

Cooperative Extension

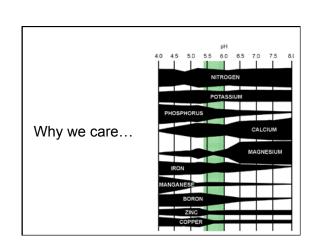
Understanding the Chemistry of Plant Nutrition:

Water Quality, Alkalinity and pH Management Today's Lecture

рН

Alkalinity

Injector Calibration


Substrate Monitoring

What is pH?

pH is the measure of H+ ions in a solution

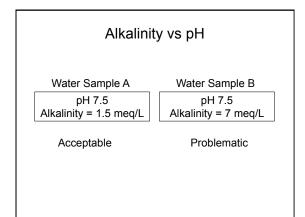
- pH 0-7 = acidic
- pH 7-14 = basic (alkaline)

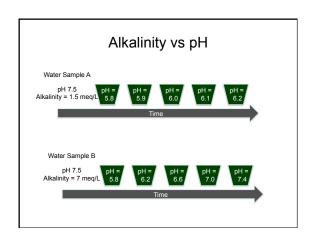
pH effects nutrient availability in the soil solution

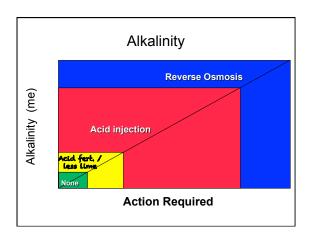
What is Alkalinity

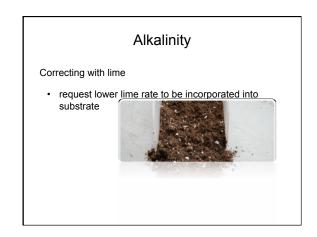
Alkalinity – the buffering capacity of water to resist change in pH

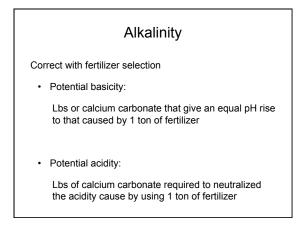
- Carbonate
- CO₃-2
- · Bicarbonate
- HCO₃-

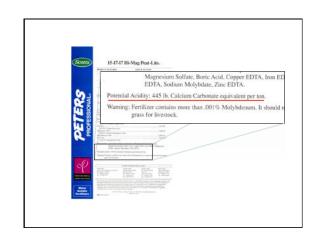

Alkalinity

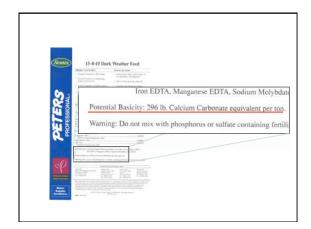

Units of measure

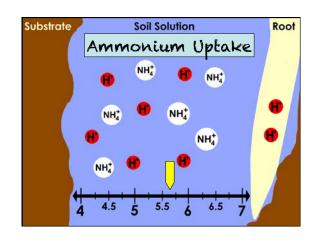

- Millieqivilants/Liter
- PPM

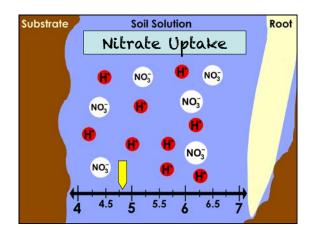

Convert from meg/L to PPM

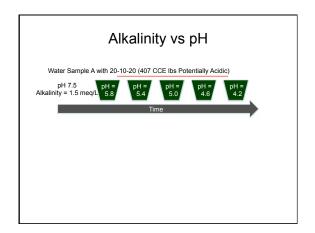

- Carbonate
- 1 meq/L = 50 ppm
- · Bicarbonate
- 1 meq/L = 61 ppm

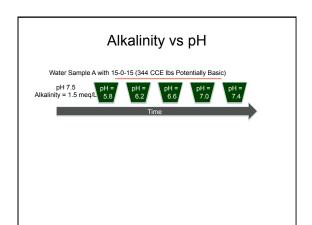











Fertilizer	Acidity	Basicity	
21-7-7	1539	-	
20-10-20	407	-	
20-5-30	100	-	
20-0-20	0	0	
15-5-15	-	69	
17-0-17	-	161	
15-2-20	-	195	
13-2-13	-	319	
15-0-15	-	344	

Fertilizer	Acidity	Basicity
ammonium sulfate	2200	-
urea	1680	-
diammonium phosphate	1400	-
ammonium nitrate	1220	-
monoammonium phosphate	1120	-
superphosphate	0	0
potassium chloride	0	0
potassium sulfate	0	0
calcium nitrate	-	400
potassium nitrate	-	520
sodium nitrate	-	580

Why Calibrate?

Nutrient toxicities

Over application

Nutrient deficiencies

Under application

\$\$\$\$\$\$\$\$\$\$\$\$\$

Cost of fertilizer

Cost of lost sales

How To Calibrate

Two methods

Flow Method

EC Method

PourThru

Irrigate the crop one hour prior to PourThru

PourThru

Place a plastic saucer under container

PourThru

Pour enough water over top of substrate to displace ~ 50_{mL} of solution

Distilled Water Volumes

Pot Size (inches & cm)	ml	OZ
Cell Pack	30	1.0
4" (10 cm)	30	1.0
5" to 6" (12 to 15 cm)	75	2.5
6.5"+ (16 cm+)	100	3.4

PourThru

Collect & analyze the leachate

6 or 8-inch saucers

PourThru

PourThru

Measure

PourThru

- · Don't over react
- · Look for trends
- · Don't ignore it
- · Consistency is the KEY

Stay in connected with

www.nhfloriculture.com

www.e-gro.org

