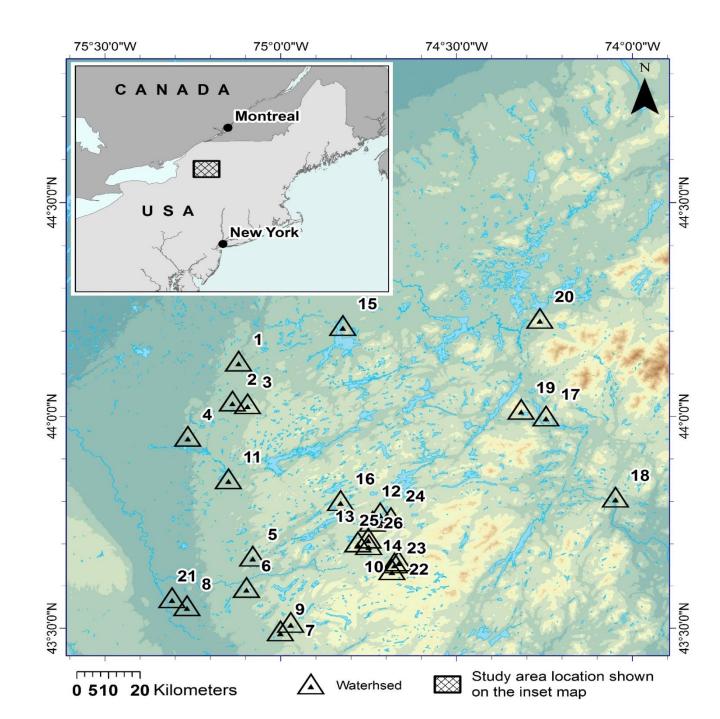
"Trees sensitivity to Warming is controlled by Turnover Time of Forest Floor"

Andrei Lapenas, Alexander Buyantuev, Jiang Shiguo

Department of Geography, UAlbany

Gregory Lawrence,


USGS

Reasons for this work

- 1. There are only a few (mostly agricultural) studies about linkage between spring phenology and soil-related variables. Here we had an opportunity to test connection between spring phenology of natural growths with edaphic factors.
- 2. There is no any studies on potential linkage of plants sensitivity to warming with edaphic factors.

26 small, deciduous watersheds. Sampled: 2004, 2009

Exchangeable chemistry, C_{org}, N, Oa thickness, bulk density

Remote sensing data : Start of Season (**SoS**), End of Season (**EoS**), **NPP**. Source: Moderate Resolution Imaging Spectroradiometer MOD13Q1, MOD17A3.

Scope of the work

- 1. Investigated potential linkage between SoS (first greenup dates during 2001-2009 period) and soil-related variables.
- 2. Estimated plants sensitivity to warming (β) as regression coefficient of SoS to spring (April or March) temperature during 2001-2009 period [days of SoS advance/retreat per 1 °C]
- 3. Investigated potential linkage of statistically significant estimates of β and soil-related variables.

Climatological variables

- Mean Annual Temperature (**MAT**), Annual Precipitation (**P**), Daily Maximum Temperature, Mean Daily Temperature.
- "Biological Temperature" (BT=5°C) and the Start of the Thermal Growing Season (STGS).
- In addition to STGS we did estimate β_T (sensitivity of thermal season to changes in spring temperature): regression coefficient between STGS and spring temperature : days of STGS advance/reatreat per 1° C.

IMPORTANT

 β and β_T have the same dimension: [days per 1 °C.]

Additional, soil-related variable: Turnover time of Soil Organic Matter (SOM) in forest floor

•
$$\tau[yr] = \frac{Stock \ of \ Corg \ in \ forest \ floor \ layer \ [\frac{kg}{m^2]}}{Litterfall \ [\frac{kg}{m^2yr}]}$$
 (1)

Stock of Corg in forest floor $= C_{org} \times h \times \rho$ (2)

(3)

- Where *h*, the thickness, and, ρ, bulk density of forest floor.
- The litterfall was estimated as function of NPP:

• Litterfall =
$$\alpha \times NPP$$

 Where α is the litterfall fraction of NPP which varies with forest type and age within the range from 20 to 60%. In old-growth, hardwood stands of Great Lake region, this parameter equals to about 40% (Tang and Bolstad, 2005).

RESULT #1 SoS

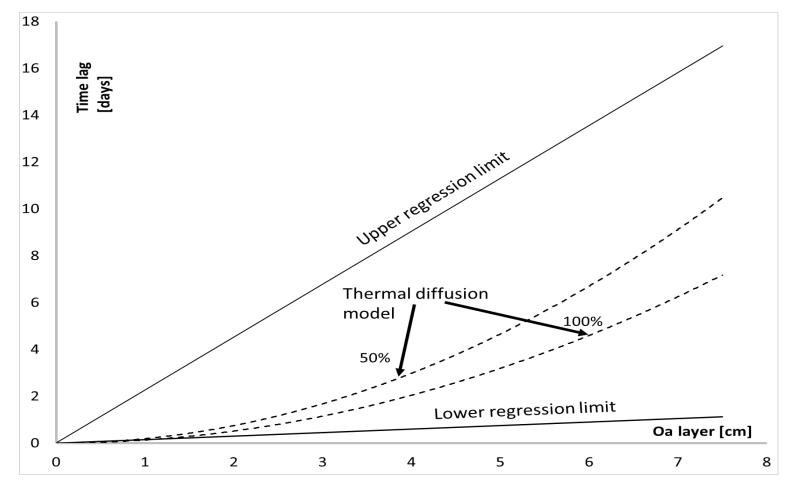
- SoS correlates with *AI*, CEC, *pH* at p<0.05 and with MAT and thickness of Oa layer (*h*) at p<0.01.
- **Covariance:** *AI* with exchangeable chemistry is causal!
- MAT with the elevation above sea level and with thickness of Oa layer (*h*),
- MAT is controlled by the elevation above sea level (the slope is close to the laps rate at 6.2 oC /km);
- MULTIPLE REGRESSION MODEL reviles 0.37 days per 1 [meq/100g] of Al; 5.1 days per 1 °C of MAT, and 1.7 days per 1 cm of forest floor.
- Covariance of MAT and the thickness of Oa layer can be causal!

Thermal diffusion model of Oa layer

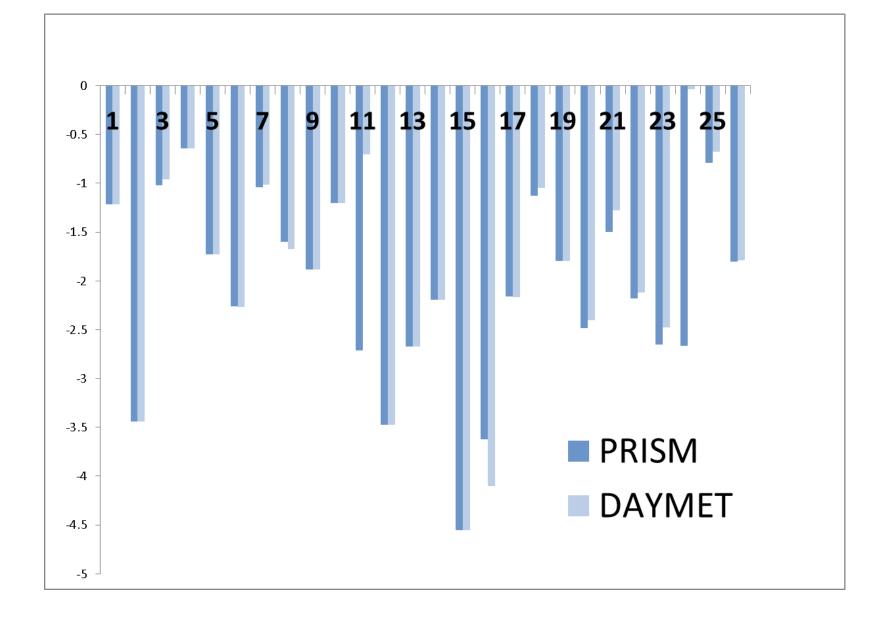
Delay (phase shift) of transmittance of the thermal signal from near surface atmosphere into the soil can be described as (Van Wijk, 1963; Jury, Horton, 2004):

• $\Delta t = h/\omega d$

where ω is the angular frequency of surface temperature; d is the damping depth; and h is soil depth in forest floor. The d term can be calculated as a function of ω and the coefficient of thermal diffusivity (K) (Jury, Horton, 2004):


•
$$d = \sqrt{\frac{2K}{\omega}} = \sqrt{\frac{K\tau}{\pi}}$$
 (6)

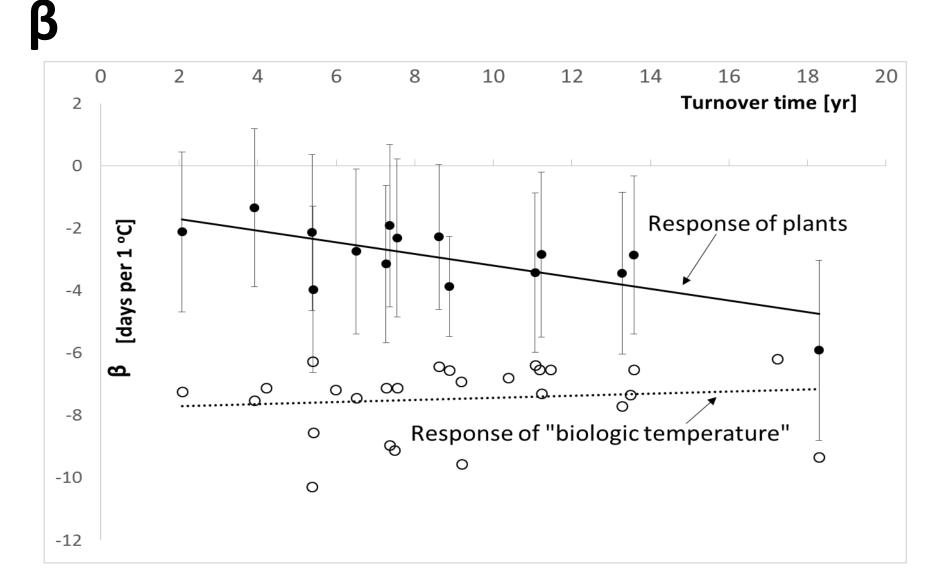
 where τ is the time period (1 year). K values of the forest floor depend on bulk density and the proportion of organic matter relative to water and air.


Calculations of thermal diffusion coefficient

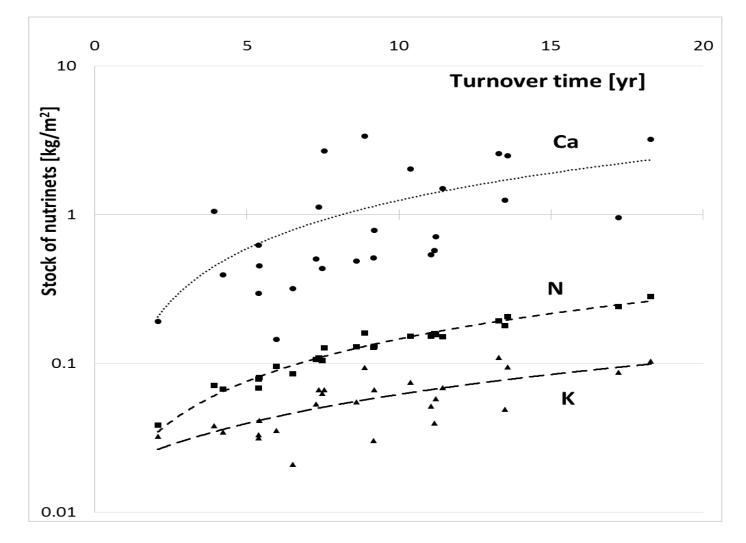
- Derived *K* values are about 5-fold smaller than the typical thermal diffusivity of snow (Oldroyd et al., 2013).
- According to our calculations, insulating capacity of the 10 cm of forest floor equals approximately to 0.5 meter of snow depth.

Experimental (95% confidence level) regression slopes and the thermal diffusion model results (100 and 50% saturation) of the delay of SoS relative to the thickness of forest floor (*h*).

Result #2 β


RESULT<mark>#</mark>3, β

- We did build 3 multiple correlation models of β and soil-related variables :
- 1. PRISM mean daily temperature data (τ , EoS); r>0.5, p<0.05, n=17
- 2. PRISM maximum temperature data (τ); r>0.8; p<0.01, n=17
- 3. DAYMET maximum temperature data (τ , MAT); r>0.7, p<0.01, n=17


B increases with turnover time at the rate of about 0.1 days per 1°C per each 1 yr of turnover time.

(The whole range of turnover time estimates is from 3 to 20 years. The average of 9 years is very close to other independent estimates of turnover time in maple and oak hardwood stands).

RESULT#3,

HYPOTHESIS 1: Soil Nutrients Limit Plants Response to Warming HYPOTEHSIS 2: Thick forest floor (slow turnover time) protects fine roots from late winter-early spring frost.

Conclusions

- 1. Spring phenology of similar hardwood stands in Adirondacks, in the region with relatively uniform climatic conditions, is controlled by soil acidification (Al³⁺) as well as by MAT and/or by the thickness of forest floor which acts as a very good thermal insulator, thus, delaying the spring thermal signal propagation into the soil.
- 2. Plants sensitivity to warming in Adirondacks is typical for deciduous forest ecosystem: 1 to 5 days advance of SoS per 1°C of spring warming.
- 3. The dominant factor controlling plants sensitivity to warming is turnover of forest floor. Most likely forest floor acts here as source of extra nutrients to supply extended growing season and/or as the last defense from late winter-early spring frost as snow thickness declines with the warming.