PRACTICE EXAM 2A

(Some ACID BASE)

Questions 1-20 are multiple choice. Choose the best answer and blacken the appropriate circle on your answer sheet.

- 1. Which of these is NOT a Lewis acid?
 - A) AlCl₃
 - B) H+
 - C) BCl₃
 - D)H2S
 - E) CH3+
- 2. Which of the following pairs of reactants would undergo no reaction?
 - A) aqueous NaOH + CH3CH2CH2CO2H
 - B) ethene + CH₃CH₂ONa (in ethanol)
 - C) ethyne + CH₃Li (in hexane)
 - D) ethanol + NaNH2 (in liquid NH3)
 - E) CH₃CO₂Na + aqueous HCl
- 3. If a neutral organic substance **X** has a pK_a of 10 and is insoluble in distilled water, what happens when it is added to 1 M aqueous sodium hydroxide?
 - A) substance X gains a hydroxide ion
 - B) substance X remains insoluble
 - C) substance X becomes a water-soluble salt
 - D) substance X loses a proton
 - E) more than one of the above
- 4. Which of the following is true about every compound with (R) configuration?
 - (A) It is not superimposable on its mirror image
 - B) it will have (+) specific rotation
 - C) it will have (-) specific rotation
 - D) it is superimposable on its (S)-enantiomer
 - E) it is racemic
- 5. According to the Lewis definition, a base is:
 - A) proton donor
 - B) electron pair donor
 - C) hydroxide ion donor
 - D) hydrogen ion donor
 - E) electron pair acceptor
- 6. What properties are different when comparing a pair of enantiomers?
 - A) chemical reactivity toward ACHIRAL reagents
 - B) chemical reactivity toward CHIRAL reagents
 - C) density
 - D) melting point
 - E) boiling point
- 7. Which statement is true of a meso compound?
 - A) it will have optical activity
 - B) there are no planes of symmetry
 - C) it is not superimposable on its mirror image
 - D) it is an achiral diastereomer
 - E) it is a mixture of R and S enantiomers

- The sex attractant (C₁₀H₁₈O₂) of the carpet beetle is not optically active. Based only on this observation, the substance must:
 - A) be a meso compound
 - B) be racemic
 - C) contain no stereocenters
 - D) have a plane of symmetry
 - E) any of the above could be correct
- 10. Which statement is NOT true of nucleophilic substitution reactions?
 - A) S_N1 proceeds through a carbocation intermediate
 - B) S_N2 occurs with inversion of configuration
 - C) rates of both S_N1 and S_N2 increase at higher temperatures
 - D) rates of both S_N1 and S_N2 increase with higher concentrations of R-X
 - E) rates of both S_N1 and S_N2 increase with higher concentrations of Nu
- 11. In the following equilibrium, which two substances are both behaving as acids?

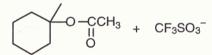
- A) CH₃NH₃⁺ and H₂O
- B) CH₃NH₃+ and CH₃NH₂
- C) H₂O and H₃O⁺
- (D) CH₃NH₃+ and H₃O+
- E) CH₃NH₂ and H₂O
- 12. Which of the following is the poorest leaving group?
 - A) CI
 - B) Br
 - C) CH₃CO₂
 - D)CH3O-
 - E) HSO₄

13. For the following S_N1 reaction, choose the statement which best describes the stereochemistry of the products:

- A) the product is a mixture of diastereomers
- B) the product is a mixture of enantiomers
- C) the product is a single diastereomer
- D) the product is a single enantiomer
- E) the product is achiral
- 14. Which of the following is a meso compound?
 - A) (2R,3R)-2,3-dibromopentane
 - B) (2R,3S)-2,3-dibromopentane
 - C) (2R,4R)-2,4-dibromopentane
 - (D) (2R,4S)-2,4-dibromopentane
 - E) none of the above

- 16. Choose the best answer to complete this statement: The rate-determining step of a reaction...
 - A) is the fastest step in the mechanism
 - B) is always the last step in the mechanism
 - C) is always the first step in the mechanism
 - (D) has the highest free energy of activation
 - E) has the lowest free energy of activation

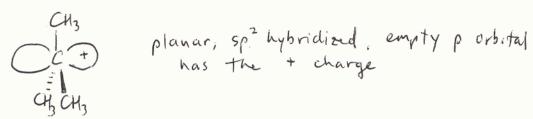
- 17. The term resolution best describes which of the following processes:
 - A) separation of enantiomers
 - B) conversion of chiral compounds to achiral
 - C) returning a salt to an aqueous solution
 - D) a reaction with no effect on bonds to a stereocenter
 - E) changing configuration from R to S (or S to R)
- 18. Which of the following would be expected to lead to increased rates of S_N1 reactions?
 - A) resonance-stabilization of the carbocation
 - B) alkyl groups attached to the carbocation
 - C) stabilization of the carbocation by solvent
 - D) lowering ΔG^{\ddagger} of the first step
 - E) all of the above
- 19. Which of the following is true of hydrocarbons and their carbanions?
 - (A) C-H bonds of sp-hybridized carbon are more acidic than those of sp²-hybridized carbon


 B) C–H bonds of sp²-hybridized carbon are more
 - acidic than those of sp-hybridized carbon C) C–H bonds of sp³-hybridized carbon are more
 - acidic than those of sp2-hybridized carbon
 - D) carbanions with less s-character are less basic
 - E) all of the above are true
- 20. Which alkyl halide would be most effective in a nucleophilic substitution reaction with OH-?
 - A) 2-bromo-2-methylpentane
 - B) 2-bromo-3-methylpentane
 - C) 1-bromo-2,2-dimethylpentane

D) 1-bromo-4-methylpentane - primary and
E) 2-bromopentane (murleud)

For questions 21-27, write each answer neatly and clearly in the space provided. (Please use reverse side if you need scratch paper.)

21. a) Identify the nucleophile (Nu), substrate (electrophile, E), and leaving group (LG) in the following nucleophilic substitution reaction. Place an appropriate abbreviation (Nu, E, LG) in 3 of the 4 blanks below. (6 points)


CH₃CO₂H

b) The above reaction likely proceeds by the _____ mechanism and is a special type of nucleophilic substitution

reaction which is also known as ______ So |volysis (4 points)

22. a) Draw a three-dimensional representation of the carbocation intermediate formed upon heterolysis of tert-butyl bromide. Include the shape of the orbital associated with the positive charge. Use dashed or wedged bonds if appropriate. (8 points)

b) Draw the transition state for the heterolysis of tert-butyl bromide, showing partial charges on the appropriate atoms. Use dashed or wedged bonds if appropriate. (8 points)

c) A carbocation would also form upon heterolysis of methyl bromide. This carbocation is: more (less (pircle one)

stable than the one in part a) above because it has fewer alkyl groups to stabilize the Ct (6 points)

(6 points)

(6 points)

(7)

(8)

(9)

(9)

(9)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

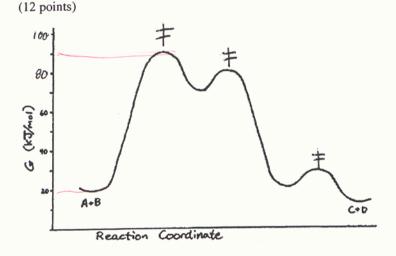
(10)

(10)

(10)

(10)

(10)

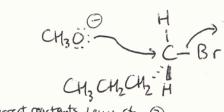

(10)

(10)

(10)

(10)

(10)


must have sign!

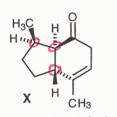
- a) The free energy change for the reaction A+B \rightarrow C+D is approximately $\frac{}{}$ kJ/mol (round to the nearest 10)
- b) The reaction A+B \rightarrow C+D is: endergonic (xergonic) (circle one)

c) The free energy of activation ΔG^{\ddagger} of the slowest step is approximately ΔT^{0} kJ/mol (round to the nearest 10)

d) Clearly indicate the location of all transition states on the reaction coordinate diagram using this label: (‡

must not be negative

correct prod


points, stereochemistry not required, Fruit required


25. Identify the relationship between each of the following pairs of compounds. Select from the following terms: constitutional isomers, diastereomers, enantiomers, or identical. (12 points)

and

26. The active ingredient in catnip oil which makes it a good insect repellent is trans-cis-nepetalactone (X). (See below Mght) a) How many stereoisomers of nepetalactone are possible? (2 points)

b) In the boxes below, draw a structure which is enantiomeric to X and a structure which is diastereomeric to X. (8 points)

identica

(must have only 1 or 2

trans-cis-Nepetalactone

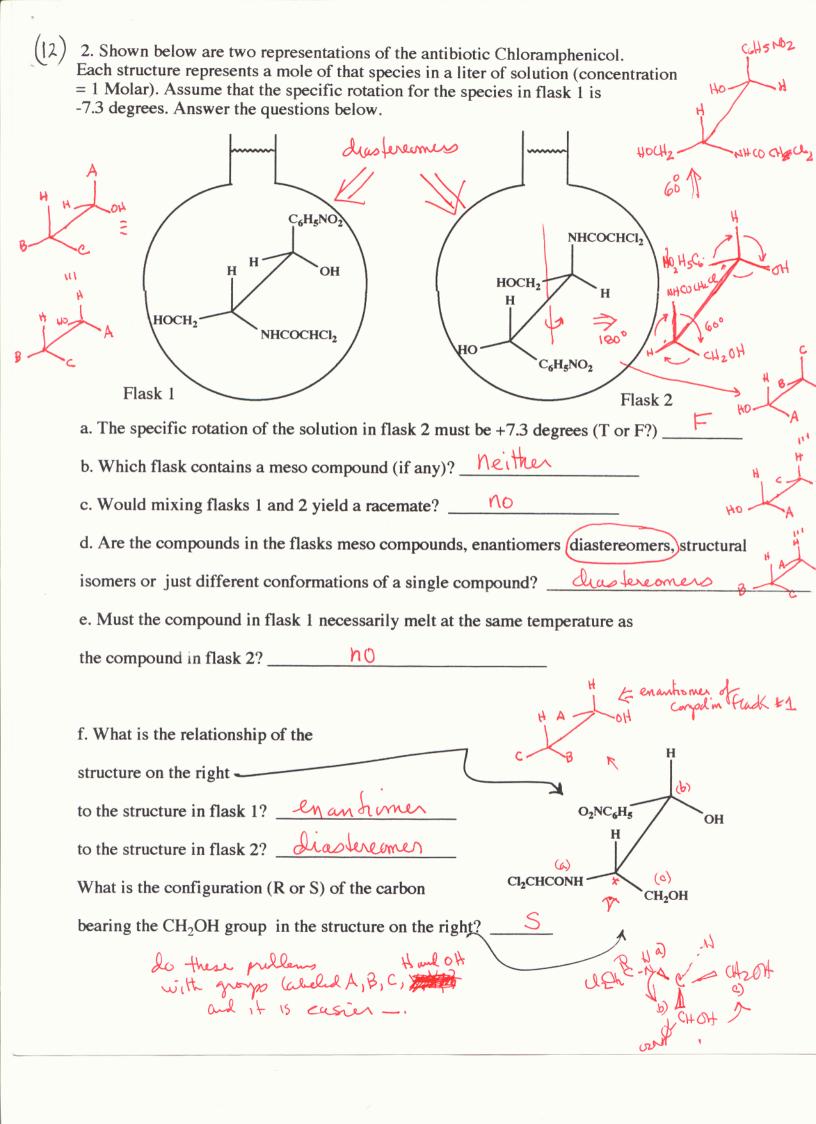
enantiomer of X

diastereomer of X

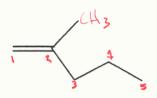
inverted from

4 points each

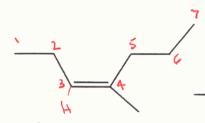
4 points for each

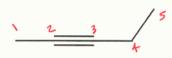

27. Provide reactants, reagents, or organic products needed to complete the following reactions. Clearly indicate configurations if stereoisomers are possible. (You need not show inorganic byproducts.)

(24 points)


$$(CH_3)_3C$$

$$(CH$$


must use ethyl group as electrophilic partner


3. Name the following (use E/Z where appropriate):

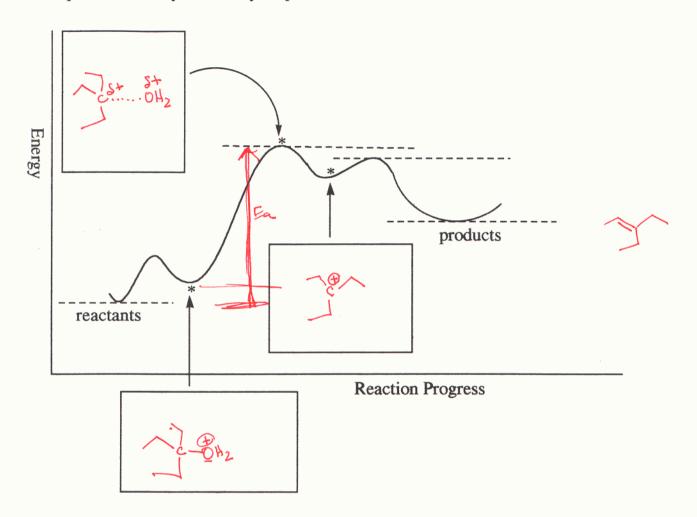
2- methyl-1-pensene

Z-4-methy/-3-haptene

2-pentyne

(6)

4. Draw the following:


cis-1,3-dimethylcyclohexane (draw most stable conformation):

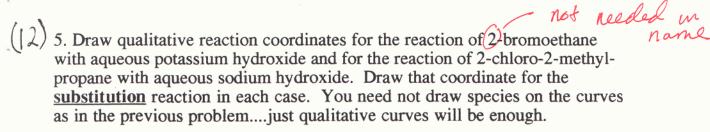
3-ethyl-4-methylhexane:

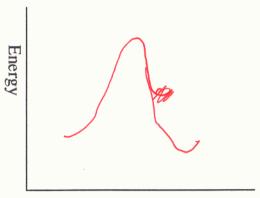
5-methyl-2-hexanol:

(15)

4. A qualitative reaction coordinate for the reaction of $(CH_3CH_2)_3COH$ in aqueous acid to yield 3-ethyl-2-pentene is shown below:

Indicate in the boxes the species at each of the respective points indicated by the arrows on the reaction coordinate curve. <u>Use line bond structures to simplify</u>. On the diagram, show the activation energy for the reaction.

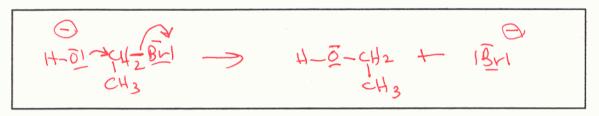

Is this reaction S_N1 , E-1, S_N2 or E-2? = -1


What would happen to the rate of the reaction if the temperature was increased?

rate 1

Write the rate law for the process corresponding to the reaction represented by the above reaction coordinate. Assume that H_3O^+ is in excess and that it's concentration remains constant (i.e., it does not appear in the rate law)

rule = K (Et) 3 COA)


Energy

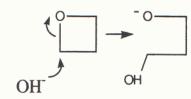
Reaction Progress

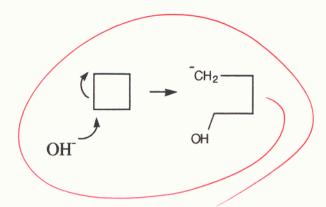
bromoethane

Reaction Progress
2-chloro-2-methylpropane

Write a detailed curved arrow mechanism for each reaction:

 $CH_3 - C - BP' \rightarrow CH_3 - CH_3$


The rate law for the 2-bromoethane reaction is: Rate = K [OH] [CH3 CH2 Br]


What would happen to the rate of the 2-bromoethane reaction of the concentration of hydroxide and the concentration of 2-bromoethane were both doubled?

What kind of reaction (S_N1 or S_N2) is the 2-chloro-2-methylpropane reaction?

(1) 6. In the following problems, circle the correct answer:

a. Which is slower?

b. Which is faster?

bromomethane + hydroxide ion --> methanol + bromide ion

diethylether + hydroxide ion --> ethanol + ethoxide ion

C. Which is slowest?

t-butanol + sodium bromide + water --> t-butyl bromide

t-butanol + sodium bromide + aqueous HBr --> t-butyl bromide

d. Which is fastest

CH₃S⁻ + CH₃Br --> substitution product

 F^- + CH_3Br $\stackrel{\text{MeoH}}{-->}$ substitution product

Which is fastest?

t-butyl chloride hydrolyzes to t-butanol in a mixture of 40% acetone and 60% water t-butyl chloride hydrolyzes to t-butanol in a mixture of 15% acetone and 75% water

 \int Which is fastest?

methyl chloride reacting with bromide ion in DMSO to give methyl bromide and chloride ion, methyl chloride reacting with bromide ion in CH₃OCH₃ to give methyl bromide and chloride ion.

 \mathcal{Q} . Which gives the most elimination product?

2-iodo-2-methylpropane + MeO

1-iodopentane + MeO

+

/_I

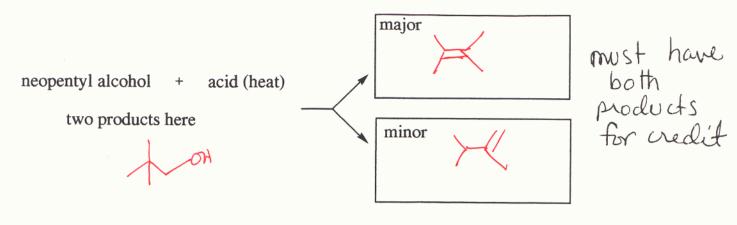
h. Which is the most nucleophilic towards iodoethane in ethanol?

 BH_3

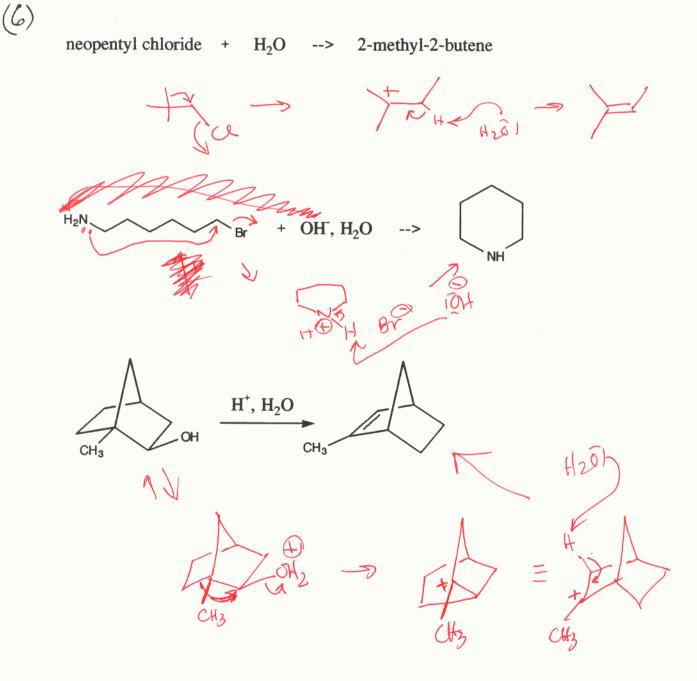
 NH_3

Which gives a charged (ionic) organic product?

triethylamine + ethyl bromide


CH₃NHK + ethylbromide

Ĵ,	Which is slowest?	
	t-butyl chloride solvolysis in water t-butyl chloride in ethanol	solvolysis
K.	Which is the strongest nucleophile?	
	CH ₃ NH ₂ CH ₃ NH ₃ ⁺	
7. For the following reactions, write the products in the boxes to the right of the reactants:		
	S-3-bromo-3 methylheptane in MeOH at 25°C	The racemale
	methyl iodide at 50°C in t-butanol/Kt-butoxide	CH3-0-
	t-butyl iodide and methoxide	
	trimethylamine and methylbromide	MEAN BY


2-chloro-2,3-dimethylbutane + t-butoxide

2,3-dibromobutane + 2 NaNH₂

CaH6 (contains a triple bond)

8. Draw curved arrow mechanisms for the following:

TD is in the modele - see A below in workspace in CoHoD, A, reacts with NaNHo in liquid ammonia

9. (4) A Chiral compound C_5H_7D , A, reacts with NaNH₂ in liquid ammonia to give the sodium salt of an organic anion. Adding CH_3Br to this anion yields B, C_6H_9D . B absorbs two moles of H_2 in the presence of a platinum catalyst to yield 3-deuteriohexane. Compound A absorbs one mole of H_2 in the presence of a platinum catalyst to give C, C_5H_9D , which is also chiral. C rapidly absorbs a second mole of H_2 to give D, $C_5H_{11}D$, which is not chiral. Hydrogenation of Z-3-deuterio-2-pentene with H_2 and a platinum catalyst also yields D. What are the structures of A,B,C and D?

Z-3-dev trio-2-pentene