### An Overview of CubeSats from a Systems Engineering Perspective

Graduate Research Assistants: Alexis Zamora, Narrator Reece Iwami

Faculty: Justin M. Akagi, Specialist Wayne A. Shiroma, Professor of Electrical Engineering

> University of Hawaii College of Engineering



### Introduction

#### Solution: CubeSats

- Standardized packaging
  - 1 U Package
    - Dimensions: 10 x 10 x 10 cm
    - Mass < 1 kg
  - Up to 3 U
- Reduction in mission cost
- Reduction in development time
- Improved system redundancy



## **Mission Overview**

#### Motivation: Hurricane Katrina

- August 29, 2005
- "the most destructive natural disaster in U.S. history" -White House
- \$96B in property damages
- Death toll: over 1,300 persons
- "local communications system wasn't simply degraded; it was, at least for a period of time, destroyed" - White House



Photo of Hurricane Katrina



#### Mission

 Proof-of-concept nanosatellite used to demonstrate operation of eye-inthe-sky satellite node in crisismanagement or disaster-monitoring network.

Ho`okele mission concept

## System Overview



## Telecommunications

- Provide a reliable wireless communication link
- Support data downlink (satellite >> ground)
- Support command uplink (ground >> satellite)
- Acts as satellite's "mouth" and "ears"



## Command & Data Handling

- Process telemetry and command information
- Schedule satellite tasks and processes
- Communicate with and control entire satellite
- Acts as satellite's "brain"



## Power

- Collect and store energy from available sources (i.e., solar)
- Generate electrical power for satellite systems
- Acts as satellite's "gas tank" and "engine"



### **Mechanical Structure**

- House satellite components
- Protect systems from launch and space conditions
- Acts as satellite's "chassis"



## Attitude Determination & Control

- Measure satellite attitude (location, velocity and pointing)
- Stabilize satellite's attitude (passive and/or active control)
- Dynamically adjust satellite orbit/attitude





# Payload

### Objective

 "To provide low-earth orbit satellite images for use in crisis management and disaster mitigation, and demonstrate intersatellite communications in an expandable satellite network."



# Ho`okele Integrated System

#### **Commercial-Off-The-Shelf Components**

#### **Telecommunications:**

1 -- 2.4-GHz Microhard MHX-2400 radio

#### Power:

2 -- 4.2 Ah Varta Microbattery Li+ battery

#### **Command & Data Handling:**

6 -- ACME Linux-based microcontroller

#### Payload:

- 3 -- Garmin GPS-15 receiver
- 5 -- Garmin GPS antenna
- 7 -- *MEMSense* inertial measurement unit (gyro, accelerometer, magnetometer)
- 8 -- AXIS 206M digital camera





## Ho`okele Integrated System



## Satellite Demonstration

#### **Verification Tests**

• Communication link established (4 miles)





Photos Taken by Ho`okele. Apr. 16, 2006.



Google Earth rendering of mid-range testing environment.

### Lessons Learned

- Choose a mission
- Choose a design to accomplish mission
- Use a modular approach
- Test, Troubleshoot, Retest

