed decisions about how to learn from data.

Measurement error varies too much among biodiver-

sity components and potential drivers of biodiversity

change for a comprehensive review, here, of its sources

and the tools available to minimize it. Some examples

are presented to illustrate the variety of sources of

measurement error. Instruments that measure environ-

mental data have associated measurement error,

which may change along a time series as different equip-

ment can have different precision and accuracy. For

taxonomic diversity, sources of measurement error

include misidentification of specimens, changes in

nomenclature, failure to recognize cryptic taxa and vari-

ation in detection probabilities among taxa [25,26]. For

trait diversity, measurement error arises from error

in the physical measurement of traits or inconsistency in

trait measurements [27]. The latter is particularly affected

by ontogenetic and phenotypic plasticity, which may

create false signals if appropriate standardization is not

used (e.g. a temporal trend in leaf morphology due only

to plant age). For genetic diversity, sources of error are

associated with the processes of selection of the genes of

interest, amplifying and sequencing genes, and (especially

for microbes) determining the boundaries of operational

taxonomic units. In the case of phylogenetic diversity,

error associated with the process of building (including

topology and branch lengths) and dating molecular
Proc. R. Soc. B
phylogenies must also be considered. Finally, some

sources of error are common to all biodiversity com-

ponents, such as misinterpretation of records, mistakes

in transposing information and sampling error.

The most prevalent source of measurement error in

biodiversity data is that most biodiversity metrics are sen-

sitive to sampling intensity [28]. Observed species

richness, for instance, is an underestimate biased against

rare species, which typically comprise the greatest fraction

of species. Criteria of rarity in a spatial context include

the abundance at any one location, spatial occupancy

and habitat specialization [29]. Biodiversity time series

have an additional criterion, the probability of occurrence

over time (i.e. transient versus resident species [30]).

Similar reasoning applies to traits and alleles, although

abundance distributions of these are less well understood.

In theory, sampling at a site could continue until an

asymptote is reached, but in practice, this is seldom

possible. Hence, although sampling intensity should be

as high as feasible, meaningful comparisons can be

made only if sampling effort is standardized either while

collecting data or statistically.

The two main strategies to standardize data statisti-

cally, for any form of comparison including temporal

comparisons, are subsampling and extrapolation [31].

Rarefaction to a common sampling effort adjusts for dif-

ferences in sampling intensity, and has long been used

with palaeontological time series [32]. The chief disadvan-

tage of rarefaction is the loss of information involved

in equalizing sample size to the smallest sample in the

time series. An alternative is to adjust sampling effort

according to the diversity of the community being sampled

[33,34]. The Good Turing concept [35,36] suggests that

observed rare entities carry most information about the

undetected diversity in a sample. Hence, rather than

using uniform sample sizes, this method proposes adjust-

ing sampling effort to achieve proportionally similar

samples in order to decrease bias in richness estimates.

This implies higher sampling effort when there are many

rare species [37,38]. Another approach is extrapolating

to estimate the asymptote of the sampling accumulation

curve [39]. This approach has been designed for species

richness but can be applied to other components of bio-

diversity. Several methods are available for doing this,

including asymptotic curve-fitting [40], parametric esti-

mators based on abundance distributions [41,42] and

non-parametric estimators [43,44].

Sampling methods have inherent biases that cause some

taxa, traits or genes to be detected more readily than others.

Estimating detectability can improve the accuracy of abun-

dance estimates [45], although all sampling methods have

biases [28]. The simultaneous use of multiple sampling

methods can reduce some of these biases [46]. In temporal

studies, sampling methods are not always controlled by the

scientist throughout the time series, particularly when

using historical or large-scale data. In this case, it is necess-

ary to control for the effect of sampling method statistically,

by standardizing the time series with respect to the

sampling bias of each method [47].

(b) Historical effects: understanding

temporal autocorrelation

Autocorrelation can be an important reason to be wary

that ‘correlation is not causation’, but time series can be

http://rspb.royalsocietypublishing.org/
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Figure 2. Tools for assessing temporal autocorrelation. These data examine changes in species richness of a small rodent com-
munity over 26 years at the long-term research site in Portal, Arizona run by James Brown, Morgan Ernest and others [50,51]

at control un-manipulated sites. All analysis done in R v. 2.12.2 [52]; the code is included as electronic supplementary material.
The data are monthly or yearly and detrended (via the difference operator) or trend-retained, as described in the titles.
(a) Autocorrelation function (ACF) analysis on monthly data, with the expected decay of correlation (y-axis) with increasing
time lags (x-axis). (c) The same dataset after removing the trend via differencing, highlighting 5-month cycle (these patterns

can also be seen in the trend-retained data but less obviously). (b) Analysis of yearly data, with a recurring positive signal at
approximately 4–5 years (and again at 9–10 years) with matching negative correlations at 2, 7 and 12 years. (d) Periodogram
on yearly differenced data. The x-axis is frequency (the reciprocal of the lag found in ACF plots, i.e. frequency ¼ 1 per lag) and
the y-axis is a measure of the statistical power found at that frequency. The subtle peak at frequency 0.2–0.3 (¼lag of
5–4 years) identifies the same 4–5 year cycle found in the ACF.
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particularly informative in assessing causality because

the timing of events makes it possible to deduce the direc-

tion in which information is being transferred [48]. Both

temporal and spatial data are affected by autocorrelation,

with points closer in space or time on average more simi-

lar than distant points. As a result, at least in realistic

ecological situations, variability typically increases with

increasing extent [49]. However, the nature of autocorrela-

tion differs between time and space in three subtle ways.

First, a focal point in space can influence and be influenced

by nearby points in three dimensions, whereas a focal point

in time can be influenced only by points that precede it and

can only influence points that follow it chronologically.

This does not necessarily mean that spatial autocorrelation

is stronger, because effects on a focal point from different

directions can be counteracting. Because of the three

dimensions, there is also the possibility of anisotropy

(different covariances in different directions) in space but

not in time. Second, the underlying autocorrelation in

time, arising at least in part because some or all organisms
Proc. R. Soc. B
survive into the next time period, is generally intrinsically

stronger than any type of spatial influence, where the

most direct causal factor is dispersal or environmental auto-

correlation. Third, from an empirical point of view, cycles

are common and important in temporal but rare in spatial

autocorrelation patterns.

In practice, the study of autocorrelation in space and

time typically differs in three ways. First, temporal data

are typically collected at constant time intervals, allowing

easy calculation of lags between points, whereas spatial

variables are often recorded at irregular locations distribu-

ted continuously in space, requiring the use of techniques

such as binning distances to estimate variograms. Second,

for historical reasons, variograms (based on variance) are

typically used for spatial autocorrelation, while correlo-

grams or autocorrelation function (ACF) plots based on

correlation are used for time. Third, the uni-dimensionality

of time series, in combination with the prevalence of

cyclic changes, means that spectral analysis (see below

and figure 2) is often done in time but rarely in space.

http://rspb.royalsocietypublishing.org/
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There are contrasting perspectives on the implications

of autocorrelation for ecological and biodiversity analysis.

One perspective is that autocorrelation can lead to spur-

ious conclusions such as inferring a causal relationship

between two variables that are correlated only because

the observations were non-independent [53]. Thus, auto-

correlation must be taken into account when analysing

time series to avoid inflated type I error probabilities.

This can be dealt with either by removing autocorrelation

from the data before the analysis [54], or by using statisti-

cal approaches that relax the assumption of independence

between observations, such as generalized least squares

(GLS), with covariance decaying with distance between

points [55]. Another tool specifically designed for this

purpose is autoregressive integrated moving average

(ARIMA), often used to model and forecast economic

time series [56]. ARIMA models can include the follow-

ing as predictors for a variable at time t: various lagged

values of the time series, autoregressive terms (i.e. lags

of the differenced series) and lagged forecast errors

(using a moving average to estimate a local mean instead

of the most recent observation). Combinations of these

models for different lags typically reduce the influence

of autocorrelation on the estimate of the time series

global trend.

An alternative perspective is that autocorrelation is not

a nuisance, but rather a revealing signal of underlying

processes. For example, an analysis of a desert rodent com-

munity (figure 2) shows a cycle of autocorrelation

approximately every 4–5 years, which is likely related to

the influence of El Niño Southern Oscillation on the

environment in this region [50]. Patterns of autocorrelation

can be quantified by different methods. The simplest way to

study temporal autocorrelation is examining the correlation

of a time series with itself at different lags (figure 2a–c)

using ACF analysis [57]. The degree of inertia in the time

series can be determined by examining the rate of decay of

correlation with time lag. If the time series is long enough

and has sufficient resolution, it may be possible to identify

temporal cycles by looking for consistent distances in time

lags between positive and negative correlations. The time-

series spectral density indicates the contribution of different

frequencies to the total signal (figure 2d). Spectral density

can be examined in periodograms, which are typically

obtained by using a fast Fourier transform to decompose

a time series into sine waves of different frequencies [58].

Important frequencies have a higher density in the periodo-

gram, and its overall shape reflects the type of temporal

fluctuations in the system.

Studying autocorrelation as a phenomenon in itself

provides crucial insights into biodiversity dynamics and

can help increase the accuracy of forecasts of biodiversity

change. For example, given that the pattern of auto-

correlation in stochastic variation influences population

persistence [59], quantifying autocorrelation patterns by

examining spectral density of time series may help predict

extinction probabilities. More intense, high-frequency vari-

ation should increase extinction probability. Moreover,

autocorrelation patterns provide indications of relevant

external forcing variables. Large-scale climatic variables

are often good predictors of temporally autocorrelated

patterns in ecology [60], which means that forecasting

biodiversity change can take advantage of predicted

changes in these variables. In general, incorporating spatial
Proc. R. Soc. B
and temporal autocorrelation tends to improve model

predictive power [61].

(c) Quantifying systemic change

Standardizing data to minimize the effects of measurement

error and characterizing or removing temporal auto-

correlation facilitates quantification of systemic change in

biodiversity. However, there is still process error to consider,

which can make difficult the task of quantifying systemic

change. In practice, disentangling systemic change from

process error largely depends on the question being

addressed. We distinguish the following approaches to

quantifying systemic change: point or interval compari-

sons, models for temporal data (including long-term and

short-term trends) and spatio-temporal models.

(i) Comparing points or time intervals

Comparing biodiversity at two points or intervals in time

requires an estimate of the precision of the point esti-

mates, typically in the form of a confidence interval.

Unless the statistical distribution of the diversity metric

is well understood, it is preferable to estimate confidence

intervals via a non-parametric bootstrap [62], where sites,

species or individuals can be re-sampled, depending on

the nature of the data [63]. By plotting the point estimates

of diversity with their confidence intervals against time,

we can examine temporal changes in the index. Confi-

dence levels must be adjusted when more than two

points are compared simultaneously [64]. Inference

about the significance of a difference in mean values

should consider that significance may be found despite

overlapping confidence intervals [65]. Figure 1a shows

that range in shell size (a metric of trait diversity) was sig-

nificantly lower in the Ordovician to Carboniferous

period than in the Permian to recent period.

(ii) Models of temporal trends

An alternative to following the fluctuations of the point

estimates is to estimate long or short-term trends in

biodiversity. Long-term trends are typically estimated

by the slopes of linear regressions of the biodiversity

metric over time, whereas nonlinear models can be used

to characterize fluctuations and shorter-term trends.

Figure 1b shows a long-term increase in shell size diversity

in a Phanerozoic fossil time series. We show linear trends

as fitted by ordinary least squares, that ignores the non-

independence of errors close in time, and GLSs using a

model with temporally autocorrelated error. Although

the lines estimated by the two methods are very similar,

the GLS model has a more conservative p-value because

it models the non-independence of points.

In quantifying systemic change in biodiversity, there are

two options to deal with temporal autocorrelation. If seen

as nuisance, autocorrelation can be removed a priori,

for example by analysing ARIMA residuals of the time

series or by differencing the data by subtracting successive

elements in the time series. Alternatively, the raw data

may be analysed, and if the residuals of the model display

an autocorrelated pattern, additional predictors may be

added to the model to help reduce or remove autocorrela-

tion. Other approaches include modelling residuals as a

correlated ARIMA time series or modelling the covariance

pattern in the variance-covariance matrix as in the GLS

http://rspb.royalsocietypublishing.org/
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regression. Among many statistical models, generalized

additive models (GAMs) [66] are widely used to fit

smooth curves or surfaces to data over time for this pur-

pose. GAMs extend generalized linear models and

assume additive relationships among the effects of predic-

tors, allowing data to determine the (generally nonlinear)

relationship between the response variable and the set of

predictors (see electronic supplementary material for

more detail and extension into the spatio-temporal case).

A common method for short-term trend models is to use

cubic regression splines to construct each smooth function,

applying the penalized regression spline technique [67],

which controls the degree of smoothness by adding a pen-

alty to the likelihood function. This model usually provides

a better fit than parametric linear or quadratic models.

Many other smoothing methods are available, including

piecewise regression, kernel methods, LOESS (locally

weighted polynomial regression), running-mean (or run-

ning-median) smoothers, classification and regression

tree, and multivariate adaptive regression splines [66,68].

Figure 1c shows two local models (LOESS and GAM

with splines) fitted to the fossil shell size diversity time

series. A comparison with figure 1b illustrates the comp-

lementary nature of global and local models: despite a

long-term increase in diversity of this trait, the rate of

change has not been constant.

Non-parametric smooth functions are not only suffi-

ciently flexible to model changes in trends, but also allow

us to determine points in a time series at which the rate

of change increases or decreases (i.e. the second derivative

of the curve). Alternatively, change points can be identified

using threshold regression (figure 1d) or by finding the

locations of knots (which separate sections to each different

polynomials are fitted) in GAM models [66].
4. FROM INFERRING TO FORECASTING
To forecast future change, it is crucial to understand

how biodiversity changes through time. Having taken

into account how measurement error affects perception

of biodiversity change, knowledge of the patterns of

correlation (autocorrelation and cross-correlation with

predictor variables) can be used for this purpose. Incor-

porating autocorrelation is a parsimonious approach to

improving the precision of forecasts by including the

effects of unmeasured factors, which are reflected in

autocorrelation patterns.

Forecasting can be accomplished in three main ways.

First, temporal trends can be extrapolated into the future.

The slope of a line fitted to the time series (using GLS,

GAM or ARIMA models, for example) is indicative of

the trend in the time series. However, an understanding

of the patterns of temporal autocorrelation is crucial to

gauge how uncertainty scales with time lags, and hence

how far into the future it is reasonable to extend predic-

tions. An example of a forecasted trend are extinctions

caused by habitat loss as estimated from the species–area

relationship [69], which are predicted to occur over an

extended period of time, with an extinction debt persisting

well into the future [70]. This extinction debt over time can

be forecasted and intervention windows for conservation

action to prevent extinction estimated [71].

Second, biodiversity can be modelled as a function of

covariates, which we may be able to predict more
Proc. R. Soc. B
accurately than biodiversity itself, and hence obtain indir-

ect predictions of future biodiversity. Again, regression

models such as GLS or GAMs can be particularly

useful in this endeavour, but it is important to consider

how temporal autocorrelation can cloud our understand-

ing of cross-correlations. An example of predictions based

on forecasted covariates is the prediction that climate

change may cause the extinction of many endemic species

in Australian tropical rainforests [72].

Third, process-based ecosystem models can be used to

project future abundance and distribution of biodiversity

[73]. Incorporating the time axis and understanding

the effects of time lags could extend our ability to

model biodiversity as a function of covariates and thus

to predict, but is not yet used in, species distribution

models (W. Thuiller 2011, personal communication).

The accuracy of these approaches depends heavily on

how completely we understand the mechanics of the com-

munity, and tends to decrease with increasing complexity.

A recent comparison of predictions by different models at

a global-scale highlights the level of uncertainty in these

forecasts and the extent to which incomplete ecological

knowledge contributes to this uncertainty [74]. For

example, predicted extinction rates vary nearly twofold,

depending on poorly understood migration rates [75].

Ultimately, these models can only be as good as our

empirical understanding of the ecological mechanisms

involved in biodiversity change. To predict long-term,

large-scale change, we need biodiversity time series at

comparable scales.

The most serious difficulty with forecasting biodiversity

change is that many past changes have been neither gradual

nor linear. Examples of drastic changes that fundamentally

altered biodiversity and ecosystem function include the

mass extinctions evident from the fossil record, with

a mass extinction event possibly currently underway [76],

and ecosystem phase-shifts between alternative stable

states, such as coral dominated and algae dominated reefs

[77]. Additionally, ecosystems often show path depen-

dence (hysteresis), in which restoring conditions before

the tipping point is not sufficient to reverse a phase-shift

[78]. An urgent area of research, in which temporal pat-

terns of biodiversity are crucial, is learning to recognize

early warning signs of drastic changes in ecosystems

before they occur. Specifically, analysing frequency pat-

terns in autocorrelation may provide important clues

(J. Ardron 2011, personal communication). Fluctuations

in ecological communities have long been recognized as

containing important information regarding ecosystem

stability [79]. Ecosystems tend to recover more slowly

from perturbations and show increased variance in tempo-

ral patterns before undergoing a phase-shift to an alternate

basin of attraction [6]. Specifically, studying autocorrela-

tion patterns in small grain time series that include

phase-shifts will provide deeper insights into these patterns.

Examining the generality of changes in autocorrelation

patterns prior to phase-shifts may provide important

tools to anticipate drastic biodiversity change, much like

monitoring seismic activity helps predict major earthquakes.

Most statistical methods that are used to forecast

future trajectories of biodiversity implicitly assume that

the mechanisms driving historical and recent trends con-

tinue into the future, albeit with new levels for some

covariates. However, drastic changes often involve
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pressures upon ecosystems, generating novel systems [80]

that function differently, as the pool of functional traits

changes [81], and combinations of environmental vari-

ables arise that have no contemporary analogues [82].

In many cases, palaeo-climates encompass a greater

range of projected conditions and may provide important

clues for expected biotic responses [83]. These issues

create challenges for predicting biodiversity trends that

require us to understand the mechanisms driving diversity

and call for placing greater statistical weight on datasets

that better represent the anticipated change.
5. CONCLUSIONS
Availability of long-term, large-scale, high-resolution data

is the single most important factor limiting progress in

understanding temporal patterns in biodiversity. Given

the difficulty of obtaining data from the past, we reiterate

the appeal to preserve data and associated metadata in

publicly accessible archives [84]. Public databases of bio-

diversity records are providing unprecedented insight into

large-scale, long-term patterns (e.g. Paleobiology data-

base—http://paleodb.org, Global Biodiversity Information

Facility—http://data.gbif.org/). Establishing standards for

meta-information should ensure that future scientists can

not only access but also take full advantage of the data we

are now collecting [85]. The challenges that arise from deal-

ing with historical data (see the electronic supplementary

material) should help signal pitfalls to avoid when making

contemporary data available.

If possible, data should be collected using methods,

grain and sampling effort that allow linking to other

data sources, such as palaeo and historical data. Achiev-

ing standardization of methods will facilitate integration

of multiple sources of contemporary data. Although ecol-

ogists should always strive to collect data as accurately as

possible, incomplete or partial data can be better than no

data at all. Imperfect data at relevant spatial and temporal

scales (e.g. range maps from floras) allow answering ques-

tions unapproachable with high precision data at short

timescales or with time series that take highly degraded

states as the baseline [18]. Exploring non-traditional

sources of data, such as archaeological deposits, historical

images and traditional knowledge passed orally through

generations [86], and collating different sources of data

may help address previously intractable questions.

The unique features of temporal data should be recog-

nized, accepted and used as advantages rather than

treated as nuisances. These include the general lack of

boundaries, uni-dimensionality, inherent autocorrelation

and directionality. Rather than coercing temporal data

into restrictive assumptions for analysis, methods that

treat these characteristics as part of the pattern should

be considered. The study of autocorrelation and fre-

quency analysis of time series and their relationship

with ecosystem stability are areas that we believe will

prove fruitful. Measurement error should be minimized

and, when possible, estimated, particularly given the

potential additional sources of error in temporal data.

We should consider the spatial context of time series,

the temporal context of spatial data, and types and rates

of change expected in fully spatio-temporal contexts.

Finally, forecasts of biodiversity change should recog-

nize that the future is never a strict repetition of the
Proc. R. Soc. B
past but appreciate that the past sheds light on how life

on earth has dealt with immense challenges and how

biodiversity responds to critical transitions.
This paper is the result of a meeting held at the Royal Society
International Kavli Centre. We thank Jonathan Chase, John
Alroy, Jan Bengtson, Miguel Barbosa and Al Reeve for
comments on previous versions of this manuscript. A.E.M.
and M.D. acknowledge the European Research Council
(project BioTIME 250189) for support.
REFERENCES
1 Mace, G. M., Collen, B., Fuller, R. A. & Boakes, E. H.

2010 Population and geographic range dynamics: impli-
cations for conservation planning. Phil. Trans. R. Soc.
B. 365, 3743–3752. (doi:10.1098/rstb.2010.0264)

2 Magurran, A. E. & Dornelas, M. 2010 Biological diver-
sity in a changing world. Phil. Trans. R. Soc. B 365,
3593–3597. (doi:10.1098/rstb.2010.0296)

3 Perrings, C., Duraiappah, A., Larigauderie, A. &
Mooney, H. 2011 The biodiversity and ecosystem ser-

vices science–policy interface. Science 331, 1139–1140.
(doi:10.1126/science.1202400)

4 Hooper, D. U. et al. 2005 Effects of biodiversity on eco-
system functioning: a consensus of current knowledge.
Ecol. Monogr. 75, 3–35. (doi:10.1890/04-0922)

5 Tilman, D., Reich, P. B. & Knops, J. M. H. 2006 Biodiversity
and ecosystem stability in a decade-long grassland exper-
iment. Nature 441, 629–632. (doi:10.1038/nature04742)

6 Carpenter, S. R. et al. 2011 Early warnings of regime
shifts: a whole-ecosystem experiment. Science 332,

1079–1082. (doi:10.1126/science.1203672)
7 Scheffer, M. & Carpenter, S. M. 2003 Catastrophic regime

shifts in ecosystems: linking theory to observation. Trends
Ecol. Evol. 18, 648–656. (doi:10.1016/j.tree.2003.09.002)

8 Kosnik, M. A. et al. 2011 Changes in shell durability of
common marine taxa through the Phanerozoic: evidence
for biological rather than taphonomic drivers. Paleobiology
37, 303–331. (doi:10.1666/10022.1)

9 Dagenais, M. G. 1969 A threshold regression model.

Econometrica 37, 193–203. (doi:10.2307/1913530)
10 Magurran, A. E. & McGill, B. J. (eds) 2010 Biological

diversity, frontiers in measurement and assessment. Oxford,
UK: Oxford University Press.

11 Wiens, J. A. 1989 Spatial scaling in ecology. Funct. Ecol.
3, 385–397. (doi:10.2307/2389612)

12 Foster, B. L. & Tilman, D. 2000 Dynamic and static
views of succession: testing the descriptive power of the
chronosequence approach. Plant Ecol. 146, 1–10.
(doi:10.1023/A:1009895103017)

13 Pandolfi, J. M. et al. 2003 Global trajectories of the
long-term decline of coral reef ecosystems. Science 301,
955–958. (doi:10.1126/science.1085706)

14 Cleland, C. E. 2002 Methodological and epistemic
differences between historical science and experimental

science. Phil. Sci. 69, 474–496. (doi:10.1086/342453)
15 Colwell, R. K. 2011 Biogeographical gradient theory. In The

theory of ecology (eds S. M. Scheiner & M. R. Willig),
pp. 309–330. Chicago, IL: University of Chicago Press.

16 Colwell, R. K. & Lees, D. C. 2000 The mid-domain
effect: geometric constraints on the geography of species
richness. Trends Ecol. Evol. 15, 70–76. (doi:10.1016/
S0169-5347(99)01767-X)

17 Clements, F. E. 1916 Plant succession: an analysis of the
development of vegetation. Washington, DC: Carnegie
Institution of Washington.

18 Pauly, D. 1995 Anecdotes and the shifting baseline syn-
drome of fisheries. Trends Ecol. Evol. 10, 430. (doi:10.
1016/S0169-5347(00)89171-5)

http://paleodb.org
http://paleodb.org
http://data.gbif.org/
http://data.gbif.org/
http://dx.doi.org/10.1098/rstb.2010.0264
http://dx.doi.org/10.1098/rstb.2010.0296
http://dx.doi.org/10.1126/science.1202400
http://dx.doi.org/10.1890/04-0922
http://dx.doi.org/10.1038/nature04742
http://dx.doi.org/10.1126/science.1203672
http://dx.doi.org/10.1016/j.tree.2003.09.002
http://dx.doi.org/10.1666/10022.1
http://dx.doi.org/10.2307/1913530
http://dx.doi.org/10.2307/2389612
http://dx.doi.org/10.1023/A:1009895103017
http://dx.doi.org/10.1126/science.1085706
http://dx.doi.org/10.1086/342453
http://dx.doi.org/10.1016/S0169-5347(99)01767-X
http://dx.doi.org/10.1016/S0169-5347(99)01767-X
http://dx.doi.org/10.1016/S0169-5347(00)89171-5
http://dx.doi.org/10.1016/S0169-5347(00)89171-5
http://rspb.royalsocietypublishing.org/


Review. Temporal change in biodiversity M. Dornelas et al. 9

 on October 29, 2012rspb.royalsocietypublishing.orgDownloaded from 
19 Behrensmeyer, A. K., Kidwell, S. M. & Gastaldo, R. A.
2000 Taphonomy and paleobiology. In Deep time: paleo-
biology’s perspective (eds D. H. Erwin & S. L. Wing),

pp. 103–147. Boulder, CO: Paleontological Society.
20 Alroy, J. 1996 Constant extinction, constrained diversifi-

cation, and uncoordinated stasis in North American
mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127,
285–311. (doi:10.1016/S0031-0182(96)00100-9)

21 Diamond, J. M. & May, R. M. 1977 Species turnover
rates on islands: dependence on census intervals. Science
197, 266–270. (doi:10.1126/science.197.4300.266)

22 Russell, G. J., Diamond, J. M., Pimm, S. L. & Reed, T. M.

1995 A century of turnover: community dynamics at three
timescales. J. Anim. Ecol. 64, 628–641. (doi:10.2307/5805)

23 Vellend, M. 2010 Conceptual synthesis in community
ecology. Q. Rev. Biol. 85, 183–206. (doi:10.1086/652373)

24 Gaston, K. J. & McArdle, B. H. 1994 The temporal

variability of animal abundances: measures, methods
and patterns. Phil. Trans. R. Soc. Lond. B 30, 335–358.
(doi:10.1098/rstb.1994.0114)

25 Buckland, S. T., Studeny, A. C., Magurran, A. E. &
Newson, S. E. 2010 Biodiversity monitoring: the relevance

of detectability. In Biological diversity: frontiers in measurement
and assessment (eds A. E. Magurran & B. J. McGill),
pp. 25–36. Oxford, UK: Oxford University Press.

26 Yoccoz, N. G., Nichols, J. D. & Boulinier, T. 2001
Monitoring of biological diversity in space and time.

Trends Ecol. Evol. 16, 446–453. (doi:10.1016/S0169-
5347 (01)02205-4)

27 Weiher, E. 2011 A primer of trait and functional diversity.
In Biological diversity, frontiers in measurement and
assessment (eds A. E. Magurran & B. J. McGill),
pp. 175–193. Oxford, UK: Oxford University Press.

28 Gotelli, N. J. & Colwell, R. K. 2010 Estimating species
richness. In Biological diversity: frontiers in measurement
and assessment (eds A. E. Magurran & B. J. McGill),

pp. 39–54. Oxford, UK: Oxford University Press.
29 Rabinowitz, D. 1981 Seven forms of rarity. In The biologi-

cal aspects of rare plant conservation. (ed. H. Synge),
pp. 205–217. London, UK: John Wiley and Sons.

30 Magurran, A. E. & Henderson, P. A. 2003 Explaining

the excess of rare species in natural species abundance
distributions. Nature 422, 714–716. (doi:10.1038/
nature01547)

31 Gotelli, N. J. & Colwell, R. K. 2001 Quantifying bio-
diversity: procedures and pitfalls in the measurement

and comparison of species richness. Ecol. Lett. 4,
379–391. (doi:10.1046/j.1461-0248.2001.00230.x)

32 Tipper, J. C. 1979 Rarefaction and rarefiction—the use
and abuse of a method in paleoecology. Paleobiology 5,

423–434.
33 Alroy, J. 2010 The shifting balance of diversity among

major marine animal groups. Science 329, 1191–1194.
(doi:10.1126/science.1189910)

34 Jost, L. 2010 The relation between evenness and diver-

sity. Divers. Distrib. 2, 207–232.
35 Good, I. J. 1953 The population frequencies of species

and the estimation of population parameters. Biometrika
40, 237–264.

36 Good, I. J. 2000 Turing’s anticipation of empirical Bayes

in connection with the cryptanalysis of the naval Enigma.
J. Stat. Comput. Simulation 66, 101–111. (doi:10.1080/
00949650008812016)

37 Alroy, J. 2010 Geographical, environmental and intrinsic
biotic controls on Phanerozoic marine diversification.

Paleontology 53, 1211–1235. (doi:10.1111/j.1475-4983.
2010.01011.x)

38 Colwell, R. K. & Hurtt, G. C. 1994 Nonbiological gradi-
ents in species richness and a spurious Rapoport effect.
Am. Nat. 144, 570–595. (doi:10.1086/285695)
Proc. R. Soc. B
39 Colwell, R. K. & Coddington, J. A. 1994 Estimating terres-
trial biodiversity through extrapolation. Phil. Trans. R. Soc.
Lond. B 345, 101–118. (doi:10.1098/rstb.1994.0091)

40 Soberon, J. M. & Llorente, J. B. 1993 The use of species
accumulation functions for the prediction of species
richness. Conserv. Biol. 7, 480–488. (doi:10.1046/j.
1523-1739.1993.07030480.x)

41 Connolly, S. R., Hughes, T. P., Bellwood, D. R. &

Karlson, R. H. 2005 Community structure of
corals and reef fishes at multiple scales. Science 309,
1363–1365. (doi:10.1126/science.1113281)

42 Quince, C., Curtis, T. P. & Sloan, W. T. 2008 The

rational exploration of microbial diversity. ISME J. 2,
997–1006. (doi:10.1038/ismej.2008.69)

43 Chao, A. 2005 Species estimation and applications. In
Encyclopedia of statistical sciences (eds N. Balakrishnan,
C. B. Read & B. Vidakovic), pp. 7907–7916.

New York, NY: Wiley.
44 Colwell, R. K., Chao, A., Gotelli, N. J., S-Y, Lin,

Mao, C. X., Chazdon, R. L. & Longino, J. T.
2012 Models and estimators linking individual-based
and sample-based rarefaction, extrapolation, and com-

parison of assemblages. J. Plant Ecol. 5, 3–21. (doi:10.
1093/jpe/rtr044)

45 MacKenzie, D. I., Nichols, J. D., Sutton, N., Kawanishi,
K. & Bailey, L. L. 2005 Improving inferences in population
studies of rare species that are detected imperfectly. Ecology
86, 1101–1113. (doi:10.1890/04-1060)

46 Longino, J. T., Coddington, J. & Colwell, R. K. 2002 The
ant fauna of a tropical rain forest: estimating species rich-
ness three different ways. Ecology 83, 689–702. (doi:10.

1890/0012-9658(2002)083[0689:TAFOAT]2.0.CO;2)
47 Ward, P. & Myers, R. A. 2005 Inferring the depth

distribution of catchability for the pelagic fishes and
correcting for variations in the depth of longline fishing
gear. Can. J. Fish. Aquat. Sci. 62, 1130–1142. (doi:10.

1139/f05-021)
48 Hannisdal, B. & Peters, S. E. 2011 Phanerozoic earth

system evolution and marine biodiversity. Science 334,
1121–1124. (doi:10.1126/science.1210695)

49 Bengtsson, J., Baillie, S. R. & Lawton, J. 1997 Commu-

nity variability increases with time. Oikos 78, 249–256.
(doi:10.2307/3546291)

50 Brown, J. H. & Ernest, S. K. M. 2002 Rain and rodents:
complex dynamics of desert consumers. BioScience 52,
979–987. (doi:10.1641/0006-3568(2002)052[0979:RA

RCDO]2.0.CO;2)
51 Ernest, S. K. M., Valone, T. J. & Brown, J. H. 2009

Long-term monitoring and experimental manipulation
of a Chihuahuan desert ecosystem near Portal, Arizona,

USA. Ecology 90, 1708. (doi:10.1890/08-1222.1)
52 R Core Development Team. 2006 R: a language and

environment for statistical computing. Vienna, Austria: R
Foundation for Statistical Computing.

53 Legendre, P. 1993 Spatial autocorrelation: trouble or new

paradigm. Ecology 74, 1659–1673. (doi:10.2307/1939924)
54 Peres-Neto, P. R. 2006 A unified strategy for estimating

and controlling spatial, temporal and phylogenetic auto-
correlation in ecological models. Oecol. Brasiliensis 10,
105–109. (doi:10.4257/oeco.2006.1001.07)

55 Zuur, A., Ieno, E., Walker, N., Saveliev, A. A. & Smith,
G. M. 2009 Mixed effects models and extensions in ecology
with, R. Berlin, Germany: Springer.

56 Hamilton, J. D. 1994 Time series analysis. Princeton, NJ:
Princeton University Press.

57 Box, G. E. P. & Jenkins, G. M. 1976 Time series analysis:
forecasting and control (revised edition). San Francisco,
CA: Holden-day.

58 Bloomfield, P. 1976 Fourier analysis of time series: an
introduction. New York, NY: John Wiley and Sons.

http://dx.doi.org/10.1016/S0031-0182(96)00100-9
http://dx.doi.org/10.1126/science.197.4300.266
http://dx.doi.org/10.2307/5805
http://dx.doi.org/10.1086/652373
http://dx.doi.org/10.1098/rstb.1994.0114
http://dx.doi.org/10.1016/S0169-5347(01)02205-4
http://dx.doi.org/10.1016/S0169-5347(01)02205-4
http://dx.doi.org/10.1038/nature01547
http://dx.doi.org/10.1038/nature01547
http://dx.doi.org/10.1046/j.1461-0248.2001.00230.x
http://dx.doi.org/10.1126/science.1189910
http://dx.doi.org/10.1080/00949650008812016
http://dx.doi.org/10.1080/00949650008812016
http://dx.doi.org/10.1111/j.1475-4983.2010.01011.x
http://dx.doi.org/10.1111/j.1475-4983.2010.01011.x
http://dx.doi.org/10.1086/285695
http://dx.doi.org/10.1098/rstb.1994.0091
http://dx.doi.org/10.1046/j.1523-1739.1993.07030480.x
http://dx.doi.org/10.1046/j.1523-1739.1993.07030480.x
http://dx.doi.org/10.1126/science.1113281
http://dx.doi.org/10.1038/ismej.2008.69
http://dx.doi.org/10.1093/jpe/rtr044
http://dx.doi.org/10.1093/jpe/rtr044
http://dx.doi.org/10.1890/04-1060
http://dx.doi.org/10.1890/0012-9658(2002)083[0689:TAFOAT]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(2002)083[0689:TAFOAT]2.0.CO;2
http://dx.doi.org/10.1139/f05-021
http://dx.doi.org/10.1139/f05-021
http://dx.doi.org/10.1126/science.1210695
http://dx.doi.org/10.2307/3546291
http://dx.doi.org/10.1641/0006-3568(2002)052[0979:RARCDO]2.0.CO;2
http://dx.doi.org/10.1641/0006-3568(2002)052[0979:RARCDO]2.0.CO;2
http://dx.doi.org/10.1890/08-1222.1
http://dx.doi.org/10.2307/1939924
http://dx.doi.org/10.4257/oeco.2006.1001.07
http://rspb.royalsocietypublishing.org/


10 M. Dornelas et al. Review. Temporal change in biodiversity

 on October 29, 2012rspb.royalsocietypublishing.orgDownloaded from 
59 Cuddington, K. M. & Yodzis, P. 1999 Black noise
and population persistence. Proc. R. Soc. Lond. B 266,
969–973. (doi:10.1098/rspb.1999.0731)

60 Hallett, T. B., Coulson, T., Pilkington, J. G., Clutton-
Brock, T. H., Pemberton, J. M. & Grenfell, B. T.
2004 Why large-scale climate indices seem to predict
ecological processes better than local weather. Nature
430, 71–75. (doi:10.1038/nature02708)

61 Gumpertz, L. & Pye, M. 2000 Logistic regression for
southern pine beetle outbreaks with spatial and temporal
autocorrelation. Forest Sci. 46, 95–107.

62 Buckland, S. T., Magurran, A. E., Green, R. E. &

Fewster, R. M. 2005 Monitoring change in biodiversity
through composite indices. Phil. Trans. R. Soc. B 360,
243–254. (doi:10.1098/rstb.2004.1589)

63 Connolly, S. R., Dornelas, M., Bellwood, D. R. &
Hughes, T. P. 2009 Testing species abundance models:

a new bootstrap approach applied to Indo-Pacific coral
reefs. Ecology 90, 3138–3149. (doi:10.1890/08-1832.1)

64 Buckland, S. T., Cattanach, K. L. & Anganuzzi, A. A.
1992 Estimating trends in abundance of dolphins associ-
ated with tuna in the eastern tropical Pacific Ocean, using

sightings data collected on commercial tuna vessels.
Fishery Bull. 90, 1–12.

65 Schenker, N. & Gentleman, J. F. 2001 On judging the
significance of differences by examining the overlap
between confidence intervals. Am. Stat. 55, 182–186.

(doi:10.1198/000313001317097960)
66 Hastie, T. J. & Tibshirani, R. J. 1990 Generalized additive

models. London, UK: Chapam and Hall/CRC Press.
67 Ruppert, D., Wand, M. P. & Carroll, R. J. 2006 Semi-

parametric regression. New York, NY: Cambridge
University Press.

68 Leathwick, J. R., Elith, J. & Hastie, T. J. 2006 Compara-
tive performance of generalized additive models and
multivariate adaptive regression splines for statistical

modelling of species distribution. Ecol. Model. 199,
188–196. (doi:10.1016/j.ecolmodel.2006.05.022)

69 Arrhenius, O. 1921 Species and area. J. Ecol. 9, 95–99.
(doi:10.2307/2255763)

70 Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A.

1994 Habitat destruction and the extinction debt. Nature
371, 65–66. (doi:10.1038/371065a0)

71 Wearn, O. R., Reuman, D. C. & Ewers, R. M. 2012
Extinction debt and windows of conservation opportu-
nity in the Brazilian Amazon. Science 337, 228–232.

(doi:10.1126/science.1219013)
72 Williams, S. E., Bolitho, E. E. & Fox, S. 2003 Climate

change in Australian tropical rainforests: an impending
Proc. R. Soc. B
environmental catastrophe. Proc. R. Soc. Lond. B 270,
1887–1892. (doi:10.1098/rspb.2003.2464)

73 Guisan, A. & Thuiller, W. 2005 Predicting species distri-

bution: offering more than simple habitat models. Ecol. Lett.
8, 993–1009. (doi:10.1111/j.1461-0248.2005.00792.x)

74 Pereira, H. M. et al. 2011 Scenarios for global biodiver-
sity in the 21st century. Science 330, 1496–1501.
(doi:10.1126/science.1196624)

75 Thomas, C. D. et al. 2004 Extinction risk from climate
change. Nature 427, 145–148. (doi:10.1038/nature02121)

76 Barnosky, A. D. et al. 2011 Has the Earth’s sixth mass
extinction already arrived? Nature 471, 51–57. (doi:10.

1038/nature09678)
77 Hughes, T. P. 1994 Catastrophes, phase shifts, and large-

scale degradation of a Caribbean coral reef. Science 265,
1547–1551. (doi:10.1126/science.265.5178.1547)

78 Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. &

Walker, B. 2001 Catastrophic shifts in ecosystems.
Nature 413, 591–596. (doi:10.1038/35098000)

79 MacArthur, R. H. 1955 Fluctuations of animal popu-
lations and a measure of community stability. Ecology
36, 533–536. (doi:10.2307/1929601)

80 Hobbs, R. J., Higgs, E. & Harris, J. A. 2009 Novel ecosys-
tems: implications for conservation and restoration. Trends
Ecol. Evol. 24, 599–605. (doi:10.1016/j.tree.2009.05.012)

81 Yakob, L. & Mumby, P. J. 2011 Climate change induces
demographic resistance to disease in novel coral assem-

blages. Proc. Natl Acad. Sci. USA 108, 1967–1969.
(doi:10.1073/pnas.1015443108)

82 Fitzpatrick, M. C. & Hargrove, W. W. 2009 The projec-
tion of species distribution models and the problem of

non-analog climate. Biodivers. Conserv. 18, 2255–2261.
(doi:10.1007/s10531-009-9584-8)

83 Jackson, J. B. C. 2010 The future of oceans past. Phil.
Trans. R. Soc. B 365, 3765–3778. (doi:10.1098/rstb.
2010.0278)

84 Gross, K. L. et al. 1995 Final report of the ecological
society of America committee on the future of long-
term ecological data. Washington, DC: Ecological
Society of America.

85 Madin, J., Bowers, S., Schildhauer, M., Krivov, S.,

Pennington, D. & Villa, F. 2007 An ontology for describ-
ing and synthesizing ecological observation data. Ecol.
Inf. 2, 279–296. (doi:10.1016/j.ecoinf.2007.05.004)

86 Rhemtulla, J. M., Mladenoff, D. J. & Clayton, M. K.
2007 Regional land-cover conversion in the US upper

Midwest: magnitude of change and limited recovery
(1850, 1935, 1993). Landscape Ecol. 22, 57–75.
(doi:10.1007/s10980-007-9117-3)

http://dx.doi.org/10.1098/rspb.1999.0731
http://dx.doi.org/10.1038/nature02708
http://dx.doi.org/10.1098/rstb.2004.1589
http://dx.doi.org/10.1890/08-1832.1
http://dx.doi.org/10.1198/000313001317097960
http://dx.doi.org/10.1016/j.ecolmodel.2006.05.022
http://dx.doi.org/10.2307/2255763
http://dx.doi.org/10.1038/371065a0
http://dx.doi.org/10.1126/science.1219013
http://dx.doi.org/10.1098/rspb.2003.2464
http://dx.doi.org/10.1111/j.1461-0248.2005.00792.x
http://dx.doi.org/10.1126/science.1196624
http://dx.doi.org/10.1038/nature02121
http://dx.doi.org/10.1038/nature09678
http://dx.doi.org/10.1038/nature09678
http://dx.doi.org/10.1126/science.265.5178.1547
http://dx.doi.org/10.1038/35098000
http://dx.doi.org/10.2307/1929601
http://dx.doi.org/10.1016/j.tree.2009.05.012
http://dx.doi.org/10.1073/pnas.1015443108
http://dx.doi.org/10.1007/s10531-009-9584-8
http://dx.doi.org/10.1098/rstb.2010.0278
http://dx.doi.org/10.1098/rstb.2010.0278
http://dx.doi.org/10.1016/j.ecoinf.2007.05.004
http://dx.doi.org/10.1007/s10980-007-9117-3
http://rspb.royalsocietypublishing.org/

	Quantifying temporal change in biodiversity: challenges and opportunities
	Introduction
	Characteristics of temporal biodiversity data
	Analysing temporal change
	Dealing with measurement error
	Historical effects: understanding temporal autocorrelation
	Quantifying systemic change
	Comparing points or time intervals
	Models of temporal trends


	From inferring to forecasting
	Conclusions
	This paper is the result of a meeting held at the Royal Society International Kavli Centre. We thank Jonathan Chase, John Alroy, Jan Bengtson, Miguel Barbosa and Al Reeve for comments on previous versions of this manuscript. A.E.M. and M.D. acknowledge the European Research Council (project BioTIME 250189) for support.
	References


